]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/bpf_verifier.h
Merge tag 'kernel.sys.v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner...
[mirror_ubuntu-jammy-kernel.git] / include / linux / bpf_verifier.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #ifndef _LINUX_BPF_VERIFIER_H
5 #define _LINUX_BPF_VERIFIER_H 1
6
7 #include <linux/bpf.h> /* for enum bpf_reg_type */
8 #include <linux/btf.h> /* for struct btf and btf_id() */
9 #include <linux/filter.h> /* for MAX_BPF_STACK */
10 #include <linux/tnum.h>
11
12 /* Maximum variable offset umax_value permitted when resolving memory accesses.
13 * In practice this is far bigger than any realistic pointer offset; this limit
14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
15 */
16 #define BPF_MAX_VAR_OFF (1 << 29)
17 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures
18 * that converting umax_value to int cannot overflow.
19 */
20 #define BPF_MAX_VAR_SIZ (1 << 29)
21
22 /* Liveness marks, used for registers and spilled-regs (in stack slots).
23 * Read marks propagate upwards until they find a write mark; they record that
24 * "one of this state's descendants read this reg" (and therefore the reg is
25 * relevant for states_equal() checks).
26 * Write marks collect downwards and do not propagate; they record that "the
27 * straight-line code that reached this state (from its parent) wrote this reg"
28 * (and therefore that reads propagated from this state or its descendants
29 * should not propagate to its parent).
30 * A state with a write mark can receive read marks; it just won't propagate
31 * them to its parent, since the write mark is a property, not of the state,
32 * but of the link between it and its parent. See mark_reg_read() and
33 * mark_stack_slot_read() in kernel/bpf/verifier.c.
34 */
35 enum bpf_reg_liveness {
36 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
37 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
38 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
39 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
40 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
41 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
42 };
43
44 struct bpf_reg_state {
45 /* Ordering of fields matters. See states_equal() */
46 enum bpf_reg_type type;
47 /* Fixed part of pointer offset, pointer types only */
48 s32 off;
49 union {
50 /* valid when type == PTR_TO_PACKET */
51 int range;
52
53 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
54 * PTR_TO_MAP_VALUE_OR_NULL
55 */
56 struct bpf_map *map_ptr;
57
58 /* for PTR_TO_BTF_ID */
59 struct {
60 struct btf *btf;
61 u32 btf_id;
62 };
63
64 u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
65
66 /* Max size from any of the above. */
67 struct {
68 unsigned long raw1;
69 unsigned long raw2;
70 } raw;
71
72 u32 subprogno; /* for PTR_TO_FUNC */
73 };
74 /* For PTR_TO_PACKET, used to find other pointers with the same variable
75 * offset, so they can share range knowledge.
76 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
77 * came from, when one is tested for != NULL.
78 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
79 * for the purpose of tracking that it's freed.
80 * For PTR_TO_SOCKET this is used to share which pointers retain the
81 * same reference to the socket, to determine proper reference freeing.
82 */
83 u32 id;
84 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
85 * from a pointer-cast helper, bpf_sk_fullsock() and
86 * bpf_tcp_sock().
87 *
88 * Consider the following where "sk" is a reference counted
89 * pointer returned from "sk = bpf_sk_lookup_tcp();":
90 *
91 * 1: sk = bpf_sk_lookup_tcp();
92 * 2: if (!sk) { return 0; }
93 * 3: fullsock = bpf_sk_fullsock(sk);
94 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
95 * 5: tp = bpf_tcp_sock(fullsock);
96 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
97 * 7: bpf_sk_release(sk);
98 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain
99 *
100 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
101 * "tp" ptr should be invalidated also. In order to do that,
102 * the reg holding "fullsock" and "sk" need to remember
103 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
104 * such that the verifier can reset all regs which have
105 * ref_obj_id matching the sk_reg->id.
106 *
107 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
108 * sk_reg->id will stay as NULL-marking purpose only.
109 * After NULL-marking is done, sk_reg->id can be reset to 0.
110 *
111 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
112 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
113 *
114 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
115 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
116 * which is the same as sk_reg->ref_obj_id.
117 *
118 * From the verifier perspective, if sk, fullsock and tp
119 * are not NULL, they are the same ptr with different
120 * reg->type. In particular, bpf_sk_release(tp) is also
121 * allowed and has the same effect as bpf_sk_release(sk).
122 */
123 u32 ref_obj_id;
124 /* For scalar types (SCALAR_VALUE), this represents our knowledge of
125 * the actual value.
126 * For pointer types, this represents the variable part of the offset
127 * from the pointed-to object, and is shared with all bpf_reg_states
128 * with the same id as us.
129 */
130 struct tnum var_off;
131 /* Used to determine if any memory access using this register will
132 * result in a bad access.
133 * These refer to the same value as var_off, not necessarily the actual
134 * contents of the register.
135 */
136 s64 smin_value; /* minimum possible (s64)value */
137 s64 smax_value; /* maximum possible (s64)value */
138 u64 umin_value; /* minimum possible (u64)value */
139 u64 umax_value; /* maximum possible (u64)value */
140 s32 s32_min_value; /* minimum possible (s32)value */
141 s32 s32_max_value; /* maximum possible (s32)value */
142 u32 u32_min_value; /* minimum possible (u32)value */
143 u32 u32_max_value; /* maximum possible (u32)value */
144 /* parentage chain for liveness checking */
145 struct bpf_reg_state *parent;
146 /* Inside the callee two registers can be both PTR_TO_STACK like
147 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
148 * while another to the caller's stack. To differentiate them 'frameno'
149 * is used which is an index in bpf_verifier_state->frame[] array
150 * pointing to bpf_func_state.
151 */
152 u32 frameno;
153 /* Tracks subreg definition. The stored value is the insn_idx of the
154 * writing insn. This is safe because subreg_def is used before any insn
155 * patching which only happens after main verification finished.
156 */
157 s32 subreg_def;
158 enum bpf_reg_liveness live;
159 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
160 bool precise;
161 };
162
163 enum bpf_stack_slot_type {
164 STACK_INVALID, /* nothing was stored in this stack slot */
165 STACK_SPILL, /* register spilled into stack */
166 STACK_MISC, /* BPF program wrote some data into this slot */
167 STACK_ZERO, /* BPF program wrote constant zero */
168 };
169
170 #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
171
172 struct bpf_stack_state {
173 struct bpf_reg_state spilled_ptr;
174 u8 slot_type[BPF_REG_SIZE];
175 };
176
177 struct bpf_reference_state {
178 /* Track each reference created with a unique id, even if the same
179 * instruction creates the reference multiple times (eg, via CALL).
180 */
181 int id;
182 /* Instruction where the allocation of this reference occurred. This
183 * is used purely to inform the user of a reference leak.
184 */
185 int insn_idx;
186 };
187
188 /* state of the program:
189 * type of all registers and stack info
190 */
191 struct bpf_func_state {
192 struct bpf_reg_state regs[MAX_BPF_REG];
193 /* index of call instruction that called into this func */
194 int callsite;
195 /* stack frame number of this function state from pov of
196 * enclosing bpf_verifier_state.
197 * 0 = main function, 1 = first callee.
198 */
199 u32 frameno;
200 /* subprog number == index within subprog_info
201 * zero == main subprog
202 */
203 u32 subprogno;
204
205 /* The following fields should be last. See copy_func_state() */
206 int acquired_refs;
207 struct bpf_reference_state *refs;
208 int allocated_stack;
209 bool in_callback_fn;
210 struct bpf_stack_state *stack;
211 };
212
213 struct bpf_idx_pair {
214 u32 prev_idx;
215 u32 idx;
216 };
217
218 struct bpf_id_pair {
219 u32 old;
220 u32 cur;
221 };
222
223 /* Maximum number of register states that can exist at once */
224 #define BPF_ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
225 #define MAX_CALL_FRAMES 8
226 struct bpf_verifier_state {
227 /* call stack tracking */
228 struct bpf_func_state *frame[MAX_CALL_FRAMES];
229 struct bpf_verifier_state *parent;
230 /*
231 * 'branches' field is the number of branches left to explore:
232 * 0 - all possible paths from this state reached bpf_exit or
233 * were safely pruned
234 * 1 - at least one path is being explored.
235 * This state hasn't reached bpf_exit
236 * 2 - at least two paths are being explored.
237 * This state is an immediate parent of two children.
238 * One is fallthrough branch with branches==1 and another
239 * state is pushed into stack (to be explored later) also with
240 * branches==1. The parent of this state has branches==1.
241 * The verifier state tree connected via 'parent' pointer looks like:
242 * 1
243 * 1
244 * 2 -> 1 (first 'if' pushed into stack)
245 * 1
246 * 2 -> 1 (second 'if' pushed into stack)
247 * 1
248 * 1
249 * 1 bpf_exit.
250 *
251 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
252 * and the verifier state tree will look:
253 * 1
254 * 1
255 * 2 -> 1 (first 'if' pushed into stack)
256 * 1
257 * 1 -> 1 (second 'if' pushed into stack)
258 * 0
259 * 0
260 * 0 bpf_exit.
261 * After pop_stack() the do_check() will resume at second 'if'.
262 *
263 * If is_state_visited() sees a state with branches > 0 it means
264 * there is a loop. If such state is exactly equal to the current state
265 * it's an infinite loop. Note states_equal() checks for states
266 * equvalency, so two states being 'states_equal' does not mean
267 * infinite loop. The exact comparison is provided by
268 * states_maybe_looping() function. It's a stronger pre-check and
269 * much faster than states_equal().
270 *
271 * This algorithm may not find all possible infinite loops or
272 * loop iteration count may be too high.
273 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
274 */
275 u32 branches;
276 u32 insn_idx;
277 u32 curframe;
278 u32 active_spin_lock;
279 bool speculative;
280
281 /* first and last insn idx of this verifier state */
282 u32 first_insn_idx;
283 u32 last_insn_idx;
284 /* jmp history recorded from first to last.
285 * backtracking is using it to go from last to first.
286 * For most states jmp_history_cnt is [0-3].
287 * For loops can go up to ~40.
288 */
289 struct bpf_idx_pair *jmp_history;
290 u32 jmp_history_cnt;
291 };
292
293 #define bpf_get_spilled_reg(slot, frame) \
294 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \
295 (frame->stack[slot].slot_type[0] == STACK_SPILL)) \
296 ? &frame->stack[slot].spilled_ptr : NULL)
297
298 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
299 #define bpf_for_each_spilled_reg(iter, frame, reg) \
300 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \
301 iter < frame->allocated_stack / BPF_REG_SIZE; \
302 iter++, reg = bpf_get_spilled_reg(iter, frame))
303
304 /* linked list of verifier states used to prune search */
305 struct bpf_verifier_state_list {
306 struct bpf_verifier_state state;
307 struct bpf_verifier_state_list *next;
308 int miss_cnt, hit_cnt;
309 };
310
311 /* Possible states for alu_state member. */
312 #define BPF_ALU_SANITIZE_SRC (1U << 0)
313 #define BPF_ALU_SANITIZE_DST (1U << 1)
314 #define BPF_ALU_NEG_VALUE (1U << 2)
315 #define BPF_ALU_NON_POINTER (1U << 3)
316 #define BPF_ALU_IMMEDIATE (1U << 4)
317 #define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \
318 BPF_ALU_SANITIZE_DST)
319
320 struct bpf_insn_aux_data {
321 union {
322 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */
323 unsigned long map_ptr_state; /* pointer/poison value for maps */
324 s32 call_imm; /* saved imm field of call insn */
325 u32 alu_limit; /* limit for add/sub register with pointer */
326 struct {
327 u32 map_index; /* index into used_maps[] */
328 u32 map_off; /* offset from value base address */
329 };
330 struct {
331 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */
332 union {
333 struct {
334 struct btf *btf;
335 u32 btf_id; /* btf_id for struct typed var */
336 };
337 u32 mem_size; /* mem_size for non-struct typed var */
338 };
339 } btf_var;
340 };
341 u64 map_key_state; /* constant (32 bit) key tracking for maps */
342 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
343 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
344 bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */
345 bool zext_dst; /* this insn zero extends dst reg */
346 u8 alu_state; /* used in combination with alu_limit */
347
348 /* below fields are initialized once */
349 unsigned int orig_idx; /* original instruction index */
350 bool prune_point;
351 };
352
353 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
354 #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
355
356 #define BPF_VERIFIER_TMP_LOG_SIZE 1024
357
358 struct bpf_verifier_log {
359 u32 level;
360 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
361 char __user *ubuf;
362 u32 len_used;
363 u32 len_total;
364 };
365
366 static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
367 {
368 return log->len_used >= log->len_total - 1;
369 }
370
371 #define BPF_LOG_LEVEL1 1
372 #define BPF_LOG_LEVEL2 2
373 #define BPF_LOG_STATS 4
374 #define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
375 #define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS)
376 #define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */
377
378 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
379 {
380 return log &&
381 ((log->level && log->ubuf && !bpf_verifier_log_full(log)) ||
382 log->level == BPF_LOG_KERNEL);
383 }
384
385 #define BPF_MAX_SUBPROGS 256
386
387 struct bpf_subprog_info {
388 /* 'start' has to be the first field otherwise find_subprog() won't work */
389 u32 start; /* insn idx of function entry point */
390 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
391 u16 stack_depth; /* max. stack depth used by this function */
392 bool has_tail_call;
393 bool tail_call_reachable;
394 bool has_ld_abs;
395 };
396
397 /* single container for all structs
398 * one verifier_env per bpf_check() call
399 */
400 struct bpf_verifier_env {
401 u32 insn_idx;
402 u32 prev_insn_idx;
403 struct bpf_prog *prog; /* eBPF program being verified */
404 const struct bpf_verifier_ops *ops;
405 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
406 int stack_size; /* number of states to be processed */
407 bool strict_alignment; /* perform strict pointer alignment checks */
408 bool test_state_freq; /* test verifier with different pruning frequency */
409 struct bpf_verifier_state *cur_state; /* current verifier state */
410 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
411 struct bpf_verifier_state_list *free_list;
412 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
413 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
414 u32 used_map_cnt; /* number of used maps */
415 u32 used_btf_cnt; /* number of used BTF objects */
416 u32 id_gen; /* used to generate unique reg IDs */
417 bool explore_alu_limits;
418 bool allow_ptr_leaks;
419 bool allow_uninit_stack;
420 bool allow_ptr_to_map_access;
421 bool bpf_capable;
422 bool bypass_spec_v1;
423 bool bypass_spec_v4;
424 bool seen_direct_write;
425 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
426 const struct bpf_line_info *prev_linfo;
427 struct bpf_verifier_log log;
428 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
429 struct bpf_id_pair idmap_scratch[BPF_ID_MAP_SIZE];
430 struct {
431 int *insn_state;
432 int *insn_stack;
433 int cur_stack;
434 } cfg;
435 u32 pass_cnt; /* number of times do_check() was called */
436 u32 subprog_cnt;
437 /* number of instructions analyzed by the verifier */
438 u32 prev_insn_processed, insn_processed;
439 /* number of jmps, calls, exits analyzed so far */
440 u32 prev_jmps_processed, jmps_processed;
441 /* total verification time */
442 u64 verification_time;
443 /* maximum number of verifier states kept in 'branching' instructions */
444 u32 max_states_per_insn;
445 /* total number of allocated verifier states */
446 u32 total_states;
447 /* some states are freed during program analysis.
448 * this is peak number of states. this number dominates kernel
449 * memory consumption during verification
450 */
451 u32 peak_states;
452 /* longest register parentage chain walked for liveness marking */
453 u32 longest_mark_read_walk;
454 bpfptr_t fd_array;
455 };
456
457 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
458 const char *fmt, va_list args);
459 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
460 const char *fmt, ...);
461 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
462 const char *fmt, ...);
463
464 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
465 {
466 struct bpf_verifier_state *cur = env->cur_state;
467
468 return cur->frame[cur->curframe];
469 }
470
471 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
472 {
473 return cur_func(env)->regs;
474 }
475
476 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
477 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
478 int insn_idx, int prev_insn_idx);
479 int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
480 void
481 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
482 struct bpf_insn *insn);
483 void
484 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
485
486 int check_ctx_reg(struct bpf_verifier_env *env,
487 const struct bpf_reg_state *reg, int regno);
488 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
489 u32 regno, u32 mem_size);
490
491 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
492 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
493 struct btf *btf, u32 btf_id)
494 {
495 if (tgt_prog)
496 return ((u64)tgt_prog->aux->id << 32) | btf_id;
497 else
498 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
499 }
500
501 /* unpack the IDs from the key as constructed above */
502 static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id)
503 {
504 if (obj_id)
505 *obj_id = key >> 32;
506 if (btf_id)
507 *btf_id = key & 0x7FFFFFFF;
508 }
509
510 int bpf_check_attach_target(struct bpf_verifier_log *log,
511 const struct bpf_prog *prog,
512 const struct bpf_prog *tgt_prog,
513 u32 btf_id,
514 struct bpf_attach_target_info *tgt_info);
515
516 #endif /* _LINUX_BPF_VERIFIER_H */