]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/linux/blkdev.h
block: Dynamically allocate and refcount backing_dev_info
[mirror_ubuntu-eoan-kernel.git] / include / linux / blkdev.h
1 #ifndef _LINUX_BLKDEV_H
2 #define _LINUX_BLKDEV_H
3
4 #include <linux/sched.h>
5
6 #ifdef CONFIG_BLOCK
7
8 #include <linux/major.h>
9 #include <linux/genhd.h>
10 #include <linux/list.h>
11 #include <linux/llist.h>
12 #include <linux/timer.h>
13 #include <linux/workqueue.h>
14 #include <linux/pagemap.h>
15 #include <linux/backing-dev-defs.h>
16 #include <linux/wait.h>
17 #include <linux/mempool.h>
18 #include <linux/pfn.h>
19 #include <linux/bio.h>
20 #include <linux/stringify.h>
21 #include <linux/gfp.h>
22 #include <linux/bsg.h>
23 #include <linux/smp.h>
24 #include <linux/rcupdate.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/scatterlist.h>
27 #include <linux/blkzoned.h>
28
29 struct module;
30 struct scsi_ioctl_command;
31
32 struct request_queue;
33 struct elevator_queue;
34 struct blk_trace;
35 struct request;
36 struct sg_io_hdr;
37 struct bsg_job;
38 struct blkcg_gq;
39 struct blk_flush_queue;
40 struct pr_ops;
41 struct rq_wb;
42
43 #define BLKDEV_MIN_RQ 4
44 #define BLKDEV_MAX_RQ 128 /* Default maximum */
45
46 /*
47 * Maximum number of blkcg policies allowed to be registered concurrently.
48 * Defined here to simplify include dependency.
49 */
50 #define BLKCG_MAX_POLS 2
51
52 typedef void (rq_end_io_fn)(struct request *, int);
53
54 #define BLK_RL_SYNCFULL (1U << 0)
55 #define BLK_RL_ASYNCFULL (1U << 1)
56
57 struct request_list {
58 struct request_queue *q; /* the queue this rl belongs to */
59 #ifdef CONFIG_BLK_CGROUP
60 struct blkcg_gq *blkg; /* blkg this request pool belongs to */
61 #endif
62 /*
63 * count[], starved[], and wait[] are indexed by
64 * BLK_RW_SYNC/BLK_RW_ASYNC
65 */
66 int count[2];
67 int starved[2];
68 mempool_t *rq_pool;
69 wait_queue_head_t wait[2];
70 unsigned int flags;
71 };
72
73 /*
74 * request flags */
75 typedef __u32 __bitwise req_flags_t;
76
77 /* elevator knows about this request */
78 #define RQF_SORTED ((__force req_flags_t)(1 << 0))
79 /* drive already may have started this one */
80 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
81 /* uses tagged queueing */
82 #define RQF_QUEUED ((__force req_flags_t)(1 << 2))
83 /* may not be passed by ioscheduler */
84 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
85 /* request for flush sequence */
86 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
87 /* merge of different types, fail separately */
88 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
89 /* track inflight for MQ */
90 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
91 /* don't call prep for this one */
92 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
93 /* set for "ide_preempt" requests and also for requests for which the SCSI
94 "quiesce" state must be ignored. */
95 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8))
96 /* contains copies of user pages */
97 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9))
98 /* vaguely specified driver internal error. Ignored by the block layer */
99 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
100 /* don't warn about errors */
101 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
102 /* elevator private data attached */
103 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
104 /* account I/O stat */
105 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
106 /* request came from our alloc pool */
107 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
108 /* runtime pm request */
109 #define RQF_PM ((__force req_flags_t)(1 << 15))
110 /* on IO scheduler merge hash */
111 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
112 /* IO stats tracking on */
113 #define RQF_STATS ((__force req_flags_t)(1 << 17))
114 /* Look at ->special_vec for the actual data payload instead of the
115 bio chain. */
116 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
117
118 /* flags that prevent us from merging requests: */
119 #define RQF_NOMERGE_FLAGS \
120 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
121
122 /*
123 * Try to put the fields that are referenced together in the same cacheline.
124 *
125 * If you modify this structure, make sure to update blk_rq_init() and
126 * especially blk_mq_rq_ctx_init() to take care of the added fields.
127 */
128 struct request {
129 struct list_head queuelist;
130 union {
131 struct call_single_data csd;
132 u64 fifo_time;
133 };
134
135 struct request_queue *q;
136 struct blk_mq_ctx *mq_ctx;
137
138 int cpu;
139 unsigned int cmd_flags; /* op and common flags */
140 req_flags_t rq_flags;
141
142 int internal_tag;
143
144 unsigned long atomic_flags;
145
146 /* the following two fields are internal, NEVER access directly */
147 unsigned int __data_len; /* total data len */
148 int tag;
149 sector_t __sector; /* sector cursor */
150
151 struct bio *bio;
152 struct bio *biotail;
153
154 /*
155 * The hash is used inside the scheduler, and killed once the
156 * request reaches the dispatch list. The ipi_list is only used
157 * to queue the request for softirq completion, which is long
158 * after the request has been unhashed (and even removed from
159 * the dispatch list).
160 */
161 union {
162 struct hlist_node hash; /* merge hash */
163 struct list_head ipi_list;
164 };
165
166 /*
167 * The rb_node is only used inside the io scheduler, requests
168 * are pruned when moved to the dispatch queue. So let the
169 * completion_data share space with the rb_node.
170 */
171 union {
172 struct rb_node rb_node; /* sort/lookup */
173 struct bio_vec special_vec;
174 void *completion_data;
175 };
176
177 /*
178 * Three pointers are available for the IO schedulers, if they need
179 * more they have to dynamically allocate it. Flush requests are
180 * never put on the IO scheduler. So let the flush fields share
181 * space with the elevator data.
182 */
183 union {
184 struct {
185 struct io_cq *icq;
186 void *priv[2];
187 } elv;
188
189 struct {
190 unsigned int seq;
191 struct list_head list;
192 rq_end_io_fn *saved_end_io;
193 } flush;
194 };
195
196 struct gendisk *rq_disk;
197 struct hd_struct *part;
198 unsigned long start_time;
199 struct blk_issue_stat issue_stat;
200 #ifdef CONFIG_BLK_CGROUP
201 struct request_list *rl; /* rl this rq is alloced from */
202 unsigned long long start_time_ns;
203 unsigned long long io_start_time_ns; /* when passed to hardware */
204 #endif
205 /* Number of scatter-gather DMA addr+len pairs after
206 * physical address coalescing is performed.
207 */
208 unsigned short nr_phys_segments;
209 #if defined(CONFIG_BLK_DEV_INTEGRITY)
210 unsigned short nr_integrity_segments;
211 #endif
212
213 unsigned short ioprio;
214
215 void *special; /* opaque pointer available for LLD use */
216
217 int errors;
218
219 unsigned int extra_len; /* length of alignment and padding */
220
221 unsigned long deadline;
222 struct list_head timeout_list;
223 unsigned int timeout;
224 int retries;
225
226 /*
227 * completion callback.
228 */
229 rq_end_io_fn *end_io;
230 void *end_io_data;
231
232 /* for bidi */
233 struct request *next_rq;
234 };
235
236 static inline bool blk_rq_is_scsi(struct request *rq)
237 {
238 return req_op(rq) == REQ_OP_SCSI_IN || req_op(rq) == REQ_OP_SCSI_OUT;
239 }
240
241 static inline bool blk_rq_is_private(struct request *rq)
242 {
243 return req_op(rq) == REQ_OP_DRV_IN || req_op(rq) == REQ_OP_DRV_OUT;
244 }
245
246 static inline bool blk_rq_is_passthrough(struct request *rq)
247 {
248 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
249 }
250
251 static inline unsigned short req_get_ioprio(struct request *req)
252 {
253 return req->ioprio;
254 }
255
256 #include <linux/elevator.h>
257
258 struct blk_queue_ctx;
259
260 typedef void (request_fn_proc) (struct request_queue *q);
261 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
262 typedef int (prep_rq_fn) (struct request_queue *, struct request *);
263 typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
264
265 struct bio_vec;
266 typedef void (softirq_done_fn)(struct request *);
267 typedef int (dma_drain_needed_fn)(struct request *);
268 typedef int (lld_busy_fn) (struct request_queue *q);
269 typedef int (bsg_job_fn) (struct bsg_job *);
270 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t);
271 typedef void (exit_rq_fn)(struct request_queue *, struct request *);
272
273 enum blk_eh_timer_return {
274 BLK_EH_NOT_HANDLED,
275 BLK_EH_HANDLED,
276 BLK_EH_RESET_TIMER,
277 };
278
279 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
280
281 enum blk_queue_state {
282 Queue_down,
283 Queue_up,
284 };
285
286 struct blk_queue_tag {
287 struct request **tag_index; /* map of busy tags */
288 unsigned long *tag_map; /* bit map of free/busy tags */
289 int max_depth; /* what we will send to device */
290 int real_max_depth; /* what the array can hold */
291 atomic_t refcnt; /* map can be shared */
292 int alloc_policy; /* tag allocation policy */
293 int next_tag; /* next tag */
294 };
295 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
296 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
297
298 #define BLK_SCSI_MAX_CMDS (256)
299 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
300
301 /*
302 * Zoned block device models (zoned limit).
303 */
304 enum blk_zoned_model {
305 BLK_ZONED_NONE, /* Regular block device */
306 BLK_ZONED_HA, /* Host-aware zoned block device */
307 BLK_ZONED_HM, /* Host-managed zoned block device */
308 };
309
310 struct queue_limits {
311 unsigned long bounce_pfn;
312 unsigned long seg_boundary_mask;
313 unsigned long virt_boundary_mask;
314
315 unsigned int max_hw_sectors;
316 unsigned int max_dev_sectors;
317 unsigned int chunk_sectors;
318 unsigned int max_sectors;
319 unsigned int max_segment_size;
320 unsigned int physical_block_size;
321 unsigned int alignment_offset;
322 unsigned int io_min;
323 unsigned int io_opt;
324 unsigned int max_discard_sectors;
325 unsigned int max_hw_discard_sectors;
326 unsigned int max_write_same_sectors;
327 unsigned int max_write_zeroes_sectors;
328 unsigned int discard_granularity;
329 unsigned int discard_alignment;
330
331 unsigned short logical_block_size;
332 unsigned short max_segments;
333 unsigned short max_integrity_segments;
334
335 unsigned char misaligned;
336 unsigned char discard_misaligned;
337 unsigned char cluster;
338 unsigned char discard_zeroes_data;
339 unsigned char raid_partial_stripes_expensive;
340 enum blk_zoned_model zoned;
341 };
342
343 #ifdef CONFIG_BLK_DEV_ZONED
344
345 struct blk_zone_report_hdr {
346 unsigned int nr_zones;
347 u8 padding[60];
348 };
349
350 extern int blkdev_report_zones(struct block_device *bdev,
351 sector_t sector, struct blk_zone *zones,
352 unsigned int *nr_zones, gfp_t gfp_mask);
353 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
354 sector_t nr_sectors, gfp_t gfp_mask);
355
356 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
357 unsigned int cmd, unsigned long arg);
358 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
359 unsigned int cmd, unsigned long arg);
360
361 #else /* CONFIG_BLK_DEV_ZONED */
362
363 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
364 fmode_t mode, unsigned int cmd,
365 unsigned long arg)
366 {
367 return -ENOTTY;
368 }
369
370 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
371 fmode_t mode, unsigned int cmd,
372 unsigned long arg)
373 {
374 return -ENOTTY;
375 }
376
377 #endif /* CONFIG_BLK_DEV_ZONED */
378
379 struct request_queue {
380 /*
381 * Together with queue_head for cacheline sharing
382 */
383 struct list_head queue_head;
384 struct request *last_merge;
385 struct elevator_queue *elevator;
386 int nr_rqs[2]; /* # allocated [a]sync rqs */
387 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */
388
389 struct rq_wb *rq_wb;
390
391 /*
392 * If blkcg is not used, @q->root_rl serves all requests. If blkcg
393 * is used, root blkg allocates from @q->root_rl and all other
394 * blkgs from their own blkg->rl. Which one to use should be
395 * determined using bio_request_list().
396 */
397 struct request_list root_rl;
398
399 request_fn_proc *request_fn;
400 make_request_fn *make_request_fn;
401 prep_rq_fn *prep_rq_fn;
402 unprep_rq_fn *unprep_rq_fn;
403 softirq_done_fn *softirq_done_fn;
404 rq_timed_out_fn *rq_timed_out_fn;
405 dma_drain_needed_fn *dma_drain_needed;
406 lld_busy_fn *lld_busy_fn;
407 init_rq_fn *init_rq_fn;
408 exit_rq_fn *exit_rq_fn;
409
410 const struct blk_mq_ops *mq_ops;
411
412 unsigned int *mq_map;
413
414 /* sw queues */
415 struct blk_mq_ctx __percpu *queue_ctx;
416 unsigned int nr_queues;
417
418 unsigned int queue_depth;
419
420 /* hw dispatch queues */
421 struct blk_mq_hw_ctx **queue_hw_ctx;
422 unsigned int nr_hw_queues;
423
424 /*
425 * Dispatch queue sorting
426 */
427 sector_t end_sector;
428 struct request *boundary_rq;
429
430 /*
431 * Delayed queue handling
432 */
433 struct delayed_work delay_work;
434
435 struct backing_dev_info *backing_dev_info;
436
437 /*
438 * The queue owner gets to use this for whatever they like.
439 * ll_rw_blk doesn't touch it.
440 */
441 void *queuedata;
442
443 /*
444 * various queue flags, see QUEUE_* below
445 */
446 unsigned long queue_flags;
447
448 /*
449 * ida allocated id for this queue. Used to index queues from
450 * ioctx.
451 */
452 int id;
453
454 /*
455 * queue needs bounce pages for pages above this limit
456 */
457 gfp_t bounce_gfp;
458
459 /*
460 * protects queue structures from reentrancy. ->__queue_lock should
461 * _never_ be used directly, it is queue private. always use
462 * ->queue_lock.
463 */
464 spinlock_t __queue_lock;
465 spinlock_t *queue_lock;
466
467 /*
468 * queue kobject
469 */
470 struct kobject kobj;
471
472 /*
473 * mq queue kobject
474 */
475 struct kobject mq_kobj;
476
477 #ifdef CONFIG_BLK_DEV_INTEGRITY
478 struct blk_integrity integrity;
479 #endif /* CONFIG_BLK_DEV_INTEGRITY */
480
481 #ifdef CONFIG_PM
482 struct device *dev;
483 int rpm_status;
484 unsigned int nr_pending;
485 #endif
486
487 /*
488 * queue settings
489 */
490 unsigned long nr_requests; /* Max # of requests */
491 unsigned int nr_congestion_on;
492 unsigned int nr_congestion_off;
493 unsigned int nr_batching;
494
495 unsigned int dma_drain_size;
496 void *dma_drain_buffer;
497 unsigned int dma_pad_mask;
498 unsigned int dma_alignment;
499
500 struct blk_queue_tag *queue_tags;
501 struct list_head tag_busy_list;
502
503 unsigned int nr_sorted;
504 unsigned int in_flight[2];
505
506 struct blk_rq_stat rq_stats[2];
507
508 /*
509 * Number of active block driver functions for which blk_drain_queue()
510 * must wait. Must be incremented around functions that unlock the
511 * queue_lock internally, e.g. scsi_request_fn().
512 */
513 unsigned int request_fn_active;
514
515 unsigned int rq_timeout;
516 int poll_nsec;
517 struct timer_list timeout;
518 struct work_struct timeout_work;
519 struct list_head timeout_list;
520
521 struct list_head icq_list;
522 #ifdef CONFIG_BLK_CGROUP
523 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
524 struct blkcg_gq *root_blkg;
525 struct list_head blkg_list;
526 #endif
527
528 struct queue_limits limits;
529
530 /*
531 * sg stuff
532 */
533 unsigned int sg_timeout;
534 unsigned int sg_reserved_size;
535 int node;
536 #ifdef CONFIG_BLK_DEV_IO_TRACE
537 struct blk_trace *blk_trace;
538 #endif
539 /*
540 * for flush operations
541 */
542 struct blk_flush_queue *fq;
543
544 struct list_head requeue_list;
545 spinlock_t requeue_lock;
546 struct delayed_work requeue_work;
547
548 struct mutex sysfs_lock;
549
550 int bypass_depth;
551 atomic_t mq_freeze_depth;
552
553 #if defined(CONFIG_BLK_DEV_BSG)
554 bsg_job_fn *bsg_job_fn;
555 int bsg_job_size;
556 struct bsg_class_device bsg_dev;
557 #endif
558
559 #ifdef CONFIG_BLK_DEV_THROTTLING
560 /* Throttle data */
561 struct throtl_data *td;
562 #endif
563 struct rcu_head rcu_head;
564 wait_queue_head_t mq_freeze_wq;
565 struct percpu_ref q_usage_counter;
566 struct list_head all_q_node;
567
568 struct blk_mq_tag_set *tag_set;
569 struct list_head tag_set_list;
570 struct bio_set *bio_split;
571
572 #ifdef CONFIG_DEBUG_FS
573 struct dentry *debugfs_dir;
574 struct dentry *mq_debugfs_dir;
575 #endif
576
577 bool mq_sysfs_init_done;
578
579 size_t cmd_size;
580 void *rq_alloc_data;
581 };
582
583 #define QUEUE_FLAG_QUEUED 1 /* uses generic tag queueing */
584 #define QUEUE_FLAG_STOPPED 2 /* queue is stopped */
585 #define QUEUE_FLAG_SYNCFULL 3 /* read queue has been filled */
586 #define QUEUE_FLAG_ASYNCFULL 4 /* write queue has been filled */
587 #define QUEUE_FLAG_DYING 5 /* queue being torn down */
588 #define QUEUE_FLAG_BYPASS 6 /* act as dumb FIFO queue */
589 #define QUEUE_FLAG_BIDI 7 /* queue supports bidi requests */
590 #define QUEUE_FLAG_NOMERGES 8 /* disable merge attempts */
591 #define QUEUE_FLAG_SAME_COMP 9 /* complete on same CPU-group */
592 #define QUEUE_FLAG_FAIL_IO 10 /* fake timeout */
593 #define QUEUE_FLAG_STACKABLE 11 /* supports request stacking */
594 #define QUEUE_FLAG_NONROT 12 /* non-rotational device (SSD) */
595 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
596 #define QUEUE_FLAG_IO_STAT 13 /* do IO stats */
597 #define QUEUE_FLAG_DISCARD 14 /* supports DISCARD */
598 #define QUEUE_FLAG_NOXMERGES 15 /* No extended merges */
599 #define QUEUE_FLAG_ADD_RANDOM 16 /* Contributes to random pool */
600 #define QUEUE_FLAG_SECERASE 17 /* supports secure erase */
601 #define QUEUE_FLAG_SAME_FORCE 18 /* force complete on same CPU */
602 #define QUEUE_FLAG_DEAD 19 /* queue tear-down finished */
603 #define QUEUE_FLAG_INIT_DONE 20 /* queue is initialized */
604 #define QUEUE_FLAG_NO_SG_MERGE 21 /* don't attempt to merge SG segments*/
605 #define QUEUE_FLAG_POLL 22 /* IO polling enabled if set */
606 #define QUEUE_FLAG_WC 23 /* Write back caching */
607 #define QUEUE_FLAG_FUA 24 /* device supports FUA writes */
608 #define QUEUE_FLAG_FLUSH_NQ 25 /* flush not queueuable */
609 #define QUEUE_FLAG_DAX 26 /* device supports DAX */
610 #define QUEUE_FLAG_STATS 27 /* track rq completion times */
611 #define QUEUE_FLAG_RESTART 28 /* queue needs restart at completion */
612
613 #define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
614 (1 << QUEUE_FLAG_STACKABLE) | \
615 (1 << QUEUE_FLAG_SAME_COMP) | \
616 (1 << QUEUE_FLAG_ADD_RANDOM))
617
618 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
619 (1 << QUEUE_FLAG_STACKABLE) | \
620 (1 << QUEUE_FLAG_SAME_COMP) | \
621 (1 << QUEUE_FLAG_POLL))
622
623 static inline void queue_lockdep_assert_held(struct request_queue *q)
624 {
625 if (q->queue_lock)
626 lockdep_assert_held(q->queue_lock);
627 }
628
629 static inline void queue_flag_set_unlocked(unsigned int flag,
630 struct request_queue *q)
631 {
632 __set_bit(flag, &q->queue_flags);
633 }
634
635 static inline int queue_flag_test_and_clear(unsigned int flag,
636 struct request_queue *q)
637 {
638 queue_lockdep_assert_held(q);
639
640 if (test_bit(flag, &q->queue_flags)) {
641 __clear_bit(flag, &q->queue_flags);
642 return 1;
643 }
644
645 return 0;
646 }
647
648 static inline int queue_flag_test_and_set(unsigned int flag,
649 struct request_queue *q)
650 {
651 queue_lockdep_assert_held(q);
652
653 if (!test_bit(flag, &q->queue_flags)) {
654 __set_bit(flag, &q->queue_flags);
655 return 0;
656 }
657
658 return 1;
659 }
660
661 static inline void queue_flag_set(unsigned int flag, struct request_queue *q)
662 {
663 queue_lockdep_assert_held(q);
664 __set_bit(flag, &q->queue_flags);
665 }
666
667 static inline void queue_flag_clear_unlocked(unsigned int flag,
668 struct request_queue *q)
669 {
670 __clear_bit(flag, &q->queue_flags);
671 }
672
673 static inline int queue_in_flight(struct request_queue *q)
674 {
675 return q->in_flight[0] + q->in_flight[1];
676 }
677
678 static inline void queue_flag_clear(unsigned int flag, struct request_queue *q)
679 {
680 queue_lockdep_assert_held(q);
681 __clear_bit(flag, &q->queue_flags);
682 }
683
684 #define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
685 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
686 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
687 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
688 #define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
689 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
690 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
691 #define blk_queue_noxmerges(q) \
692 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
693 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
694 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
695 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
696 #define blk_queue_stackable(q) \
697 test_bit(QUEUE_FLAG_STACKABLE, &(q)->queue_flags)
698 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
699 #define blk_queue_secure_erase(q) \
700 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
701 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
702
703 #define blk_noretry_request(rq) \
704 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
705 REQ_FAILFAST_DRIVER))
706
707 static inline bool blk_account_rq(struct request *rq)
708 {
709 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
710 }
711
712 #define blk_rq_cpu_valid(rq) ((rq)->cpu != -1)
713 #define blk_bidi_rq(rq) ((rq)->next_rq != NULL)
714 /* rq->queuelist of dequeued request must be list_empty() */
715 #define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist))
716
717 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
718
719 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
720
721 /*
722 * Driver can handle struct request, if it either has an old style
723 * request_fn defined, or is blk-mq based.
724 */
725 static inline bool queue_is_rq_based(struct request_queue *q)
726 {
727 return q->request_fn || q->mq_ops;
728 }
729
730 static inline unsigned int blk_queue_cluster(struct request_queue *q)
731 {
732 return q->limits.cluster;
733 }
734
735 static inline enum blk_zoned_model
736 blk_queue_zoned_model(struct request_queue *q)
737 {
738 return q->limits.zoned;
739 }
740
741 static inline bool blk_queue_is_zoned(struct request_queue *q)
742 {
743 switch (blk_queue_zoned_model(q)) {
744 case BLK_ZONED_HA:
745 case BLK_ZONED_HM:
746 return true;
747 default:
748 return false;
749 }
750 }
751
752 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
753 {
754 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
755 }
756
757 static inline bool rq_is_sync(struct request *rq)
758 {
759 return op_is_sync(rq->cmd_flags);
760 }
761
762 static inline bool blk_rl_full(struct request_list *rl, bool sync)
763 {
764 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
765
766 return rl->flags & flag;
767 }
768
769 static inline void blk_set_rl_full(struct request_list *rl, bool sync)
770 {
771 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
772
773 rl->flags |= flag;
774 }
775
776 static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
777 {
778 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
779
780 rl->flags &= ~flag;
781 }
782
783 static inline bool rq_mergeable(struct request *rq)
784 {
785 if (blk_rq_is_passthrough(rq))
786 return false;
787
788 if (req_op(rq) == REQ_OP_FLUSH)
789 return false;
790
791 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
792 return false;
793
794 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
795 return false;
796 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
797 return false;
798
799 return true;
800 }
801
802 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
803 {
804 if (bio_data(a) == bio_data(b))
805 return true;
806
807 return false;
808 }
809
810 static inline unsigned int blk_queue_depth(struct request_queue *q)
811 {
812 if (q->queue_depth)
813 return q->queue_depth;
814
815 return q->nr_requests;
816 }
817
818 /*
819 * q->prep_rq_fn return values
820 */
821 enum {
822 BLKPREP_OK, /* serve it */
823 BLKPREP_KILL, /* fatal error, kill, return -EIO */
824 BLKPREP_DEFER, /* leave on queue */
825 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */
826 };
827
828 extern unsigned long blk_max_low_pfn, blk_max_pfn;
829
830 /*
831 * standard bounce addresses:
832 *
833 * BLK_BOUNCE_HIGH : bounce all highmem pages
834 * BLK_BOUNCE_ANY : don't bounce anything
835 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
836 */
837
838 #if BITS_PER_LONG == 32
839 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
840 #else
841 #define BLK_BOUNCE_HIGH -1ULL
842 #endif
843 #define BLK_BOUNCE_ANY (-1ULL)
844 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
845
846 /*
847 * default timeout for SG_IO if none specified
848 */
849 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
850 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
851
852 #ifdef CONFIG_BOUNCE
853 extern int init_emergency_isa_pool(void);
854 extern void blk_queue_bounce(struct request_queue *q, struct bio **bio);
855 #else
856 static inline int init_emergency_isa_pool(void)
857 {
858 return 0;
859 }
860 static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
861 {
862 }
863 #endif /* CONFIG_MMU */
864
865 struct rq_map_data {
866 struct page **pages;
867 int page_order;
868 int nr_entries;
869 unsigned long offset;
870 int null_mapped;
871 int from_user;
872 };
873
874 struct req_iterator {
875 struct bvec_iter iter;
876 struct bio *bio;
877 };
878
879 /* This should not be used directly - use rq_for_each_segment */
880 #define for_each_bio(_bio) \
881 for (; _bio; _bio = _bio->bi_next)
882 #define __rq_for_each_bio(_bio, rq) \
883 if ((rq->bio)) \
884 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
885
886 #define rq_for_each_segment(bvl, _rq, _iter) \
887 __rq_for_each_bio(_iter.bio, _rq) \
888 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
889
890 #define rq_iter_last(bvec, _iter) \
891 (_iter.bio->bi_next == NULL && \
892 bio_iter_last(bvec, _iter.iter))
893
894 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
895 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
896 #endif
897 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
898 extern void rq_flush_dcache_pages(struct request *rq);
899 #else
900 static inline void rq_flush_dcache_pages(struct request *rq)
901 {
902 }
903 #endif
904
905 #ifdef CONFIG_PRINTK
906 #define vfs_msg(sb, level, fmt, ...) \
907 __vfs_msg(sb, level, fmt, ##__VA_ARGS__)
908 #else
909 #define vfs_msg(sb, level, fmt, ...) \
910 do { \
911 no_printk(fmt, ##__VA_ARGS__); \
912 __vfs_msg(sb, "", " "); \
913 } while (0)
914 #endif
915
916 extern int blk_register_queue(struct gendisk *disk);
917 extern void blk_unregister_queue(struct gendisk *disk);
918 extern blk_qc_t generic_make_request(struct bio *bio);
919 extern void blk_rq_init(struct request_queue *q, struct request *rq);
920 extern void blk_put_request(struct request *);
921 extern void __blk_put_request(struct request_queue *, struct request *);
922 extern struct request *blk_get_request(struct request_queue *, int, gfp_t);
923 extern void blk_requeue_request(struct request_queue *, struct request *);
924 extern int blk_lld_busy(struct request_queue *q);
925 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
926 struct bio_set *bs, gfp_t gfp_mask,
927 int (*bio_ctr)(struct bio *, struct bio *, void *),
928 void *data);
929 extern void blk_rq_unprep_clone(struct request *rq);
930 extern int blk_insert_cloned_request(struct request_queue *q,
931 struct request *rq);
932 extern int blk_rq_append_bio(struct request *rq, struct bio *bio);
933 extern void blk_delay_queue(struct request_queue *, unsigned long);
934 extern void blk_queue_split(struct request_queue *, struct bio **,
935 struct bio_set *);
936 extern void blk_recount_segments(struct request_queue *, struct bio *);
937 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
938 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
939 unsigned int, void __user *);
940 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
941 unsigned int, void __user *);
942 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
943 struct scsi_ioctl_command __user *);
944
945 extern int blk_queue_enter(struct request_queue *q, bool nowait);
946 extern void blk_queue_exit(struct request_queue *q);
947 extern void blk_start_queue(struct request_queue *q);
948 extern void blk_start_queue_async(struct request_queue *q);
949 extern void blk_stop_queue(struct request_queue *q);
950 extern void blk_sync_queue(struct request_queue *q);
951 extern void __blk_stop_queue(struct request_queue *q);
952 extern void __blk_run_queue(struct request_queue *q);
953 extern void __blk_run_queue_uncond(struct request_queue *q);
954 extern void blk_run_queue(struct request_queue *);
955 extern void blk_run_queue_async(struct request_queue *q);
956 extern void blk_mq_quiesce_queue(struct request_queue *q);
957 extern int blk_rq_map_user(struct request_queue *, struct request *,
958 struct rq_map_data *, void __user *, unsigned long,
959 gfp_t);
960 extern int blk_rq_unmap_user(struct bio *);
961 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
962 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
963 struct rq_map_data *, const struct iov_iter *,
964 gfp_t);
965 extern int blk_execute_rq(struct request_queue *, struct gendisk *,
966 struct request *, int);
967 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
968 struct request *, int, rq_end_io_fn *);
969
970 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
971
972 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
973 {
974 return bdev->bd_disk->queue; /* this is never NULL */
975 }
976
977 /*
978 * blk_rq_pos() : the current sector
979 * blk_rq_bytes() : bytes left in the entire request
980 * blk_rq_cur_bytes() : bytes left in the current segment
981 * blk_rq_err_bytes() : bytes left till the next error boundary
982 * blk_rq_sectors() : sectors left in the entire request
983 * blk_rq_cur_sectors() : sectors left in the current segment
984 */
985 static inline sector_t blk_rq_pos(const struct request *rq)
986 {
987 return rq->__sector;
988 }
989
990 static inline unsigned int blk_rq_bytes(const struct request *rq)
991 {
992 return rq->__data_len;
993 }
994
995 static inline int blk_rq_cur_bytes(const struct request *rq)
996 {
997 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
998 }
999
1000 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1001
1002 static inline unsigned int blk_rq_sectors(const struct request *rq)
1003 {
1004 return blk_rq_bytes(rq) >> 9;
1005 }
1006
1007 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1008 {
1009 return blk_rq_cur_bytes(rq) >> 9;
1010 }
1011
1012 /*
1013 * Some commands like WRITE SAME have a payload or data transfer size which
1014 * is different from the size of the request. Any driver that supports such
1015 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1016 * calculate the data transfer size.
1017 */
1018 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1019 {
1020 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1021 return rq->special_vec.bv_len;
1022 return blk_rq_bytes(rq);
1023 }
1024
1025 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1026 int op)
1027 {
1028 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1029 return min(q->limits.max_discard_sectors, UINT_MAX >> 9);
1030
1031 if (unlikely(op == REQ_OP_WRITE_SAME))
1032 return q->limits.max_write_same_sectors;
1033
1034 if (unlikely(op == REQ_OP_WRITE_ZEROES))
1035 return q->limits.max_write_zeroes_sectors;
1036
1037 return q->limits.max_sectors;
1038 }
1039
1040 /*
1041 * Return maximum size of a request at given offset. Only valid for
1042 * file system requests.
1043 */
1044 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1045 sector_t offset)
1046 {
1047 if (!q->limits.chunk_sectors)
1048 return q->limits.max_sectors;
1049
1050 return q->limits.chunk_sectors -
1051 (offset & (q->limits.chunk_sectors - 1));
1052 }
1053
1054 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1055 sector_t offset)
1056 {
1057 struct request_queue *q = rq->q;
1058
1059 if (blk_rq_is_passthrough(rq))
1060 return q->limits.max_hw_sectors;
1061
1062 if (!q->limits.chunk_sectors ||
1063 req_op(rq) == REQ_OP_DISCARD ||
1064 req_op(rq) == REQ_OP_SECURE_ERASE)
1065 return blk_queue_get_max_sectors(q, req_op(rq));
1066
1067 return min(blk_max_size_offset(q, offset),
1068 blk_queue_get_max_sectors(q, req_op(rq)));
1069 }
1070
1071 static inline unsigned int blk_rq_count_bios(struct request *rq)
1072 {
1073 unsigned int nr_bios = 0;
1074 struct bio *bio;
1075
1076 __rq_for_each_bio(bio, rq)
1077 nr_bios++;
1078
1079 return nr_bios;
1080 }
1081
1082 /*
1083 * blk_rq_set_prio - associate a request with prio from ioc
1084 * @rq: request of interest
1085 * @ioc: target iocontext
1086 *
1087 * Assocate request prio with ioc prio so request based drivers
1088 * can leverage priority information.
1089 */
1090 static inline void blk_rq_set_prio(struct request *rq, struct io_context *ioc)
1091 {
1092 if (ioc)
1093 rq->ioprio = ioc->ioprio;
1094 }
1095
1096 /*
1097 * Request issue related functions.
1098 */
1099 extern struct request *blk_peek_request(struct request_queue *q);
1100 extern void blk_start_request(struct request *rq);
1101 extern struct request *blk_fetch_request(struct request_queue *q);
1102
1103 /*
1104 * Request completion related functions.
1105 *
1106 * blk_update_request() completes given number of bytes and updates
1107 * the request without completing it.
1108 *
1109 * blk_end_request() and friends. __blk_end_request() must be called
1110 * with the request queue spinlock acquired.
1111 *
1112 * Several drivers define their own end_request and call
1113 * blk_end_request() for parts of the original function.
1114 * This prevents code duplication in drivers.
1115 */
1116 extern bool blk_update_request(struct request *rq, int error,
1117 unsigned int nr_bytes);
1118 extern void blk_finish_request(struct request *rq, int error);
1119 extern bool blk_end_request(struct request *rq, int error,
1120 unsigned int nr_bytes);
1121 extern void blk_end_request_all(struct request *rq, int error);
1122 extern bool blk_end_request_cur(struct request *rq, int error);
1123 extern bool blk_end_request_err(struct request *rq, int error);
1124 extern bool __blk_end_request(struct request *rq, int error,
1125 unsigned int nr_bytes);
1126 extern void __blk_end_request_all(struct request *rq, int error);
1127 extern bool __blk_end_request_cur(struct request *rq, int error);
1128 extern bool __blk_end_request_err(struct request *rq, int error);
1129
1130 extern void blk_complete_request(struct request *);
1131 extern void __blk_complete_request(struct request *);
1132 extern void blk_abort_request(struct request *);
1133 extern void blk_unprep_request(struct request *);
1134
1135 /*
1136 * Access functions for manipulating queue properties
1137 */
1138 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
1139 spinlock_t *lock, int node_id);
1140 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
1141 extern int blk_init_allocated_queue(struct request_queue *);
1142 extern void blk_cleanup_queue(struct request_queue *);
1143 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1144 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1145 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1146 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1147 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1148 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1149 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1150 unsigned int max_discard_sectors);
1151 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1152 unsigned int max_write_same_sectors);
1153 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1154 unsigned int max_write_same_sectors);
1155 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1156 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1157 extern void blk_queue_alignment_offset(struct request_queue *q,
1158 unsigned int alignment);
1159 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1160 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1161 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1162 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1163 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1164 extern void blk_set_default_limits(struct queue_limits *lim);
1165 extern void blk_set_stacking_limits(struct queue_limits *lim);
1166 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1167 sector_t offset);
1168 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1169 sector_t offset);
1170 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1171 sector_t offset);
1172 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1173 extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1174 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1175 extern int blk_queue_dma_drain(struct request_queue *q,
1176 dma_drain_needed_fn *dma_drain_needed,
1177 void *buf, unsigned int size);
1178 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
1179 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1180 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1181 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
1182 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
1183 extern void blk_queue_dma_alignment(struct request_queue *, int);
1184 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1185 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
1186 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
1187 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1188 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
1189 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1190 extern struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev);
1191
1192 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1193 {
1194 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1195 return 1;
1196 return rq->nr_phys_segments;
1197 }
1198
1199 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1200 extern void blk_dump_rq_flags(struct request *, char *);
1201 extern long nr_blockdev_pages(void);
1202
1203 bool __must_check blk_get_queue(struct request_queue *);
1204 struct request_queue *blk_alloc_queue(gfp_t);
1205 struct request_queue *blk_alloc_queue_node(gfp_t, int);
1206 extern void blk_put_queue(struct request_queue *);
1207 extern void blk_set_queue_dying(struct request_queue *);
1208
1209 /*
1210 * block layer runtime pm functions
1211 */
1212 #ifdef CONFIG_PM
1213 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
1214 extern int blk_pre_runtime_suspend(struct request_queue *q);
1215 extern void blk_post_runtime_suspend(struct request_queue *q, int err);
1216 extern void blk_pre_runtime_resume(struct request_queue *q);
1217 extern void blk_post_runtime_resume(struct request_queue *q, int err);
1218 extern void blk_set_runtime_active(struct request_queue *q);
1219 #else
1220 static inline void blk_pm_runtime_init(struct request_queue *q,
1221 struct device *dev) {}
1222 static inline int blk_pre_runtime_suspend(struct request_queue *q)
1223 {
1224 return -ENOSYS;
1225 }
1226 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
1227 static inline void blk_pre_runtime_resume(struct request_queue *q) {}
1228 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
1229 static inline void blk_set_runtime_active(struct request_queue *q) {}
1230 #endif
1231
1232 /*
1233 * blk_plug permits building a queue of related requests by holding the I/O
1234 * fragments for a short period. This allows merging of sequential requests
1235 * into single larger request. As the requests are moved from a per-task list to
1236 * the device's request_queue in a batch, this results in improved scalability
1237 * as the lock contention for request_queue lock is reduced.
1238 *
1239 * It is ok not to disable preemption when adding the request to the plug list
1240 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1241 * the plug list when the task sleeps by itself. For details, please see
1242 * schedule() where blk_schedule_flush_plug() is called.
1243 */
1244 struct blk_plug {
1245 struct list_head list; /* requests */
1246 struct list_head mq_list; /* blk-mq requests */
1247 struct list_head cb_list; /* md requires an unplug callback */
1248 };
1249 #define BLK_MAX_REQUEST_COUNT 16
1250 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1251
1252 struct blk_plug_cb;
1253 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1254 struct blk_plug_cb {
1255 struct list_head list;
1256 blk_plug_cb_fn callback;
1257 void *data;
1258 };
1259 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1260 void *data, int size);
1261 extern void blk_start_plug(struct blk_plug *);
1262 extern void blk_finish_plug(struct blk_plug *);
1263 extern void blk_flush_plug_list(struct blk_plug *, bool);
1264
1265 static inline void blk_flush_plug(struct task_struct *tsk)
1266 {
1267 struct blk_plug *plug = tsk->plug;
1268
1269 if (plug)
1270 blk_flush_plug_list(plug, false);
1271 }
1272
1273 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1274 {
1275 struct blk_plug *plug = tsk->plug;
1276
1277 if (plug)
1278 blk_flush_plug_list(plug, true);
1279 }
1280
1281 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1282 {
1283 struct blk_plug *plug = tsk->plug;
1284
1285 return plug &&
1286 (!list_empty(&plug->list) ||
1287 !list_empty(&plug->mq_list) ||
1288 !list_empty(&plug->cb_list));
1289 }
1290
1291 /*
1292 * tag stuff
1293 */
1294 extern int blk_queue_start_tag(struct request_queue *, struct request *);
1295 extern struct request *blk_queue_find_tag(struct request_queue *, int);
1296 extern void blk_queue_end_tag(struct request_queue *, struct request *);
1297 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int);
1298 extern void blk_queue_free_tags(struct request_queue *);
1299 extern int blk_queue_resize_tags(struct request_queue *, int);
1300 extern void blk_queue_invalidate_tags(struct request_queue *);
1301 extern struct blk_queue_tag *blk_init_tags(int, int);
1302 extern void blk_free_tags(struct blk_queue_tag *);
1303
1304 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
1305 int tag)
1306 {
1307 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1308 return NULL;
1309 return bqt->tag_index[tag];
1310 }
1311
1312
1313 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1314 #define BLKDEV_DISCARD_ZERO (1 << 1) /* must reliably zero data */
1315
1316 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1317 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1318 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1319 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1320 sector_t nr_sects, gfp_t gfp_mask, int flags,
1321 struct bio **biop);
1322 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1323 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1324 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1325 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1326 bool discard);
1327 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1328 sector_t nr_sects, gfp_t gfp_mask, bool discard);
1329 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1330 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1331 {
1332 return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9),
1333 nr_blocks << (sb->s_blocksize_bits - 9),
1334 gfp_mask, flags);
1335 }
1336 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1337 sector_t nr_blocks, gfp_t gfp_mask)
1338 {
1339 return blkdev_issue_zeroout(sb->s_bdev,
1340 block << (sb->s_blocksize_bits - 9),
1341 nr_blocks << (sb->s_blocksize_bits - 9),
1342 gfp_mask, true);
1343 }
1344
1345 extern int blk_verify_command(unsigned char *cmd, fmode_t has_write_perm);
1346
1347 enum blk_default_limits {
1348 BLK_MAX_SEGMENTS = 128,
1349 BLK_SAFE_MAX_SECTORS = 255,
1350 BLK_DEF_MAX_SECTORS = 2560,
1351 BLK_MAX_SEGMENT_SIZE = 65536,
1352 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1353 };
1354
1355 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist)
1356
1357 static inline unsigned long queue_bounce_pfn(struct request_queue *q)
1358 {
1359 return q->limits.bounce_pfn;
1360 }
1361
1362 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1363 {
1364 return q->limits.seg_boundary_mask;
1365 }
1366
1367 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1368 {
1369 return q->limits.virt_boundary_mask;
1370 }
1371
1372 static inline unsigned int queue_max_sectors(struct request_queue *q)
1373 {
1374 return q->limits.max_sectors;
1375 }
1376
1377 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1378 {
1379 return q->limits.max_hw_sectors;
1380 }
1381
1382 static inline unsigned short queue_max_segments(struct request_queue *q)
1383 {
1384 return q->limits.max_segments;
1385 }
1386
1387 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1388 {
1389 return q->limits.max_segment_size;
1390 }
1391
1392 static inline unsigned short queue_logical_block_size(struct request_queue *q)
1393 {
1394 int retval = 512;
1395
1396 if (q && q->limits.logical_block_size)
1397 retval = q->limits.logical_block_size;
1398
1399 return retval;
1400 }
1401
1402 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1403 {
1404 return queue_logical_block_size(bdev_get_queue(bdev));
1405 }
1406
1407 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1408 {
1409 return q->limits.physical_block_size;
1410 }
1411
1412 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1413 {
1414 return queue_physical_block_size(bdev_get_queue(bdev));
1415 }
1416
1417 static inline unsigned int queue_io_min(struct request_queue *q)
1418 {
1419 return q->limits.io_min;
1420 }
1421
1422 static inline int bdev_io_min(struct block_device *bdev)
1423 {
1424 return queue_io_min(bdev_get_queue(bdev));
1425 }
1426
1427 static inline unsigned int queue_io_opt(struct request_queue *q)
1428 {
1429 return q->limits.io_opt;
1430 }
1431
1432 static inline int bdev_io_opt(struct block_device *bdev)
1433 {
1434 return queue_io_opt(bdev_get_queue(bdev));
1435 }
1436
1437 static inline int queue_alignment_offset(struct request_queue *q)
1438 {
1439 if (q->limits.misaligned)
1440 return -1;
1441
1442 return q->limits.alignment_offset;
1443 }
1444
1445 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1446 {
1447 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1448 unsigned int alignment = sector_div(sector, granularity >> 9) << 9;
1449
1450 return (granularity + lim->alignment_offset - alignment) % granularity;
1451 }
1452
1453 static inline int bdev_alignment_offset(struct block_device *bdev)
1454 {
1455 struct request_queue *q = bdev_get_queue(bdev);
1456
1457 if (q->limits.misaligned)
1458 return -1;
1459
1460 if (bdev != bdev->bd_contains)
1461 return bdev->bd_part->alignment_offset;
1462
1463 return q->limits.alignment_offset;
1464 }
1465
1466 static inline int queue_discard_alignment(struct request_queue *q)
1467 {
1468 if (q->limits.discard_misaligned)
1469 return -1;
1470
1471 return q->limits.discard_alignment;
1472 }
1473
1474 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1475 {
1476 unsigned int alignment, granularity, offset;
1477
1478 if (!lim->max_discard_sectors)
1479 return 0;
1480
1481 /* Why are these in bytes, not sectors? */
1482 alignment = lim->discard_alignment >> 9;
1483 granularity = lim->discard_granularity >> 9;
1484 if (!granularity)
1485 return 0;
1486
1487 /* Offset of the partition start in 'granularity' sectors */
1488 offset = sector_div(sector, granularity);
1489
1490 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1491 offset = (granularity + alignment - offset) % granularity;
1492
1493 /* Turn it back into bytes, gaah */
1494 return offset << 9;
1495 }
1496
1497 static inline int bdev_discard_alignment(struct block_device *bdev)
1498 {
1499 struct request_queue *q = bdev_get_queue(bdev);
1500
1501 if (bdev != bdev->bd_contains)
1502 return bdev->bd_part->discard_alignment;
1503
1504 return q->limits.discard_alignment;
1505 }
1506
1507 static inline unsigned int queue_discard_zeroes_data(struct request_queue *q)
1508 {
1509 if (q->limits.max_discard_sectors && q->limits.discard_zeroes_data == 1)
1510 return 1;
1511
1512 return 0;
1513 }
1514
1515 static inline unsigned int bdev_discard_zeroes_data(struct block_device *bdev)
1516 {
1517 return queue_discard_zeroes_data(bdev_get_queue(bdev));
1518 }
1519
1520 static inline unsigned int bdev_write_same(struct block_device *bdev)
1521 {
1522 struct request_queue *q = bdev_get_queue(bdev);
1523
1524 if (q)
1525 return q->limits.max_write_same_sectors;
1526
1527 return 0;
1528 }
1529
1530 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1531 {
1532 struct request_queue *q = bdev_get_queue(bdev);
1533
1534 if (q)
1535 return q->limits.max_write_zeroes_sectors;
1536
1537 return 0;
1538 }
1539
1540 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1541 {
1542 struct request_queue *q = bdev_get_queue(bdev);
1543
1544 if (q)
1545 return blk_queue_zoned_model(q);
1546
1547 return BLK_ZONED_NONE;
1548 }
1549
1550 static inline bool bdev_is_zoned(struct block_device *bdev)
1551 {
1552 struct request_queue *q = bdev_get_queue(bdev);
1553
1554 if (q)
1555 return blk_queue_is_zoned(q);
1556
1557 return false;
1558 }
1559
1560 static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1561 {
1562 struct request_queue *q = bdev_get_queue(bdev);
1563
1564 if (q)
1565 return blk_queue_zone_sectors(q);
1566
1567 return 0;
1568 }
1569
1570 static inline int queue_dma_alignment(struct request_queue *q)
1571 {
1572 return q ? q->dma_alignment : 511;
1573 }
1574
1575 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1576 unsigned int len)
1577 {
1578 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1579 return !(addr & alignment) && !(len & alignment);
1580 }
1581
1582 /* assumes size > 256 */
1583 static inline unsigned int blksize_bits(unsigned int size)
1584 {
1585 unsigned int bits = 8;
1586 do {
1587 bits++;
1588 size >>= 1;
1589 } while (size > 256);
1590 return bits;
1591 }
1592
1593 static inline unsigned int block_size(struct block_device *bdev)
1594 {
1595 return bdev->bd_block_size;
1596 }
1597
1598 static inline bool queue_flush_queueable(struct request_queue *q)
1599 {
1600 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
1601 }
1602
1603 typedef struct {struct page *v;} Sector;
1604
1605 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1606
1607 static inline void put_dev_sector(Sector p)
1608 {
1609 put_page(p.v);
1610 }
1611
1612 static inline bool __bvec_gap_to_prev(struct request_queue *q,
1613 struct bio_vec *bprv, unsigned int offset)
1614 {
1615 return offset ||
1616 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
1617 }
1618
1619 /*
1620 * Check if adding a bio_vec after bprv with offset would create a gap in
1621 * the SG list. Most drivers don't care about this, but some do.
1622 */
1623 static inline bool bvec_gap_to_prev(struct request_queue *q,
1624 struct bio_vec *bprv, unsigned int offset)
1625 {
1626 if (!queue_virt_boundary(q))
1627 return false;
1628 return __bvec_gap_to_prev(q, bprv, offset);
1629 }
1630
1631 /*
1632 * Check if the two bvecs from two bios can be merged to one segment.
1633 * If yes, no need to check gap between the two bios since the 1st bio
1634 * and the 1st bvec in the 2nd bio can be handled in one segment.
1635 */
1636 static inline bool bios_segs_mergeable(struct request_queue *q,
1637 struct bio *prev, struct bio_vec *prev_last_bv,
1638 struct bio_vec *next_first_bv)
1639 {
1640 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv))
1641 return false;
1642 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv))
1643 return false;
1644 if (prev->bi_seg_back_size + next_first_bv->bv_len >
1645 queue_max_segment_size(q))
1646 return false;
1647 return true;
1648 }
1649
1650 static inline bool bio_will_gap(struct request_queue *q, struct bio *prev,
1651 struct bio *next)
1652 {
1653 if (bio_has_data(prev) && queue_virt_boundary(q)) {
1654 struct bio_vec pb, nb;
1655
1656 bio_get_last_bvec(prev, &pb);
1657 bio_get_first_bvec(next, &nb);
1658
1659 if (!bios_segs_mergeable(q, prev, &pb, &nb))
1660 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
1661 }
1662
1663 return false;
1664 }
1665
1666 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
1667 {
1668 return bio_will_gap(req->q, req->biotail, bio);
1669 }
1670
1671 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
1672 {
1673 return bio_will_gap(req->q, bio, req->bio);
1674 }
1675
1676 int kblockd_schedule_work(struct work_struct *work);
1677 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1678 int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay);
1679 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1680
1681 #ifdef CONFIG_BLK_CGROUP
1682 /*
1683 * This should not be using sched_clock(). A real patch is in progress
1684 * to fix this up, until that is in place we need to disable preemption
1685 * around sched_clock() in this function and set_io_start_time_ns().
1686 */
1687 static inline void set_start_time_ns(struct request *req)
1688 {
1689 preempt_disable();
1690 req->start_time_ns = sched_clock();
1691 preempt_enable();
1692 }
1693
1694 static inline void set_io_start_time_ns(struct request *req)
1695 {
1696 preempt_disable();
1697 req->io_start_time_ns = sched_clock();
1698 preempt_enable();
1699 }
1700
1701 static inline uint64_t rq_start_time_ns(struct request *req)
1702 {
1703 return req->start_time_ns;
1704 }
1705
1706 static inline uint64_t rq_io_start_time_ns(struct request *req)
1707 {
1708 return req->io_start_time_ns;
1709 }
1710 #else
1711 static inline void set_start_time_ns(struct request *req) {}
1712 static inline void set_io_start_time_ns(struct request *req) {}
1713 static inline uint64_t rq_start_time_ns(struct request *req)
1714 {
1715 return 0;
1716 }
1717 static inline uint64_t rq_io_start_time_ns(struct request *req)
1718 {
1719 return 0;
1720 }
1721 #endif
1722
1723 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1724 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1725 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1726 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1727
1728 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1729
1730 enum blk_integrity_flags {
1731 BLK_INTEGRITY_VERIFY = 1 << 0,
1732 BLK_INTEGRITY_GENERATE = 1 << 1,
1733 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1734 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1735 };
1736
1737 struct blk_integrity_iter {
1738 void *prot_buf;
1739 void *data_buf;
1740 sector_t seed;
1741 unsigned int data_size;
1742 unsigned short interval;
1743 const char *disk_name;
1744 };
1745
1746 typedef int (integrity_processing_fn) (struct blk_integrity_iter *);
1747
1748 struct blk_integrity_profile {
1749 integrity_processing_fn *generate_fn;
1750 integrity_processing_fn *verify_fn;
1751 const char *name;
1752 };
1753
1754 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1755 extern void blk_integrity_unregister(struct gendisk *);
1756 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1757 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1758 struct scatterlist *);
1759 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1760 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1761 struct request *);
1762 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1763 struct bio *);
1764
1765 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1766 {
1767 struct blk_integrity *bi = &disk->queue->integrity;
1768
1769 if (!bi->profile)
1770 return NULL;
1771
1772 return bi;
1773 }
1774
1775 static inline
1776 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1777 {
1778 return blk_get_integrity(bdev->bd_disk);
1779 }
1780
1781 static inline bool blk_integrity_rq(struct request *rq)
1782 {
1783 return rq->cmd_flags & REQ_INTEGRITY;
1784 }
1785
1786 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1787 unsigned int segs)
1788 {
1789 q->limits.max_integrity_segments = segs;
1790 }
1791
1792 static inline unsigned short
1793 queue_max_integrity_segments(struct request_queue *q)
1794 {
1795 return q->limits.max_integrity_segments;
1796 }
1797
1798 static inline bool integrity_req_gap_back_merge(struct request *req,
1799 struct bio *next)
1800 {
1801 struct bio_integrity_payload *bip = bio_integrity(req->bio);
1802 struct bio_integrity_payload *bip_next = bio_integrity(next);
1803
1804 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1805 bip_next->bip_vec[0].bv_offset);
1806 }
1807
1808 static inline bool integrity_req_gap_front_merge(struct request *req,
1809 struct bio *bio)
1810 {
1811 struct bio_integrity_payload *bip = bio_integrity(bio);
1812 struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
1813
1814 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1815 bip_next->bip_vec[0].bv_offset);
1816 }
1817
1818 #else /* CONFIG_BLK_DEV_INTEGRITY */
1819
1820 struct bio;
1821 struct block_device;
1822 struct gendisk;
1823 struct blk_integrity;
1824
1825 static inline int blk_integrity_rq(struct request *rq)
1826 {
1827 return 0;
1828 }
1829 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1830 struct bio *b)
1831 {
1832 return 0;
1833 }
1834 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1835 struct bio *b,
1836 struct scatterlist *s)
1837 {
1838 return 0;
1839 }
1840 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1841 {
1842 return NULL;
1843 }
1844 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1845 {
1846 return NULL;
1847 }
1848 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1849 {
1850 return 0;
1851 }
1852 static inline void blk_integrity_register(struct gendisk *d,
1853 struct blk_integrity *b)
1854 {
1855 }
1856 static inline void blk_integrity_unregister(struct gendisk *d)
1857 {
1858 }
1859 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1860 unsigned int segs)
1861 {
1862 }
1863 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1864 {
1865 return 0;
1866 }
1867 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1868 struct request *r1,
1869 struct request *r2)
1870 {
1871 return true;
1872 }
1873 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1874 struct request *r,
1875 struct bio *b)
1876 {
1877 return true;
1878 }
1879
1880 static inline bool integrity_req_gap_back_merge(struct request *req,
1881 struct bio *next)
1882 {
1883 return false;
1884 }
1885 static inline bool integrity_req_gap_front_merge(struct request *req,
1886 struct bio *bio)
1887 {
1888 return false;
1889 }
1890
1891 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1892
1893 /**
1894 * struct blk_dax_ctl - control and output parameters for ->direct_access
1895 * @sector: (input) offset relative to a block_device
1896 * @addr: (output) kernel virtual address for @sector populated by driver
1897 * @pfn: (output) page frame number for @addr populated by driver
1898 * @size: (input) number of bytes requested
1899 */
1900 struct blk_dax_ctl {
1901 sector_t sector;
1902 void *addr;
1903 long size;
1904 pfn_t pfn;
1905 };
1906
1907 struct block_device_operations {
1908 int (*open) (struct block_device *, fmode_t);
1909 void (*release) (struct gendisk *, fmode_t);
1910 int (*rw_page)(struct block_device *, sector_t, struct page *, bool);
1911 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1912 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1913 long (*direct_access)(struct block_device *, sector_t, void **, pfn_t *,
1914 long);
1915 unsigned int (*check_events) (struct gendisk *disk,
1916 unsigned int clearing);
1917 /* ->media_changed() is DEPRECATED, use ->check_events() instead */
1918 int (*media_changed) (struct gendisk *);
1919 void (*unlock_native_capacity) (struct gendisk *);
1920 int (*revalidate_disk) (struct gendisk *);
1921 int (*getgeo)(struct block_device *, struct hd_geometry *);
1922 /* this callback is with swap_lock and sometimes page table lock held */
1923 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1924 struct module *owner;
1925 const struct pr_ops *pr_ops;
1926 };
1927
1928 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1929 unsigned long);
1930 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1931 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1932 struct writeback_control *);
1933 extern long bdev_direct_access(struct block_device *, struct blk_dax_ctl *);
1934 extern int bdev_dax_supported(struct super_block *, int);
1935 extern bool bdev_dax_capable(struct block_device *);
1936 #else /* CONFIG_BLOCK */
1937
1938 struct block_device;
1939
1940 /*
1941 * stubs for when the block layer is configured out
1942 */
1943 #define buffer_heads_over_limit 0
1944
1945 static inline long nr_blockdev_pages(void)
1946 {
1947 return 0;
1948 }
1949
1950 struct blk_plug {
1951 };
1952
1953 static inline void blk_start_plug(struct blk_plug *plug)
1954 {
1955 }
1956
1957 static inline void blk_finish_plug(struct blk_plug *plug)
1958 {
1959 }
1960
1961 static inline void blk_flush_plug(struct task_struct *task)
1962 {
1963 }
1964
1965 static inline void blk_schedule_flush_plug(struct task_struct *task)
1966 {
1967 }
1968
1969
1970 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1971 {
1972 return false;
1973 }
1974
1975 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
1976 sector_t *error_sector)
1977 {
1978 return 0;
1979 }
1980
1981 #endif /* CONFIG_BLOCK */
1982
1983 #endif