]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/linux/cgroup-defs.h
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[mirror_ubuntu-eoan-kernel.git] / include / linux / cgroup-defs.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * linux/cgroup-defs.h - basic definitions for cgroup
4 *
5 * This file provides basic type and interface. Include this file directly
6 * only if necessary to avoid cyclic dependencies.
7 */
8 #ifndef _LINUX_CGROUP_DEFS_H
9 #define _LINUX_CGROUP_DEFS_H
10
11 #include <linux/limits.h>
12 #include <linux/list.h>
13 #include <linux/idr.h>
14 #include <linux/wait.h>
15 #include <linux/mutex.h>
16 #include <linux/rcupdate.h>
17 #include <linux/refcount.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/percpu-rwsem.h>
20 #include <linux/u64_stats_sync.h>
21 #include <linux/workqueue.h>
22 #include <linux/bpf-cgroup.h>
23 #include <linux/psi_types.h>
24
25 #ifdef CONFIG_CGROUPS
26
27 struct cgroup;
28 struct cgroup_root;
29 struct cgroup_subsys;
30 struct cgroup_taskset;
31 struct kernfs_node;
32 struct kernfs_ops;
33 struct kernfs_open_file;
34 struct seq_file;
35
36 #define MAX_CGROUP_TYPE_NAMELEN 32
37 #define MAX_CGROUP_ROOT_NAMELEN 64
38 #define MAX_CFTYPE_NAME 64
39
40 /* define the enumeration of all cgroup subsystems */
41 #define SUBSYS(_x) _x ## _cgrp_id,
42 enum cgroup_subsys_id {
43 #include <linux/cgroup_subsys.h>
44 CGROUP_SUBSYS_COUNT,
45 };
46 #undef SUBSYS
47
48 /* bits in struct cgroup_subsys_state flags field */
49 enum {
50 CSS_NO_REF = (1 << 0), /* no reference counting for this css */
51 CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */
52 CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */
53 CSS_VISIBLE = (1 << 3), /* css is visible to userland */
54 CSS_DYING = (1 << 4), /* css is dying */
55 };
56
57 /* bits in struct cgroup flags field */
58 enum {
59 /* Control Group requires release notifications to userspace */
60 CGRP_NOTIFY_ON_RELEASE,
61 /*
62 * Clone the parent's configuration when creating a new child
63 * cpuset cgroup. For historical reasons, this option can be
64 * specified at mount time and thus is implemented here.
65 */
66 CGRP_CPUSET_CLONE_CHILDREN,
67 };
68
69 /* cgroup_root->flags */
70 enum {
71 CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */
72 CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */
73
74 /*
75 * Consider namespaces as delegation boundaries. If this flag is
76 * set, controller specific interface files in a namespace root
77 * aren't writeable from inside the namespace.
78 */
79 CGRP_ROOT_NS_DELEGATE = (1 << 3),
80
81 /*
82 * Enable cpuset controller in v1 cgroup to use v2 behavior.
83 */
84 CGRP_ROOT_CPUSET_V2_MODE = (1 << 4),
85 };
86
87 /* cftype->flags */
88 enum {
89 CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */
90 CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */
91 CFTYPE_NS_DELEGATABLE = (1 << 2), /* writeable beyond delegation boundaries */
92
93 CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */
94 CFTYPE_WORLD_WRITABLE = (1 << 4), /* (DON'T USE FOR NEW FILES) S_IWUGO */
95
96 /* internal flags, do not use outside cgroup core proper */
97 __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */
98 __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */
99 };
100
101 /*
102 * cgroup_file is the handle for a file instance created in a cgroup which
103 * is used, for example, to generate file changed notifications. This can
104 * be obtained by setting cftype->file_offset.
105 */
106 struct cgroup_file {
107 /* do not access any fields from outside cgroup core */
108 struct kernfs_node *kn;
109 unsigned long notified_at;
110 struct timer_list notify_timer;
111 };
112
113 /*
114 * Per-subsystem/per-cgroup state maintained by the system. This is the
115 * fundamental structural building block that controllers deal with.
116 *
117 * Fields marked with "PI:" are public and immutable and may be accessed
118 * directly without synchronization.
119 */
120 struct cgroup_subsys_state {
121 /* PI: the cgroup that this css is attached to */
122 struct cgroup *cgroup;
123
124 /* PI: the cgroup subsystem that this css is attached to */
125 struct cgroup_subsys *ss;
126
127 /* reference count - access via css_[try]get() and css_put() */
128 struct percpu_ref refcnt;
129
130 /* siblings list anchored at the parent's ->children */
131 struct list_head sibling;
132 struct list_head children;
133
134 /* flush target list anchored at cgrp->rstat_css_list */
135 struct list_head rstat_css_node;
136
137 /*
138 * PI: Subsys-unique ID. 0 is unused and root is always 1. The
139 * matching css can be looked up using css_from_id().
140 */
141 int id;
142
143 unsigned int flags;
144
145 /*
146 * Monotonically increasing unique serial number which defines a
147 * uniform order among all csses. It's guaranteed that all
148 * ->children lists are in the ascending order of ->serial_nr and
149 * used to allow interrupting and resuming iterations.
150 */
151 u64 serial_nr;
152
153 /*
154 * Incremented by online self and children. Used to guarantee that
155 * parents are not offlined before their children.
156 */
157 atomic_t online_cnt;
158
159 /* percpu_ref killing and RCU release */
160 struct work_struct destroy_work;
161 struct rcu_work destroy_rwork;
162
163 /*
164 * PI: the parent css. Placed here for cache proximity to following
165 * fields of the containing structure.
166 */
167 struct cgroup_subsys_state *parent;
168 };
169
170 /*
171 * A css_set is a structure holding pointers to a set of
172 * cgroup_subsys_state objects. This saves space in the task struct
173 * object and speeds up fork()/exit(), since a single inc/dec and a
174 * list_add()/del() can bump the reference count on the entire cgroup
175 * set for a task.
176 */
177 struct css_set {
178 /*
179 * Set of subsystem states, one for each subsystem. This array is
180 * immutable after creation apart from the init_css_set during
181 * subsystem registration (at boot time).
182 */
183 struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
184
185 /* reference count */
186 refcount_t refcount;
187
188 /*
189 * For a domain cgroup, the following points to self. If threaded,
190 * to the matching cset of the nearest domain ancestor. The
191 * dom_cset provides access to the domain cgroup and its csses to
192 * which domain level resource consumptions should be charged.
193 */
194 struct css_set *dom_cset;
195
196 /* the default cgroup associated with this css_set */
197 struct cgroup *dfl_cgrp;
198
199 /* internal task count, protected by css_set_lock */
200 int nr_tasks;
201
202 /*
203 * Lists running through all tasks using this cgroup group.
204 * mg_tasks lists tasks which belong to this cset but are in the
205 * process of being migrated out or in. Protected by
206 * css_set_rwsem, but, during migration, once tasks are moved to
207 * mg_tasks, it can be read safely while holding cgroup_mutex.
208 */
209 struct list_head tasks;
210 struct list_head mg_tasks;
211
212 /* all css_task_iters currently walking this cset */
213 struct list_head task_iters;
214
215 /*
216 * On the default hierarhcy, ->subsys[ssid] may point to a css
217 * attached to an ancestor instead of the cgroup this css_set is
218 * associated with. The following node is anchored at
219 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
220 * iterate through all css's attached to a given cgroup.
221 */
222 struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
223
224 /* all threaded csets whose ->dom_cset points to this cset */
225 struct list_head threaded_csets;
226 struct list_head threaded_csets_node;
227
228 /*
229 * List running through all cgroup groups in the same hash
230 * slot. Protected by css_set_lock
231 */
232 struct hlist_node hlist;
233
234 /*
235 * List of cgrp_cset_links pointing at cgroups referenced from this
236 * css_set. Protected by css_set_lock.
237 */
238 struct list_head cgrp_links;
239
240 /*
241 * List of csets participating in the on-going migration either as
242 * source or destination. Protected by cgroup_mutex.
243 */
244 struct list_head mg_preload_node;
245 struct list_head mg_node;
246
247 /*
248 * If this cset is acting as the source of migration the following
249 * two fields are set. mg_src_cgrp and mg_dst_cgrp are
250 * respectively the source and destination cgroups of the on-going
251 * migration. mg_dst_cset is the destination cset the target tasks
252 * on this cset should be migrated to. Protected by cgroup_mutex.
253 */
254 struct cgroup *mg_src_cgrp;
255 struct cgroup *mg_dst_cgrp;
256 struct css_set *mg_dst_cset;
257
258 /* dead and being drained, ignore for migration */
259 bool dead;
260
261 /* For RCU-protected deletion */
262 struct rcu_head rcu_head;
263 };
264
265 struct cgroup_base_stat {
266 struct task_cputime cputime;
267 };
268
269 /*
270 * rstat - cgroup scalable recursive statistics. Accounting is done
271 * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the
272 * hierarchy on reads.
273 *
274 * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are
275 * linked into the updated tree. On the following read, propagation only
276 * considers and consumes the updated tree. This makes reading O(the
277 * number of descendants which have been active since last read) instead of
278 * O(the total number of descendants).
279 *
280 * This is important because there can be a lot of (draining) cgroups which
281 * aren't active and stat may be read frequently. The combination can
282 * become very expensive. By propagating selectively, increasing reading
283 * frequency decreases the cost of each read.
284 *
285 * This struct hosts both the fields which implement the above -
286 * updated_children and updated_next - and the fields which track basic
287 * resource statistics on top of it - bsync, bstat and last_bstat.
288 */
289 struct cgroup_rstat_cpu {
290 /*
291 * ->bsync protects ->bstat. These are the only fields which get
292 * updated in the hot path.
293 */
294 struct u64_stats_sync bsync;
295 struct cgroup_base_stat bstat;
296
297 /*
298 * Snapshots at the last reading. These are used to calculate the
299 * deltas to propagate to the global counters.
300 */
301 struct cgroup_base_stat last_bstat;
302
303 /*
304 * Child cgroups with stat updates on this cpu since the last read
305 * are linked on the parent's ->updated_children through
306 * ->updated_next.
307 *
308 * In addition to being more compact, singly-linked list pointing
309 * to the cgroup makes it unnecessary for each per-cpu struct to
310 * point back to the associated cgroup.
311 *
312 * Protected by per-cpu cgroup_rstat_cpu_lock.
313 */
314 struct cgroup *updated_children; /* terminated by self cgroup */
315 struct cgroup *updated_next; /* NULL iff not on the list */
316 };
317
318 struct cgroup {
319 /* self css with NULL ->ss, points back to this cgroup */
320 struct cgroup_subsys_state self;
321
322 unsigned long flags; /* "unsigned long" so bitops work */
323
324 /*
325 * idr allocated in-hierarchy ID.
326 *
327 * ID 0 is not used, the ID of the root cgroup is always 1, and a
328 * new cgroup will be assigned with a smallest available ID.
329 *
330 * Allocating/Removing ID must be protected by cgroup_mutex.
331 */
332 int id;
333
334 /*
335 * The depth this cgroup is at. The root is at depth zero and each
336 * step down the hierarchy increments the level. This along with
337 * ancestor_ids[] can determine whether a given cgroup is a
338 * descendant of another without traversing the hierarchy.
339 */
340 int level;
341
342 /* Maximum allowed descent tree depth */
343 int max_depth;
344
345 /*
346 * Keep track of total numbers of visible and dying descent cgroups.
347 * Dying cgroups are cgroups which were deleted by a user,
348 * but are still existing because someone else is holding a reference.
349 * max_descendants is a maximum allowed number of descent cgroups.
350 */
351 int nr_descendants;
352 int nr_dying_descendants;
353 int max_descendants;
354
355 /*
356 * Each non-empty css_set associated with this cgroup contributes
357 * one to nr_populated_csets. The counter is zero iff this cgroup
358 * doesn't have any tasks.
359 *
360 * All children which have non-zero nr_populated_csets and/or
361 * nr_populated_children of their own contribute one to either
362 * nr_populated_domain_children or nr_populated_threaded_children
363 * depending on their type. Each counter is zero iff all cgroups
364 * of the type in the subtree proper don't have any tasks.
365 */
366 int nr_populated_csets;
367 int nr_populated_domain_children;
368 int nr_populated_threaded_children;
369
370 int nr_threaded_children; /* # of live threaded child cgroups */
371
372 struct kernfs_node *kn; /* cgroup kernfs entry */
373 struct cgroup_file procs_file; /* handle for "cgroup.procs" */
374 struct cgroup_file events_file; /* handle for "cgroup.events" */
375
376 /*
377 * The bitmask of subsystems enabled on the child cgroups.
378 * ->subtree_control is the one configured through
379 * "cgroup.subtree_control" while ->child_ss_mask is the effective
380 * one which may have more subsystems enabled. Controller knobs
381 * are made available iff it's enabled in ->subtree_control.
382 */
383 u16 subtree_control;
384 u16 subtree_ss_mask;
385 u16 old_subtree_control;
386 u16 old_subtree_ss_mask;
387
388 /* Private pointers for each registered subsystem */
389 struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
390
391 struct cgroup_root *root;
392
393 /*
394 * List of cgrp_cset_links pointing at css_sets with tasks in this
395 * cgroup. Protected by css_set_lock.
396 */
397 struct list_head cset_links;
398
399 /*
400 * On the default hierarchy, a css_set for a cgroup with some
401 * susbsys disabled will point to css's which are associated with
402 * the closest ancestor which has the subsys enabled. The
403 * following lists all css_sets which point to this cgroup's css
404 * for the given subsystem.
405 */
406 struct list_head e_csets[CGROUP_SUBSYS_COUNT];
407
408 /*
409 * If !threaded, self. If threaded, it points to the nearest
410 * domain ancestor. Inside a threaded subtree, cgroups are exempt
411 * from process granularity and no-internal-task constraint.
412 * Domain level resource consumptions which aren't tied to a
413 * specific task are charged to the dom_cgrp.
414 */
415 struct cgroup *dom_cgrp;
416 struct cgroup *old_dom_cgrp; /* used while enabling threaded */
417
418 /* per-cpu recursive resource statistics */
419 struct cgroup_rstat_cpu __percpu *rstat_cpu;
420 struct list_head rstat_css_list;
421
422 /* cgroup basic resource statistics */
423 struct cgroup_base_stat pending_bstat; /* pending from children */
424 struct cgroup_base_stat bstat;
425 struct prev_cputime prev_cputime; /* for printing out cputime */
426
427 /*
428 * list of pidlists, up to two for each namespace (one for procs, one
429 * for tasks); created on demand.
430 */
431 struct list_head pidlists;
432 struct mutex pidlist_mutex;
433
434 /* used to wait for offlining of csses */
435 wait_queue_head_t offline_waitq;
436
437 /* used to schedule release agent */
438 struct work_struct release_agent_work;
439
440 /* used to track pressure stalls */
441 struct psi_group psi;
442
443 /* used to store eBPF programs */
444 struct cgroup_bpf bpf;
445
446 /* If there is block congestion on this cgroup. */
447 atomic_t congestion_count;
448
449 /* ids of the ancestors at each level including self */
450 int ancestor_ids[];
451 };
452
453 /*
454 * A cgroup_root represents the root of a cgroup hierarchy, and may be
455 * associated with a kernfs_root to form an active hierarchy. This is
456 * internal to cgroup core. Don't access directly from controllers.
457 */
458 struct cgroup_root {
459 struct kernfs_root *kf_root;
460
461 /* The bitmask of subsystems attached to this hierarchy */
462 unsigned int subsys_mask;
463
464 /* Unique id for this hierarchy. */
465 int hierarchy_id;
466
467 /* The root cgroup. Root is destroyed on its release. */
468 struct cgroup cgrp;
469
470 /* for cgrp->ancestor_ids[0] */
471 int cgrp_ancestor_id_storage;
472
473 /* Number of cgroups in the hierarchy, used only for /proc/cgroups */
474 atomic_t nr_cgrps;
475
476 /* A list running through the active hierarchies */
477 struct list_head root_list;
478
479 /* Hierarchy-specific flags */
480 unsigned int flags;
481
482 /* IDs for cgroups in this hierarchy */
483 struct idr cgroup_idr;
484
485 /* The path to use for release notifications. */
486 char release_agent_path[PATH_MAX];
487
488 /* The name for this hierarchy - may be empty */
489 char name[MAX_CGROUP_ROOT_NAMELEN];
490 };
491
492 /*
493 * struct cftype: handler definitions for cgroup control files
494 *
495 * When reading/writing to a file:
496 * - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
497 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata
498 */
499 struct cftype {
500 /*
501 * By convention, the name should begin with the name of the
502 * subsystem, followed by a period. Zero length string indicates
503 * end of cftype array.
504 */
505 char name[MAX_CFTYPE_NAME];
506 unsigned long private;
507
508 /*
509 * The maximum length of string, excluding trailing nul, that can
510 * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
511 */
512 size_t max_write_len;
513
514 /* CFTYPE_* flags */
515 unsigned int flags;
516
517 /*
518 * If non-zero, should contain the offset from the start of css to
519 * a struct cgroup_file field. cgroup will record the handle of
520 * the created file into it. The recorded handle can be used as
521 * long as the containing css remains accessible.
522 */
523 unsigned int file_offset;
524
525 /*
526 * Fields used for internal bookkeeping. Initialized automatically
527 * during registration.
528 */
529 struct cgroup_subsys *ss; /* NULL for cgroup core files */
530 struct list_head node; /* anchored at ss->cfts */
531 struct kernfs_ops *kf_ops;
532
533 int (*open)(struct kernfs_open_file *of);
534 void (*release)(struct kernfs_open_file *of);
535
536 /*
537 * read_u64() is a shortcut for the common case of returning a
538 * single integer. Use it in place of read()
539 */
540 u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
541 /*
542 * read_s64() is a signed version of read_u64()
543 */
544 s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
545
546 /* generic seq_file read interface */
547 int (*seq_show)(struct seq_file *sf, void *v);
548
549 /* optional ops, implement all or none */
550 void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
551 void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
552 void (*seq_stop)(struct seq_file *sf, void *v);
553
554 /*
555 * write_u64() is a shortcut for the common case of accepting
556 * a single integer (as parsed by simple_strtoull) from
557 * userspace. Use in place of write(); return 0 or error.
558 */
559 int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
560 u64 val);
561 /*
562 * write_s64() is a signed version of write_u64()
563 */
564 int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
565 s64 val);
566
567 /*
568 * write() is the generic write callback which maps directly to
569 * kernfs write operation and overrides all other operations.
570 * Maximum write size is determined by ->max_write_len. Use
571 * of_css/cft() to access the associated css and cft.
572 */
573 ssize_t (*write)(struct kernfs_open_file *of,
574 char *buf, size_t nbytes, loff_t off);
575
576 #ifdef CONFIG_DEBUG_LOCK_ALLOC
577 struct lock_class_key lockdep_key;
578 #endif
579 };
580
581 /*
582 * Control Group subsystem type.
583 * See Documentation/cgroup-v1/cgroups.txt for details
584 */
585 struct cgroup_subsys {
586 struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
587 int (*css_online)(struct cgroup_subsys_state *css);
588 void (*css_offline)(struct cgroup_subsys_state *css);
589 void (*css_released)(struct cgroup_subsys_state *css);
590 void (*css_free)(struct cgroup_subsys_state *css);
591 void (*css_reset)(struct cgroup_subsys_state *css);
592 void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
593 int (*css_extra_stat_show)(struct seq_file *seq,
594 struct cgroup_subsys_state *css);
595
596 int (*can_attach)(struct cgroup_taskset *tset);
597 void (*cancel_attach)(struct cgroup_taskset *tset);
598 void (*attach)(struct cgroup_taskset *tset);
599 void (*post_attach)(void);
600 int (*can_fork)(struct task_struct *task);
601 void (*cancel_fork)(struct task_struct *task);
602 void (*fork)(struct task_struct *task);
603 void (*exit)(struct task_struct *task);
604 void (*free)(struct task_struct *task);
605 void (*bind)(struct cgroup_subsys_state *root_css);
606
607 bool early_init:1;
608
609 /*
610 * If %true, the controller, on the default hierarchy, doesn't show
611 * up in "cgroup.controllers" or "cgroup.subtree_control", is
612 * implicitly enabled on all cgroups on the default hierarchy, and
613 * bypasses the "no internal process" constraint. This is for
614 * utility type controllers which is transparent to userland.
615 *
616 * An implicit controller can be stolen from the default hierarchy
617 * anytime and thus must be okay with offline csses from previous
618 * hierarchies coexisting with csses for the current one.
619 */
620 bool implicit_on_dfl:1;
621
622 /*
623 * If %true, the controller, supports threaded mode on the default
624 * hierarchy. In a threaded subtree, both process granularity and
625 * no-internal-process constraint are ignored and a threaded
626 * controllers should be able to handle that.
627 *
628 * Note that as an implicit controller is automatically enabled on
629 * all cgroups on the default hierarchy, it should also be
630 * threaded. implicit && !threaded is not supported.
631 */
632 bool threaded:1;
633
634 /*
635 * If %false, this subsystem is properly hierarchical -
636 * configuration, resource accounting and restriction on a parent
637 * cgroup cover those of its children. If %true, hierarchy support
638 * is broken in some ways - some subsystems ignore hierarchy
639 * completely while others are only implemented half-way.
640 *
641 * It's now disallowed to create nested cgroups if the subsystem is
642 * broken and cgroup core will emit a warning message on such
643 * cases. Eventually, all subsystems will be made properly
644 * hierarchical and this will go away.
645 */
646 bool broken_hierarchy:1;
647 bool warned_broken_hierarchy:1;
648
649 /* the following two fields are initialized automtically during boot */
650 int id;
651 const char *name;
652
653 /* optional, initialized automatically during boot if not set */
654 const char *legacy_name;
655
656 /* link to parent, protected by cgroup_lock() */
657 struct cgroup_root *root;
658
659 /* idr for css->id */
660 struct idr css_idr;
661
662 /*
663 * List of cftypes. Each entry is the first entry of an array
664 * terminated by zero length name.
665 */
666 struct list_head cfts;
667
668 /*
669 * Base cftypes which are automatically registered. The two can
670 * point to the same array.
671 */
672 struct cftype *dfl_cftypes; /* for the default hierarchy */
673 struct cftype *legacy_cftypes; /* for the legacy hierarchies */
674
675 /*
676 * A subsystem may depend on other subsystems. When such subsystem
677 * is enabled on a cgroup, the depended-upon subsystems are enabled
678 * together if available. Subsystems enabled due to dependency are
679 * not visible to userland until explicitly enabled. The following
680 * specifies the mask of subsystems that this one depends on.
681 */
682 unsigned int depends_on;
683 };
684
685 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
686
687 /**
688 * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
689 * @tsk: target task
690 *
691 * Allows cgroup operations to synchronize against threadgroup changes
692 * using a percpu_rw_semaphore.
693 */
694 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
695 {
696 percpu_down_read(&cgroup_threadgroup_rwsem);
697 }
698
699 /**
700 * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
701 * @tsk: target task
702 *
703 * Counterpart of cgroup_threadcgroup_change_begin().
704 */
705 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
706 {
707 percpu_up_read(&cgroup_threadgroup_rwsem);
708 }
709
710 #else /* CONFIG_CGROUPS */
711
712 #define CGROUP_SUBSYS_COUNT 0
713
714 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
715 {
716 might_sleep();
717 }
718
719 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
720
721 #endif /* CONFIG_CGROUPS */
722
723 #ifdef CONFIG_SOCK_CGROUP_DATA
724
725 /*
726 * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
727 * per-socket cgroup information except for memcg association.
728 *
729 * On legacy hierarchies, net_prio and net_cls controllers directly set
730 * attributes on each sock which can then be tested by the network layer.
731 * On the default hierarchy, each sock is associated with the cgroup it was
732 * created in and the networking layer can match the cgroup directly.
733 *
734 * To avoid carrying all three cgroup related fields separately in sock,
735 * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
736 * On boot, sock_cgroup_data records the cgroup that the sock was created
737 * in so that cgroup2 matches can be made; however, once either net_prio or
738 * net_cls starts being used, the area is overriden to carry prioidx and/or
739 * classid. The two modes are distinguished by whether the lowest bit is
740 * set. Clear bit indicates cgroup pointer while set bit prioidx and
741 * classid.
742 *
743 * While userland may start using net_prio or net_cls at any time, once
744 * either is used, cgroup2 matching no longer works. There is no reason to
745 * mix the two and this is in line with how legacy and v2 compatibility is
746 * handled. On mode switch, cgroup references which are already being
747 * pointed to by socks may be leaked. While this can be remedied by adding
748 * synchronization around sock_cgroup_data, given that the number of leaked
749 * cgroups is bound and highly unlikely to be high, this seems to be the
750 * better trade-off.
751 */
752 struct sock_cgroup_data {
753 union {
754 #ifdef __LITTLE_ENDIAN
755 struct {
756 u8 is_data;
757 u8 padding;
758 u16 prioidx;
759 u32 classid;
760 } __packed;
761 #else
762 struct {
763 u32 classid;
764 u16 prioidx;
765 u8 padding;
766 u8 is_data;
767 } __packed;
768 #endif
769 u64 val;
770 };
771 };
772
773 /*
774 * There's a theoretical window where the following accessors race with
775 * updaters and return part of the previous pointer as the prioidx or
776 * classid. Such races are short-lived and the result isn't critical.
777 */
778 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
779 {
780 /* fallback to 1 which is always the ID of the root cgroup */
781 return (skcd->is_data & 1) ? skcd->prioidx : 1;
782 }
783
784 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
785 {
786 /* fallback to 0 which is the unconfigured default classid */
787 return (skcd->is_data & 1) ? skcd->classid : 0;
788 }
789
790 /*
791 * If invoked concurrently, the updaters may clobber each other. The
792 * caller is responsible for synchronization.
793 */
794 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
795 u16 prioidx)
796 {
797 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
798
799 if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
800 return;
801
802 if (!(skcd_buf.is_data & 1)) {
803 skcd_buf.val = 0;
804 skcd_buf.is_data = 1;
805 }
806
807 skcd_buf.prioidx = prioidx;
808 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */
809 }
810
811 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
812 u32 classid)
813 {
814 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
815
816 if (sock_cgroup_classid(&skcd_buf) == classid)
817 return;
818
819 if (!(skcd_buf.is_data & 1)) {
820 skcd_buf.val = 0;
821 skcd_buf.is_data = 1;
822 }
823
824 skcd_buf.classid = classid;
825 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */
826 }
827
828 #else /* CONFIG_SOCK_CGROUP_DATA */
829
830 struct sock_cgroup_data {
831 };
832
833 #endif /* CONFIG_SOCK_CGROUP_DATA */
834
835 #endif /* _LINUX_CGROUP_DEFS_H */