]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/bpf_verifier.h
soc: renesas: r8a77970-sysc: Correct names of A2DP/A2CN power domains
[mirror_ubuntu-bionic-kernel.git] / include / linux / bpf_verifier.h
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 *
3 * This program is free software; you can redistribute it and/or
4 * modify it under the terms of version 2 of the GNU General Public
5 * License as published by the Free Software Foundation.
6 */
7 #ifndef _LINUX_BPF_VERIFIER_H
8 #define _LINUX_BPF_VERIFIER_H 1
9
10 #include <linux/bpf.h> /* for enum bpf_reg_type */
11 #include <linux/filter.h> /* for MAX_BPF_STACK */
12 #include <linux/tnum.h>
13
14 /* Maximum variable offset umax_value permitted when resolving memory accesses.
15 * In practice this is far bigger than any realistic pointer offset; this limit
16 * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
17 */
18 #define BPF_MAX_VAR_OFF (1 << 29)
19 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures
20 * that converting umax_value to int cannot overflow.
21 */
22 #define BPF_MAX_VAR_SIZ (1 << 29)
23
24 /* Liveness marks, used for registers and spilled-regs (in stack slots).
25 * Read marks propagate upwards until they find a write mark; they record that
26 * "one of this state's descendants read this reg" (and therefore the reg is
27 * relevant for states_equal() checks).
28 * Write marks collect downwards and do not propagate; they record that "the
29 * straight-line code that reached this state (from its parent) wrote this reg"
30 * (and therefore that reads propagated from this state or its descendants
31 * should not propagate to its parent).
32 * A state with a write mark can receive read marks; it just won't propagate
33 * them to its parent, since the write mark is a property, not of the state,
34 * but of the link between it and its parent. See mark_reg_read() and
35 * mark_stack_slot_read() in kernel/bpf/verifier.c.
36 */
37 enum bpf_reg_liveness {
38 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
39 REG_LIVE_READ, /* reg was read, so we're sensitive to initial value */
40 REG_LIVE_WRITTEN, /* reg was written first, screening off later reads */
41 };
42
43 struct bpf_reg_state {
44 enum bpf_reg_type type;
45 union {
46 /* valid when type == PTR_TO_PACKET */
47 u16 range;
48
49 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
50 * PTR_TO_MAP_VALUE_OR_NULL
51 */
52 struct bpf_map *map_ptr;
53
54 /* Max size from any of the above. */
55 unsigned long raw;
56 };
57 /* Fixed part of pointer offset, pointer types only */
58 s32 off;
59 /* For PTR_TO_PACKET, used to find other pointers with the same variable
60 * offset, so they can share range knowledge.
61 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
62 * came from, when one is tested for != NULL.
63 */
64 u32 id;
65 /* Ordering of fields matters. See states_equal() */
66 /* For scalar types (SCALAR_VALUE), this represents our knowledge of
67 * the actual value.
68 * For pointer types, this represents the variable part of the offset
69 * from the pointed-to object, and is shared with all bpf_reg_states
70 * with the same id as us.
71 */
72 struct tnum var_off;
73 /* Used to determine if any memory access using this register will
74 * result in a bad access.
75 * These refer to the same value as var_off, not necessarily the actual
76 * contents of the register.
77 */
78 s64 smin_value; /* minimum possible (s64)value */
79 s64 smax_value; /* maximum possible (s64)value */
80 u64 umin_value; /* minimum possible (u64)value */
81 u64 umax_value; /* maximum possible (u64)value */
82 /* This field must be last, for states_equal() reasons. */
83 enum bpf_reg_liveness live;
84 };
85
86 enum bpf_stack_slot_type {
87 STACK_INVALID, /* nothing was stored in this stack slot */
88 STACK_SPILL, /* register spilled into stack */
89 STACK_MISC /* BPF program wrote some data into this slot */
90 };
91
92 #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
93
94 struct bpf_stack_state {
95 struct bpf_reg_state spilled_ptr;
96 u8 slot_type[BPF_REG_SIZE];
97 };
98
99 /* state of the program:
100 * type of all registers and stack info
101 */
102 struct bpf_verifier_state {
103 struct bpf_reg_state regs[MAX_BPF_REG];
104 struct bpf_verifier_state *parent;
105 bool speculative;
106 int allocated_stack;
107 struct bpf_stack_state *stack;
108 };
109
110 /* linked list of verifier states used to prune search */
111 struct bpf_verifier_state_list {
112 struct bpf_verifier_state state;
113 struct bpf_verifier_state_list *next;
114 };
115
116 /* Possible states for alu_state member. */
117 #define BPF_ALU_SANITIZE_SRC 1U
118 #define BPF_ALU_SANITIZE_DST 2U
119 #define BPF_ALU_NEG_VALUE (1U << 2)
120 #define BPF_ALU_NON_POINTER (1U << 3)
121 #define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \
122 BPF_ALU_SANITIZE_DST)
123
124 struct bpf_insn_aux_data {
125 union {
126 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */
127 unsigned long map_state; /* pointer/poison value for maps */
128 u32 alu_limit; /* limit for add/sub register with pointer */
129 };
130 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
131 int sanitize_stack_off; /* stack slot to be cleared */
132 bool seen; /* this insn was processed by the verifier */
133 u8 alu_state; /* used in combination with alu_limit */
134 };
135
136 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
137
138 #define BPF_VERIFIER_TMP_LOG_SIZE 1024
139
140 struct bpf_verifer_log {
141 u32 level;
142 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
143 char __user *ubuf;
144 u32 len_used;
145 u32 len_total;
146 };
147
148 static inline bool bpf_verifier_log_full(const struct bpf_verifer_log *log)
149 {
150 return log->len_used >= log->len_total - 1;
151 }
152
153 struct bpf_verifier_env;
154 struct bpf_ext_analyzer_ops {
155 int (*insn_hook)(struct bpf_verifier_env *env,
156 int insn_idx, int prev_insn_idx);
157 };
158
159 /* single container for all structs
160 * one verifier_env per bpf_check() call
161 */
162 struct bpf_verifier_env {
163 u32 insn_idx;
164 u32 prev_insn_idx;
165 struct bpf_prog *prog; /* eBPF program being verified */
166 const struct bpf_verifier_ops *ops;
167 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
168 int stack_size; /* number of states to be processed */
169 bool strict_alignment; /* perform strict pointer alignment checks */
170 struct bpf_verifier_state *cur_state; /* current verifier state */
171 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
172 const struct bpf_ext_analyzer_ops *dev_ops; /* device analyzer ops */
173 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
174 u32 used_map_cnt; /* number of used maps */
175 u32 id_gen; /* used to generate unique reg IDs */
176 bool allow_ptr_leaks;
177 bool seen_direct_write;
178 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
179
180 struct bpf_verifer_log log;
181 };
182
183 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
184 {
185 return env->cur_state->regs;
186 }
187
188 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
189 int bpf_prog_offload_verifier_prep(struct bpf_verifier_env *env);
190 #else
191 static inline int bpf_prog_offload_verifier_prep(struct bpf_verifier_env *env)
192 {
193 return -EOPNOTSUPP;
194 }
195 #endif
196
197 #endif /* _LINUX_BPF_VERIFIER_H */