]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/clocksource.h
ia64: Replace clocksource.fsys_mmio with generic arch data
[mirror_ubuntu-bionic-kernel.git] / include / linux / clocksource.h
1 /* linux/include/linux/clocksource.h
2 *
3 * This file contains the structure definitions for clocksources.
4 *
5 * If you are not a clocksource, or timekeeping code, you should
6 * not be including this file!
7 */
8 #ifndef _LINUX_CLOCKSOURCE_H
9 #define _LINUX_CLOCKSOURCE_H
10
11 #include <linux/types.h>
12 #include <linux/timex.h>
13 #include <linux/time.h>
14 #include <linux/list.h>
15 #include <linux/cache.h>
16 #include <linux/timer.h>
17 #include <linux/init.h>
18 #include <asm/div64.h>
19 #include <asm/io.h>
20
21 /* clocksource cycle base type */
22 typedef u64 cycle_t;
23 struct clocksource;
24
25 #include <asm/clocksource.h>
26
27 /**
28 * struct cyclecounter - hardware abstraction for a free running counter
29 * Provides completely state-free accessors to the underlying hardware.
30 * Depending on which hardware it reads, the cycle counter may wrap
31 * around quickly. Locking rules (if necessary) have to be defined
32 * by the implementor and user of specific instances of this API.
33 *
34 * @read: returns the current cycle value
35 * @mask: bitmask for two's complement
36 * subtraction of non 64 bit counters,
37 * see CLOCKSOURCE_MASK() helper macro
38 * @mult: cycle to nanosecond multiplier
39 * @shift: cycle to nanosecond divisor (power of two)
40 */
41 struct cyclecounter {
42 cycle_t (*read)(const struct cyclecounter *cc);
43 cycle_t mask;
44 u32 mult;
45 u32 shift;
46 };
47
48 /**
49 * struct timecounter - layer above a %struct cyclecounter which counts nanoseconds
50 * Contains the state needed by timecounter_read() to detect
51 * cycle counter wrap around. Initialize with
52 * timecounter_init(). Also used to convert cycle counts into the
53 * corresponding nanosecond counts with timecounter_cyc2time(). Users
54 * of this code are responsible for initializing the underlying
55 * cycle counter hardware, locking issues and reading the time
56 * more often than the cycle counter wraps around. The nanosecond
57 * counter will only wrap around after ~585 years.
58 *
59 * @cc: the cycle counter used by this instance
60 * @cycle_last: most recent cycle counter value seen by
61 * timecounter_read()
62 * @nsec: continuously increasing count
63 */
64 struct timecounter {
65 const struct cyclecounter *cc;
66 cycle_t cycle_last;
67 u64 nsec;
68 };
69
70 /**
71 * cyclecounter_cyc2ns - converts cycle counter cycles to nanoseconds
72 * @tc: Pointer to cycle counter.
73 * @cycles: Cycles
74 *
75 * XXX - This could use some mult_lxl_ll() asm optimization. Same code
76 * as in cyc2ns, but with unsigned result.
77 */
78 static inline u64 cyclecounter_cyc2ns(const struct cyclecounter *cc,
79 cycle_t cycles)
80 {
81 u64 ret = (u64)cycles;
82 ret = (ret * cc->mult) >> cc->shift;
83 return ret;
84 }
85
86 /**
87 * timecounter_init - initialize a time counter
88 * @tc: Pointer to time counter which is to be initialized/reset
89 * @cc: A cycle counter, ready to be used.
90 * @start_tstamp: Arbitrary initial time stamp.
91 *
92 * After this call the current cycle register (roughly) corresponds to
93 * the initial time stamp. Every call to timecounter_read() increments
94 * the time stamp counter by the number of elapsed nanoseconds.
95 */
96 extern void timecounter_init(struct timecounter *tc,
97 const struct cyclecounter *cc,
98 u64 start_tstamp);
99
100 /**
101 * timecounter_read - return nanoseconds elapsed since timecounter_init()
102 * plus the initial time stamp
103 * @tc: Pointer to time counter.
104 *
105 * In other words, keeps track of time since the same epoch as
106 * the function which generated the initial time stamp.
107 */
108 extern u64 timecounter_read(struct timecounter *tc);
109
110 /**
111 * timecounter_cyc2time - convert a cycle counter to same
112 * time base as values returned by
113 * timecounter_read()
114 * @tc: Pointer to time counter.
115 * @cycle: a value returned by tc->cc->read()
116 *
117 * Cycle counts that are converted correctly as long as they
118 * fall into the interval [-1/2 max cycle count, +1/2 max cycle count],
119 * with "max cycle count" == cs->mask+1.
120 *
121 * This allows conversion of cycle counter values which were generated
122 * in the past.
123 */
124 extern u64 timecounter_cyc2time(struct timecounter *tc,
125 cycle_t cycle_tstamp);
126
127 /**
128 * struct clocksource - hardware abstraction for a free running counter
129 * Provides mostly state-free accessors to the underlying hardware.
130 * This is the structure used for system time.
131 *
132 * @name: ptr to clocksource name
133 * @list: list head for registration
134 * @rating: rating value for selection (higher is better)
135 * To avoid rating inflation the following
136 * list should give you a guide as to how
137 * to assign your clocksource a rating
138 * 1-99: Unfit for real use
139 * Only available for bootup and testing purposes.
140 * 100-199: Base level usability.
141 * Functional for real use, but not desired.
142 * 200-299: Good.
143 * A correct and usable clocksource.
144 * 300-399: Desired.
145 * A reasonably fast and accurate clocksource.
146 * 400-499: Perfect
147 * The ideal clocksource. A must-use where
148 * available.
149 * @read: returns a cycle value, passes clocksource as argument
150 * @enable: optional function to enable the clocksource
151 * @disable: optional function to disable the clocksource
152 * @mask: bitmask for two's complement
153 * subtraction of non 64 bit counters
154 * @mult: cycle to nanosecond multiplier
155 * @shift: cycle to nanosecond divisor (power of two)
156 * @max_idle_ns: max idle time permitted by the clocksource (nsecs)
157 * @flags: flags describing special properties
158 * @archdata: arch-specific data
159 * @suspend: suspend function for the clocksource, if necessary
160 * @resume: resume function for the clocksource, if necessary
161 */
162 struct clocksource {
163 /*
164 * Hotpath data, fits in a single cache line when the
165 * clocksource itself is cacheline aligned.
166 */
167 cycle_t (*read)(struct clocksource *cs);
168 cycle_t cycle_last;
169 cycle_t mask;
170 u32 mult;
171 u32 shift;
172 u64 max_idle_ns;
173
174 #ifdef __ARCH_HAS_CLOCKSOURCE_DATA
175 struct arch_clocksource_data archdata;
176 #endif
177
178 const char *name;
179 struct list_head list;
180 int rating;
181 int (*enable)(struct clocksource *cs);
182 void (*disable)(struct clocksource *cs);
183 unsigned long flags;
184 void (*suspend)(struct clocksource *cs);
185 void (*resume)(struct clocksource *cs);
186
187 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
188 /* Watchdog related data, used by the framework */
189 struct list_head wd_list;
190 cycle_t wd_last;
191 #endif
192 } ____cacheline_aligned;
193
194 /*
195 * Clock source flags bits::
196 */
197 #define CLOCK_SOURCE_IS_CONTINUOUS 0x01
198 #define CLOCK_SOURCE_MUST_VERIFY 0x02
199
200 #define CLOCK_SOURCE_WATCHDOG 0x10
201 #define CLOCK_SOURCE_VALID_FOR_HRES 0x20
202 #define CLOCK_SOURCE_UNSTABLE 0x40
203
204 /* simplify initialization of mask field */
205 #define CLOCKSOURCE_MASK(bits) (cycle_t)((bits) < 64 ? ((1ULL<<(bits))-1) : -1)
206
207 /**
208 * clocksource_khz2mult - calculates mult from khz and shift
209 * @khz: Clocksource frequency in KHz
210 * @shift_constant: Clocksource shift factor
211 *
212 * Helper functions that converts a khz counter frequency to a timsource
213 * multiplier, given the clocksource shift value
214 */
215 static inline u32 clocksource_khz2mult(u32 khz, u32 shift_constant)
216 {
217 /* khz = cyc/(Million ns)
218 * mult/2^shift = ns/cyc
219 * mult = ns/cyc * 2^shift
220 * mult = 1Million/khz * 2^shift
221 * mult = 1000000 * 2^shift / khz
222 * mult = (1000000<<shift) / khz
223 */
224 u64 tmp = ((u64)1000000) << shift_constant;
225
226 tmp += khz/2; /* round for do_div */
227 do_div(tmp, khz);
228
229 return (u32)tmp;
230 }
231
232 /**
233 * clocksource_hz2mult - calculates mult from hz and shift
234 * @hz: Clocksource frequency in Hz
235 * @shift_constant: Clocksource shift factor
236 *
237 * Helper functions that converts a hz counter
238 * frequency to a timsource multiplier, given the
239 * clocksource shift value
240 */
241 static inline u32 clocksource_hz2mult(u32 hz, u32 shift_constant)
242 {
243 /* hz = cyc/(Billion ns)
244 * mult/2^shift = ns/cyc
245 * mult = ns/cyc * 2^shift
246 * mult = 1Billion/hz * 2^shift
247 * mult = 1000000000 * 2^shift / hz
248 * mult = (1000000000<<shift) / hz
249 */
250 u64 tmp = ((u64)1000000000) << shift_constant;
251
252 tmp += hz/2; /* round for do_div */
253 do_div(tmp, hz);
254
255 return (u32)tmp;
256 }
257
258 /**
259 * clocksource_cyc2ns - converts clocksource cycles to nanoseconds
260 *
261 * Converts cycles to nanoseconds, using the given mult and shift.
262 *
263 * XXX - This could use some mult_lxl_ll() asm optimization
264 */
265 static inline s64 clocksource_cyc2ns(cycle_t cycles, u32 mult, u32 shift)
266 {
267 return ((u64) cycles * mult) >> shift;
268 }
269
270
271 extern int clocksource_register(struct clocksource*);
272 extern void clocksource_unregister(struct clocksource*);
273 extern void clocksource_touch_watchdog(void);
274 extern struct clocksource* clocksource_get_next(void);
275 extern void clocksource_change_rating(struct clocksource *cs, int rating);
276 extern void clocksource_suspend(void);
277 extern void clocksource_resume(void);
278 extern struct clocksource * __init __weak clocksource_default_clock(void);
279 extern void clocksource_mark_unstable(struct clocksource *cs);
280
281 extern void
282 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 minsec);
283
284 /*
285 * Don't call __clocksource_register_scale directly, use
286 * clocksource_register_hz/khz
287 */
288 extern int
289 __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq);
290 extern void
291 __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq);
292
293 static inline int clocksource_register_hz(struct clocksource *cs, u32 hz)
294 {
295 return __clocksource_register_scale(cs, 1, hz);
296 }
297
298 static inline int clocksource_register_khz(struct clocksource *cs, u32 khz)
299 {
300 return __clocksource_register_scale(cs, 1000, khz);
301 }
302
303 static inline void __clocksource_updatefreq_hz(struct clocksource *cs, u32 hz)
304 {
305 __clocksource_updatefreq_scale(cs, 1, hz);
306 }
307
308 static inline void __clocksource_updatefreq_khz(struct clocksource *cs, u32 khz)
309 {
310 __clocksource_updatefreq_scale(cs, 1000, khz);
311 }
312
313 static inline void
314 clocksource_calc_mult_shift(struct clocksource *cs, u32 freq, u32 minsec)
315 {
316 return clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
317 NSEC_PER_SEC, minsec);
318 }
319
320 #ifdef CONFIG_GENERIC_TIME_VSYSCALL
321 extern void
322 update_vsyscall(struct timespec *ts, struct timespec *wtm,
323 struct clocksource *c, u32 mult);
324 extern void update_vsyscall_tz(void);
325 #else
326 static inline void
327 update_vsyscall(struct timespec *ts, struct timespec *wtm,
328 struct clocksource *c, u32 mult)
329 {
330 }
331
332 static inline void update_vsyscall_tz(void)
333 {
334 }
335 #endif
336
337 extern void timekeeping_notify(struct clocksource *clock);
338
339 extern cycle_t clocksource_mmio_readl_up(struct clocksource *);
340 extern cycle_t clocksource_mmio_readl_down(struct clocksource *);
341 extern cycle_t clocksource_mmio_readw_up(struct clocksource *);
342 extern cycle_t clocksource_mmio_readw_down(struct clocksource *);
343
344 extern int clocksource_mmio_init(void __iomem *, const char *,
345 unsigned long, int, unsigned, cycle_t (*)(struct clocksource *));
346
347 extern int clocksource_i8253_init(void);
348
349 #endif /* _LINUX_CLOCKSOURCE_H */