]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/cpumask.h
Merge tag 'iommu-updates-v4.14' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / include / linux / cpumask.h
1 #ifndef __LINUX_CPUMASK_H
2 #define __LINUX_CPUMASK_H
3
4 /*
5 * Cpumasks provide a bitmap suitable for representing the
6 * set of CPU's in a system, one bit position per CPU number. In general,
7 * only nr_cpu_ids (<= NR_CPUS) bits are valid.
8 */
9 #include <linux/kernel.h>
10 #include <linux/threads.h>
11 #include <linux/bitmap.h>
12 #include <linux/bug.h>
13
14 /* Don't assign or return these: may not be this big! */
15 typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
16
17 /**
18 * cpumask_bits - get the bits in a cpumask
19 * @maskp: the struct cpumask *
20 *
21 * You should only assume nr_cpu_ids bits of this mask are valid. This is
22 * a macro so it's const-correct.
23 */
24 #define cpumask_bits(maskp) ((maskp)->bits)
25
26 /**
27 * cpumask_pr_args - printf args to output a cpumask
28 * @maskp: cpumask to be printed
29 *
30 * Can be used to provide arguments for '%*pb[l]' when printing a cpumask.
31 */
32 #define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp)
33
34 #if NR_CPUS == 1
35 #define nr_cpu_ids 1U
36 #else
37 extern unsigned int nr_cpu_ids;
38 #endif
39
40 #ifdef CONFIG_CPUMASK_OFFSTACK
41 /* Assuming NR_CPUS is huge, a runtime limit is more efficient. Also,
42 * not all bits may be allocated. */
43 #define nr_cpumask_bits nr_cpu_ids
44 #else
45 #define nr_cpumask_bits ((unsigned int)NR_CPUS)
46 #endif
47
48 /*
49 * The following particular system cpumasks and operations manage
50 * possible, present, active and online cpus.
51 *
52 * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable
53 * cpu_present_mask - has bit 'cpu' set iff cpu is populated
54 * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler
55 * cpu_active_mask - has bit 'cpu' set iff cpu available to migration
56 *
57 * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online.
58 *
59 * The cpu_possible_mask is fixed at boot time, as the set of CPU id's
60 * that it is possible might ever be plugged in at anytime during the
61 * life of that system boot. The cpu_present_mask is dynamic(*),
62 * representing which CPUs are currently plugged in. And
63 * cpu_online_mask is the dynamic subset of cpu_present_mask,
64 * indicating those CPUs available for scheduling.
65 *
66 * If HOTPLUG is enabled, then cpu_possible_mask is forced to have
67 * all NR_CPUS bits set, otherwise it is just the set of CPUs that
68 * ACPI reports present at boot.
69 *
70 * If HOTPLUG is enabled, then cpu_present_mask varies dynamically,
71 * depending on what ACPI reports as currently plugged in, otherwise
72 * cpu_present_mask is just a copy of cpu_possible_mask.
73 *
74 * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not
75 * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot.
76 *
77 * Subtleties:
78 * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
79 * assumption that their single CPU is online. The UP
80 * cpu_{online,possible,present}_masks are placebos. Changing them
81 * will have no useful affect on the following num_*_cpus()
82 * and cpu_*() macros in the UP case. This ugliness is a UP
83 * optimization - don't waste any instructions or memory references
84 * asking if you're online or how many CPUs there are if there is
85 * only one CPU.
86 */
87
88 extern struct cpumask __cpu_possible_mask;
89 extern struct cpumask __cpu_online_mask;
90 extern struct cpumask __cpu_present_mask;
91 extern struct cpumask __cpu_active_mask;
92 #define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask)
93 #define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask)
94 #define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask)
95 #define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask)
96
97 #if NR_CPUS > 1
98 #define num_online_cpus() cpumask_weight(cpu_online_mask)
99 #define num_possible_cpus() cpumask_weight(cpu_possible_mask)
100 #define num_present_cpus() cpumask_weight(cpu_present_mask)
101 #define num_active_cpus() cpumask_weight(cpu_active_mask)
102 #define cpu_online(cpu) cpumask_test_cpu((cpu), cpu_online_mask)
103 #define cpu_possible(cpu) cpumask_test_cpu((cpu), cpu_possible_mask)
104 #define cpu_present(cpu) cpumask_test_cpu((cpu), cpu_present_mask)
105 #define cpu_active(cpu) cpumask_test_cpu((cpu), cpu_active_mask)
106 #else
107 #define num_online_cpus() 1U
108 #define num_possible_cpus() 1U
109 #define num_present_cpus() 1U
110 #define num_active_cpus() 1U
111 #define cpu_online(cpu) ((cpu) == 0)
112 #define cpu_possible(cpu) ((cpu) == 0)
113 #define cpu_present(cpu) ((cpu) == 0)
114 #define cpu_active(cpu) ((cpu) == 0)
115 #endif
116
117 /* verify cpu argument to cpumask_* operators */
118 static inline unsigned int cpumask_check(unsigned int cpu)
119 {
120 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
121 WARN_ON_ONCE(cpu >= nr_cpumask_bits);
122 #endif /* CONFIG_DEBUG_PER_CPU_MAPS */
123 return cpu;
124 }
125
126 #if NR_CPUS == 1
127 /* Uniprocessor. Assume all masks are "1". */
128 static inline unsigned int cpumask_first(const struct cpumask *srcp)
129 {
130 return 0;
131 }
132
133 /* Valid inputs for n are -1 and 0. */
134 static inline unsigned int cpumask_next(int n, const struct cpumask *srcp)
135 {
136 return n+1;
137 }
138
139 static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
140 {
141 return n+1;
142 }
143
144 static inline unsigned int cpumask_next_and(int n,
145 const struct cpumask *srcp,
146 const struct cpumask *andp)
147 {
148 return n+1;
149 }
150
151 /* cpu must be a valid cpu, ie 0, so there's no other choice. */
152 static inline unsigned int cpumask_any_but(const struct cpumask *mask,
153 unsigned int cpu)
154 {
155 return 1;
156 }
157
158 static inline unsigned int cpumask_local_spread(unsigned int i, int node)
159 {
160 return 0;
161 }
162
163 #define for_each_cpu(cpu, mask) \
164 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
165 #define for_each_cpu_not(cpu, mask) \
166 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
167 #define for_each_cpu_and(cpu, mask, and) \
168 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask, (void)and)
169 #else
170 /**
171 * cpumask_first - get the first cpu in a cpumask
172 * @srcp: the cpumask pointer
173 *
174 * Returns >= nr_cpu_ids if no cpus set.
175 */
176 static inline unsigned int cpumask_first(const struct cpumask *srcp)
177 {
178 return find_first_bit(cpumask_bits(srcp), nr_cpumask_bits);
179 }
180
181 unsigned int cpumask_next(int n, const struct cpumask *srcp);
182
183 /**
184 * cpumask_next_zero - get the next unset cpu in a cpumask
185 * @n: the cpu prior to the place to search (ie. return will be > @n)
186 * @srcp: the cpumask pointer
187 *
188 * Returns >= nr_cpu_ids if no further cpus unset.
189 */
190 static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
191 {
192 /* -1 is a legal arg here. */
193 if (n != -1)
194 cpumask_check(n);
195 return find_next_zero_bit(cpumask_bits(srcp), nr_cpumask_bits, n+1);
196 }
197
198 int cpumask_next_and(int n, const struct cpumask *, const struct cpumask *);
199 int cpumask_any_but(const struct cpumask *mask, unsigned int cpu);
200 unsigned int cpumask_local_spread(unsigned int i, int node);
201
202 /**
203 * for_each_cpu - iterate over every cpu in a mask
204 * @cpu: the (optionally unsigned) integer iterator
205 * @mask: the cpumask pointer
206 *
207 * After the loop, cpu is >= nr_cpu_ids.
208 */
209 #define for_each_cpu(cpu, mask) \
210 for ((cpu) = -1; \
211 (cpu) = cpumask_next((cpu), (mask)), \
212 (cpu) < nr_cpu_ids;)
213
214 /**
215 * for_each_cpu_not - iterate over every cpu in a complemented mask
216 * @cpu: the (optionally unsigned) integer iterator
217 * @mask: the cpumask pointer
218 *
219 * After the loop, cpu is >= nr_cpu_ids.
220 */
221 #define for_each_cpu_not(cpu, mask) \
222 for ((cpu) = -1; \
223 (cpu) = cpumask_next_zero((cpu), (mask)), \
224 (cpu) < nr_cpu_ids;)
225
226 extern int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap);
227
228 /**
229 * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location
230 * @cpu: the (optionally unsigned) integer iterator
231 * @mask: the cpumask poiter
232 * @start: the start location
233 *
234 * The implementation does not assume any bit in @mask is set (including @start).
235 *
236 * After the loop, cpu is >= nr_cpu_ids.
237 */
238 #define for_each_cpu_wrap(cpu, mask, start) \
239 for ((cpu) = cpumask_next_wrap((start)-1, (mask), (start), false); \
240 (cpu) < nr_cpumask_bits; \
241 (cpu) = cpumask_next_wrap((cpu), (mask), (start), true))
242
243 /**
244 * for_each_cpu_and - iterate over every cpu in both masks
245 * @cpu: the (optionally unsigned) integer iterator
246 * @mask: the first cpumask pointer
247 * @and: the second cpumask pointer
248 *
249 * This saves a temporary CPU mask in many places. It is equivalent to:
250 * struct cpumask tmp;
251 * cpumask_and(&tmp, &mask, &and);
252 * for_each_cpu(cpu, &tmp)
253 * ...
254 *
255 * After the loop, cpu is >= nr_cpu_ids.
256 */
257 #define for_each_cpu_and(cpu, mask, and) \
258 for ((cpu) = -1; \
259 (cpu) = cpumask_next_and((cpu), (mask), (and)), \
260 (cpu) < nr_cpu_ids;)
261 #endif /* SMP */
262
263 #define CPU_BITS_NONE \
264 { \
265 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
266 }
267
268 #define CPU_BITS_CPU0 \
269 { \
270 [0] = 1UL \
271 }
272
273 /**
274 * cpumask_set_cpu - set a cpu in a cpumask
275 * @cpu: cpu number (< nr_cpu_ids)
276 * @dstp: the cpumask pointer
277 */
278 static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
279 {
280 set_bit(cpumask_check(cpu), cpumask_bits(dstp));
281 }
282
283 static inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
284 {
285 __set_bit(cpumask_check(cpu), cpumask_bits(dstp));
286 }
287
288
289 /**
290 * cpumask_clear_cpu - clear a cpu in a cpumask
291 * @cpu: cpu number (< nr_cpu_ids)
292 * @dstp: the cpumask pointer
293 */
294 static inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp)
295 {
296 clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
297 }
298
299 static inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp)
300 {
301 __clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
302 }
303
304 /**
305 * cpumask_test_cpu - test for a cpu in a cpumask
306 * @cpu: cpu number (< nr_cpu_ids)
307 * @cpumask: the cpumask pointer
308 *
309 * Returns 1 if @cpu is set in @cpumask, else returns 0
310 */
311 static inline int cpumask_test_cpu(int cpu, const struct cpumask *cpumask)
312 {
313 return test_bit(cpumask_check(cpu), cpumask_bits((cpumask)));
314 }
315
316 /**
317 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask
318 * @cpu: cpu number (< nr_cpu_ids)
319 * @cpumask: the cpumask pointer
320 *
321 * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0
322 *
323 * test_and_set_bit wrapper for cpumasks.
324 */
325 static inline int cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask)
326 {
327 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask));
328 }
329
330 /**
331 * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask
332 * @cpu: cpu number (< nr_cpu_ids)
333 * @cpumask: the cpumask pointer
334 *
335 * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0
336 *
337 * test_and_clear_bit wrapper for cpumasks.
338 */
339 static inline int cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask)
340 {
341 return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask));
342 }
343
344 /**
345 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask
346 * @dstp: the cpumask pointer
347 */
348 static inline void cpumask_setall(struct cpumask *dstp)
349 {
350 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits);
351 }
352
353 /**
354 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask
355 * @dstp: the cpumask pointer
356 */
357 static inline void cpumask_clear(struct cpumask *dstp)
358 {
359 bitmap_zero(cpumask_bits(dstp), nr_cpumask_bits);
360 }
361
362 /**
363 * cpumask_and - *dstp = *src1p & *src2p
364 * @dstp: the cpumask result
365 * @src1p: the first input
366 * @src2p: the second input
367 *
368 * If *@dstp is empty, returns 0, else returns 1
369 */
370 static inline int cpumask_and(struct cpumask *dstp,
371 const struct cpumask *src1p,
372 const struct cpumask *src2p)
373 {
374 return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p),
375 cpumask_bits(src2p), nr_cpumask_bits);
376 }
377
378 /**
379 * cpumask_or - *dstp = *src1p | *src2p
380 * @dstp: the cpumask result
381 * @src1p: the first input
382 * @src2p: the second input
383 */
384 static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p,
385 const struct cpumask *src2p)
386 {
387 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p),
388 cpumask_bits(src2p), nr_cpumask_bits);
389 }
390
391 /**
392 * cpumask_xor - *dstp = *src1p ^ *src2p
393 * @dstp: the cpumask result
394 * @src1p: the first input
395 * @src2p: the second input
396 */
397 static inline void cpumask_xor(struct cpumask *dstp,
398 const struct cpumask *src1p,
399 const struct cpumask *src2p)
400 {
401 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p),
402 cpumask_bits(src2p), nr_cpumask_bits);
403 }
404
405 /**
406 * cpumask_andnot - *dstp = *src1p & ~*src2p
407 * @dstp: the cpumask result
408 * @src1p: the first input
409 * @src2p: the second input
410 *
411 * If *@dstp is empty, returns 0, else returns 1
412 */
413 static inline int cpumask_andnot(struct cpumask *dstp,
414 const struct cpumask *src1p,
415 const struct cpumask *src2p)
416 {
417 return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p),
418 cpumask_bits(src2p), nr_cpumask_bits);
419 }
420
421 /**
422 * cpumask_complement - *dstp = ~*srcp
423 * @dstp: the cpumask result
424 * @srcp: the input to invert
425 */
426 static inline void cpumask_complement(struct cpumask *dstp,
427 const struct cpumask *srcp)
428 {
429 bitmap_complement(cpumask_bits(dstp), cpumask_bits(srcp),
430 nr_cpumask_bits);
431 }
432
433 /**
434 * cpumask_equal - *src1p == *src2p
435 * @src1p: the first input
436 * @src2p: the second input
437 */
438 static inline bool cpumask_equal(const struct cpumask *src1p,
439 const struct cpumask *src2p)
440 {
441 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p),
442 nr_cpumask_bits);
443 }
444
445 /**
446 * cpumask_intersects - (*src1p & *src2p) != 0
447 * @src1p: the first input
448 * @src2p: the second input
449 */
450 static inline bool cpumask_intersects(const struct cpumask *src1p,
451 const struct cpumask *src2p)
452 {
453 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p),
454 nr_cpumask_bits);
455 }
456
457 /**
458 * cpumask_subset - (*src1p & ~*src2p) == 0
459 * @src1p: the first input
460 * @src2p: the second input
461 *
462 * Returns 1 if *@src1p is a subset of *@src2p, else returns 0
463 */
464 static inline int cpumask_subset(const struct cpumask *src1p,
465 const struct cpumask *src2p)
466 {
467 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p),
468 nr_cpumask_bits);
469 }
470
471 /**
472 * cpumask_empty - *srcp == 0
473 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear.
474 */
475 static inline bool cpumask_empty(const struct cpumask *srcp)
476 {
477 return bitmap_empty(cpumask_bits(srcp), nr_cpumask_bits);
478 }
479
480 /**
481 * cpumask_full - *srcp == 0xFFFFFFFF...
482 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set.
483 */
484 static inline bool cpumask_full(const struct cpumask *srcp)
485 {
486 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits);
487 }
488
489 /**
490 * cpumask_weight - Count of bits in *srcp
491 * @srcp: the cpumask to count bits (< nr_cpu_ids) in.
492 */
493 static inline unsigned int cpumask_weight(const struct cpumask *srcp)
494 {
495 return bitmap_weight(cpumask_bits(srcp), nr_cpumask_bits);
496 }
497
498 /**
499 * cpumask_shift_right - *dstp = *srcp >> n
500 * @dstp: the cpumask result
501 * @srcp: the input to shift
502 * @n: the number of bits to shift by
503 */
504 static inline void cpumask_shift_right(struct cpumask *dstp,
505 const struct cpumask *srcp, int n)
506 {
507 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n,
508 nr_cpumask_bits);
509 }
510
511 /**
512 * cpumask_shift_left - *dstp = *srcp << n
513 * @dstp: the cpumask result
514 * @srcp: the input to shift
515 * @n: the number of bits to shift by
516 */
517 static inline void cpumask_shift_left(struct cpumask *dstp,
518 const struct cpumask *srcp, int n)
519 {
520 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n,
521 nr_cpumask_bits);
522 }
523
524 /**
525 * cpumask_copy - *dstp = *srcp
526 * @dstp: the result
527 * @srcp: the input cpumask
528 */
529 static inline void cpumask_copy(struct cpumask *dstp,
530 const struct cpumask *srcp)
531 {
532 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits);
533 }
534
535 /**
536 * cpumask_any - pick a "random" cpu from *srcp
537 * @srcp: the input cpumask
538 *
539 * Returns >= nr_cpu_ids if no cpus set.
540 */
541 #define cpumask_any(srcp) cpumask_first(srcp)
542
543 /**
544 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2
545 * @src1p: the first input
546 * @src2p: the second input
547 *
548 * Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and().
549 */
550 #define cpumask_first_and(src1p, src2p) cpumask_next_and(-1, (src1p), (src2p))
551
552 /**
553 * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2
554 * @mask1: the first input cpumask
555 * @mask2: the second input cpumask
556 *
557 * Returns >= nr_cpu_ids if no cpus set.
558 */
559 #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2))
560
561 /**
562 * cpumask_of - the cpumask containing just a given cpu
563 * @cpu: the cpu (<= nr_cpu_ids)
564 */
565 #define cpumask_of(cpu) (get_cpu_mask(cpu))
566
567 /**
568 * cpumask_parse_user - extract a cpumask from a user string
569 * @buf: the buffer to extract from
570 * @len: the length of the buffer
571 * @dstp: the cpumask to set.
572 *
573 * Returns -errno, or 0 for success.
574 */
575 static inline int cpumask_parse_user(const char __user *buf, int len,
576 struct cpumask *dstp)
577 {
578 return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits);
579 }
580
581 /**
582 * cpumask_parselist_user - extract a cpumask from a user string
583 * @buf: the buffer to extract from
584 * @len: the length of the buffer
585 * @dstp: the cpumask to set.
586 *
587 * Returns -errno, or 0 for success.
588 */
589 static inline int cpumask_parselist_user(const char __user *buf, int len,
590 struct cpumask *dstp)
591 {
592 return bitmap_parselist_user(buf, len, cpumask_bits(dstp),
593 nr_cpumask_bits);
594 }
595
596 /**
597 * cpumask_parse - extract a cpumask from a string
598 * @buf: the buffer to extract from
599 * @dstp: the cpumask to set.
600 *
601 * Returns -errno, or 0 for success.
602 */
603 static inline int cpumask_parse(const char *buf, struct cpumask *dstp)
604 {
605 char *nl = strchr(buf, '\n');
606 unsigned int len = nl ? (unsigned int)(nl - buf) : strlen(buf);
607
608 return bitmap_parse(buf, len, cpumask_bits(dstp), nr_cpumask_bits);
609 }
610
611 /**
612 * cpulist_parse - extract a cpumask from a user string of ranges
613 * @buf: the buffer to extract from
614 * @dstp: the cpumask to set.
615 *
616 * Returns -errno, or 0 for success.
617 */
618 static inline int cpulist_parse(const char *buf, struct cpumask *dstp)
619 {
620 return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits);
621 }
622
623 /**
624 * cpumask_size - size to allocate for a 'struct cpumask' in bytes
625 */
626 static inline size_t cpumask_size(void)
627 {
628 return BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long);
629 }
630
631 /*
632 * cpumask_var_t: struct cpumask for stack usage.
633 *
634 * Oh, the wicked games we play! In order to make kernel coding a
635 * little more difficult, we typedef cpumask_var_t to an array or a
636 * pointer: doing &mask on an array is a noop, so it still works.
637 *
638 * ie.
639 * cpumask_var_t tmpmask;
640 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
641 * return -ENOMEM;
642 *
643 * ... use 'tmpmask' like a normal struct cpumask * ...
644 *
645 * free_cpumask_var(tmpmask);
646 *
647 *
648 * However, one notable exception is there. alloc_cpumask_var() allocates
649 * only nr_cpumask_bits bits (in the other hand, real cpumask_t always has
650 * NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t.
651 *
652 * cpumask_var_t tmpmask;
653 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
654 * return -ENOMEM;
655 *
656 * var = *tmpmask;
657 *
658 * This code makes NR_CPUS length memcopy and brings to a memory corruption.
659 * cpumask_copy() provide safe copy functionality.
660 *
661 * Note that there is another evil here: If you define a cpumask_var_t
662 * as a percpu variable then the way to obtain the address of the cpumask
663 * structure differently influences what this_cpu_* operation needs to be
664 * used. Please use this_cpu_cpumask_var_t in those cases. The direct use
665 * of this_cpu_ptr() or this_cpu_read() will lead to failures when the
666 * other type of cpumask_var_t implementation is configured.
667 *
668 * Please also note that __cpumask_var_read_mostly can be used to declare
669 * a cpumask_var_t variable itself (not its content) as read mostly.
670 */
671 #ifdef CONFIG_CPUMASK_OFFSTACK
672 typedef struct cpumask *cpumask_var_t;
673
674 #define this_cpu_cpumask_var_ptr(x) this_cpu_read(x)
675 #define __cpumask_var_read_mostly __read_mostly
676
677 bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node);
678 bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags);
679 bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node);
680 bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags);
681 void alloc_bootmem_cpumask_var(cpumask_var_t *mask);
682 void free_cpumask_var(cpumask_var_t mask);
683 void free_bootmem_cpumask_var(cpumask_var_t mask);
684
685 static inline bool cpumask_available(cpumask_var_t mask)
686 {
687 return mask != NULL;
688 }
689
690 #else
691 typedef struct cpumask cpumask_var_t[1];
692
693 #define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x)
694 #define __cpumask_var_read_mostly
695
696 static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
697 {
698 return true;
699 }
700
701 static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
702 int node)
703 {
704 return true;
705 }
706
707 static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
708 {
709 cpumask_clear(*mask);
710 return true;
711 }
712
713 static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
714 int node)
715 {
716 cpumask_clear(*mask);
717 return true;
718 }
719
720 static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask)
721 {
722 }
723
724 static inline void free_cpumask_var(cpumask_var_t mask)
725 {
726 }
727
728 static inline void free_bootmem_cpumask_var(cpumask_var_t mask)
729 {
730 }
731
732 static inline bool cpumask_available(cpumask_var_t mask)
733 {
734 return true;
735 }
736 #endif /* CONFIG_CPUMASK_OFFSTACK */
737
738 /* It's common to want to use cpu_all_mask in struct member initializers,
739 * so it has to refer to an address rather than a pointer. */
740 extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS);
741 #define cpu_all_mask to_cpumask(cpu_all_bits)
742
743 /* First bits of cpu_bit_bitmap are in fact unset. */
744 #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0])
745
746 #define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask)
747 #define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask)
748 #define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask)
749
750 /* Wrappers for arch boot code to manipulate normally-constant masks */
751 void init_cpu_present(const struct cpumask *src);
752 void init_cpu_possible(const struct cpumask *src);
753 void init_cpu_online(const struct cpumask *src);
754
755 static inline void reset_cpu_possible_mask(void)
756 {
757 bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS);
758 }
759
760 static inline void
761 set_cpu_possible(unsigned int cpu, bool possible)
762 {
763 if (possible)
764 cpumask_set_cpu(cpu, &__cpu_possible_mask);
765 else
766 cpumask_clear_cpu(cpu, &__cpu_possible_mask);
767 }
768
769 static inline void
770 set_cpu_present(unsigned int cpu, bool present)
771 {
772 if (present)
773 cpumask_set_cpu(cpu, &__cpu_present_mask);
774 else
775 cpumask_clear_cpu(cpu, &__cpu_present_mask);
776 }
777
778 static inline void
779 set_cpu_online(unsigned int cpu, bool online)
780 {
781 if (online)
782 cpumask_set_cpu(cpu, &__cpu_online_mask);
783 else
784 cpumask_clear_cpu(cpu, &__cpu_online_mask);
785 }
786
787 static inline void
788 set_cpu_active(unsigned int cpu, bool active)
789 {
790 if (active)
791 cpumask_set_cpu(cpu, &__cpu_active_mask);
792 else
793 cpumask_clear_cpu(cpu, &__cpu_active_mask);
794 }
795
796
797 /**
798 * to_cpumask - convert an NR_CPUS bitmap to a struct cpumask *
799 * @bitmap: the bitmap
800 *
801 * There are a few places where cpumask_var_t isn't appropriate and
802 * static cpumasks must be used (eg. very early boot), yet we don't
803 * expose the definition of 'struct cpumask'.
804 *
805 * This does the conversion, and can be used as a constant initializer.
806 */
807 #define to_cpumask(bitmap) \
808 ((struct cpumask *)(1 ? (bitmap) \
809 : (void *)sizeof(__check_is_bitmap(bitmap))))
810
811 static inline int __check_is_bitmap(const unsigned long *bitmap)
812 {
813 return 1;
814 }
815
816 /*
817 * Special-case data structure for "single bit set only" constant CPU masks.
818 *
819 * We pre-generate all the 64 (or 32) possible bit positions, with enough
820 * padding to the left and the right, and return the constant pointer
821 * appropriately offset.
822 */
823 extern const unsigned long
824 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)];
825
826 static inline const struct cpumask *get_cpu_mask(unsigned int cpu)
827 {
828 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
829 p -= cpu / BITS_PER_LONG;
830 return to_cpumask(p);
831 }
832
833 #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu))
834
835 #if NR_CPUS <= BITS_PER_LONG
836 #define CPU_BITS_ALL \
837 { \
838 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
839 }
840
841 #else /* NR_CPUS > BITS_PER_LONG */
842
843 #define CPU_BITS_ALL \
844 { \
845 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
846 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
847 }
848 #endif /* NR_CPUS > BITS_PER_LONG */
849
850 /**
851 * cpumap_print_to_pagebuf - copies the cpumask into the buffer either
852 * as comma-separated list of cpus or hex values of cpumask
853 * @list: indicates whether the cpumap must be list
854 * @mask: the cpumask to copy
855 * @buf: the buffer to copy into
856 *
857 * Returns the length of the (null-terminated) @buf string, zero if
858 * nothing is copied.
859 */
860 static inline ssize_t
861 cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask)
862 {
863 return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask),
864 nr_cpu_ids);
865 }
866
867 #if NR_CPUS <= BITS_PER_LONG
868 #define CPU_MASK_ALL \
869 (cpumask_t) { { \
870 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
871 } }
872 #else
873 #define CPU_MASK_ALL \
874 (cpumask_t) { { \
875 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
876 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
877 } }
878 #endif /* NR_CPUS > BITS_PER_LONG */
879
880 #define CPU_MASK_NONE \
881 (cpumask_t) { { \
882 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
883 } }
884
885 #define CPU_MASK_CPU0 \
886 (cpumask_t) { { \
887 [0] = 1UL \
888 } }
889
890 #endif /* __LINUX_CPUMASK_H */