]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/crypto.h
mm/hotplug: invalid PFNs from pfn_to_online_page()
[mirror_ubuntu-bionic-kernel.git] / include / linux / crypto.h
1 /*
2 * Scatterlist Cryptographic API.
3 *
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
7 *
8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
9 * and Nettle, by Niels Möller.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 *
16 */
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
19
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/completion.h>
28
29 /*
30 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
31 * arbitrary modules to be loaded. Loading from userspace may still need the
32 * unprefixed names, so retains those aliases as well.
33 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
34 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
35 * expands twice on the same line. Instead, use a separate base name for the
36 * alias.
37 */
38 #define MODULE_ALIAS_CRYPTO(name) \
39 __MODULE_INFO(alias, alias_userspace, name); \
40 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
41
42 /*
43 * Algorithm masks and types.
44 */
45 #define CRYPTO_ALG_TYPE_MASK 0x0000000f
46 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001
47 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
48 #define CRYPTO_ALG_TYPE_AEAD 0x00000003
49 #define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004
50 #define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005
51 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005
52 #define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006
53 #define CRYPTO_ALG_TYPE_KPP 0x00000008
54 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a
55 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b
56 #define CRYPTO_ALG_TYPE_RNG 0x0000000c
57 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
58 #define CRYPTO_ALG_TYPE_DIGEST 0x0000000e
59 #define CRYPTO_ALG_TYPE_HASH 0x0000000e
60 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e
61 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f
62
63 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
64 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e
65 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c
66 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e
67
68 #define CRYPTO_ALG_LARVAL 0x00000010
69 #define CRYPTO_ALG_DEAD 0x00000020
70 #define CRYPTO_ALG_DYING 0x00000040
71 #define CRYPTO_ALG_ASYNC 0x00000080
72
73 /*
74 * Set this bit if and only if the algorithm requires another algorithm of
75 * the same type to handle corner cases.
76 */
77 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100
78
79 /*
80 * This bit is set for symmetric key ciphers that have already been wrapped
81 * with a generic IV generator to prevent them from being wrapped again.
82 */
83 #define CRYPTO_ALG_GENIV 0x00000200
84
85 /*
86 * Set if the algorithm has passed automated run-time testing. Note that
87 * if there is no run-time testing for a given algorithm it is considered
88 * to have passed.
89 */
90
91 #define CRYPTO_ALG_TESTED 0x00000400
92
93 /*
94 * Set if the algorithm is an instance that is built from templates.
95 */
96 #define CRYPTO_ALG_INSTANCE 0x00000800
97
98 /* Set this bit if the algorithm provided is hardware accelerated but
99 * not available to userspace via instruction set or so.
100 */
101 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
102
103 /*
104 * Mark a cipher as a service implementation only usable by another
105 * cipher and never by a normal user of the kernel crypto API
106 */
107 #define CRYPTO_ALG_INTERNAL 0x00002000
108
109 /*
110 * Set if the algorithm has a ->setkey() method but can be used without
111 * calling it first, i.e. there is a default key.
112 */
113 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000
114
115 /*
116 * Don't trigger module loading
117 */
118 #define CRYPTO_NOLOAD 0x00008000
119
120 /*
121 * Transform masks and values (for crt_flags).
122 */
123 #define CRYPTO_TFM_NEED_KEY 0x00000001
124
125 #define CRYPTO_TFM_REQ_MASK 0x000fff00
126 #define CRYPTO_TFM_RES_MASK 0xfff00000
127
128 #define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100
129 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
130 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
131 #define CRYPTO_TFM_RES_WEAK_KEY 0x00100000
132 #define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000
133 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000
134 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000
135 #define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000
136
137 /*
138 * Miscellaneous stuff.
139 */
140 #define CRYPTO_MAX_ALG_NAME 128
141
142 /*
143 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
144 * declaration) is used to ensure that the crypto_tfm context structure is
145 * aligned correctly for the given architecture so that there are no alignment
146 * faults for C data types. In particular, this is required on platforms such
147 * as arm where pointers are 32-bit aligned but there are data types such as
148 * u64 which require 64-bit alignment.
149 */
150 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
151
152 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
153
154 struct scatterlist;
155 struct crypto_ablkcipher;
156 struct crypto_async_request;
157 struct crypto_blkcipher;
158 struct crypto_tfm;
159 struct crypto_type;
160 struct skcipher_givcrypt_request;
161
162 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
163
164 /**
165 * DOC: Block Cipher Context Data Structures
166 *
167 * These data structures define the operating context for each block cipher
168 * type.
169 */
170
171 struct crypto_async_request {
172 struct list_head list;
173 crypto_completion_t complete;
174 void *data;
175 struct crypto_tfm *tfm;
176
177 u32 flags;
178 };
179
180 struct ablkcipher_request {
181 struct crypto_async_request base;
182
183 unsigned int nbytes;
184
185 void *info;
186
187 struct scatterlist *src;
188 struct scatterlist *dst;
189
190 void *__ctx[] CRYPTO_MINALIGN_ATTR;
191 };
192
193 struct blkcipher_desc {
194 struct crypto_blkcipher *tfm;
195 void *info;
196 u32 flags;
197 };
198
199 struct cipher_desc {
200 struct crypto_tfm *tfm;
201 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
202 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
203 const u8 *src, unsigned int nbytes);
204 void *info;
205 };
206
207 /**
208 * DOC: Block Cipher Algorithm Definitions
209 *
210 * These data structures define modular crypto algorithm implementations,
211 * managed via crypto_register_alg() and crypto_unregister_alg().
212 */
213
214 /**
215 * struct ablkcipher_alg - asynchronous block cipher definition
216 * @min_keysize: Minimum key size supported by the transformation. This is the
217 * smallest key length supported by this transformation algorithm.
218 * This must be set to one of the pre-defined values as this is
219 * not hardware specific. Possible values for this field can be
220 * found via git grep "_MIN_KEY_SIZE" include/crypto/
221 * @max_keysize: Maximum key size supported by the transformation. This is the
222 * largest key length supported by this transformation algorithm.
223 * This must be set to one of the pre-defined values as this is
224 * not hardware specific. Possible values for this field can be
225 * found via git grep "_MAX_KEY_SIZE" include/crypto/
226 * @setkey: Set key for the transformation. This function is used to either
227 * program a supplied key into the hardware or store the key in the
228 * transformation context for programming it later. Note that this
229 * function does modify the transformation context. This function can
230 * be called multiple times during the existence of the transformation
231 * object, so one must make sure the key is properly reprogrammed into
232 * the hardware. This function is also responsible for checking the key
233 * length for validity. In case a software fallback was put in place in
234 * the @cra_init call, this function might need to use the fallback if
235 * the algorithm doesn't support all of the key sizes.
236 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
237 * the supplied scatterlist containing the blocks of data. The crypto
238 * API consumer is responsible for aligning the entries of the
239 * scatterlist properly and making sure the chunks are correctly
240 * sized. In case a software fallback was put in place in the
241 * @cra_init call, this function might need to use the fallback if
242 * the algorithm doesn't support all of the key sizes. In case the
243 * key was stored in transformation context, the key might need to be
244 * re-programmed into the hardware in this function. This function
245 * shall not modify the transformation context, as this function may
246 * be called in parallel with the same transformation object.
247 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
248 * and the conditions are exactly the same.
249 * @givencrypt: Update the IV for encryption. With this function, a cipher
250 * implementation may provide the function on how to update the IV
251 * for encryption.
252 * @givdecrypt: Update the IV for decryption. This is the reverse of
253 * @givencrypt .
254 * @geniv: The transformation implementation may use an "IV generator" provided
255 * by the kernel crypto API. Several use cases have a predefined
256 * approach how IVs are to be updated. For such use cases, the kernel
257 * crypto API provides ready-to-use implementations that can be
258 * referenced with this variable.
259 * @ivsize: IV size applicable for transformation. The consumer must provide an
260 * IV of exactly that size to perform the encrypt or decrypt operation.
261 *
262 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
263 * mandatory and must be filled.
264 */
265 struct ablkcipher_alg {
266 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
267 unsigned int keylen);
268 int (*encrypt)(struct ablkcipher_request *req);
269 int (*decrypt)(struct ablkcipher_request *req);
270 int (*givencrypt)(struct skcipher_givcrypt_request *req);
271 int (*givdecrypt)(struct skcipher_givcrypt_request *req);
272
273 const char *geniv;
274
275 unsigned int min_keysize;
276 unsigned int max_keysize;
277 unsigned int ivsize;
278 };
279
280 /**
281 * struct blkcipher_alg - synchronous block cipher definition
282 * @min_keysize: see struct ablkcipher_alg
283 * @max_keysize: see struct ablkcipher_alg
284 * @setkey: see struct ablkcipher_alg
285 * @encrypt: see struct ablkcipher_alg
286 * @decrypt: see struct ablkcipher_alg
287 * @geniv: see struct ablkcipher_alg
288 * @ivsize: see struct ablkcipher_alg
289 *
290 * All fields except @geniv and @ivsize are mandatory and must be filled.
291 */
292 struct blkcipher_alg {
293 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
294 unsigned int keylen);
295 int (*encrypt)(struct blkcipher_desc *desc,
296 struct scatterlist *dst, struct scatterlist *src,
297 unsigned int nbytes);
298 int (*decrypt)(struct blkcipher_desc *desc,
299 struct scatterlist *dst, struct scatterlist *src,
300 unsigned int nbytes);
301
302 const char *geniv;
303
304 unsigned int min_keysize;
305 unsigned int max_keysize;
306 unsigned int ivsize;
307 };
308
309 /**
310 * struct cipher_alg - single-block symmetric ciphers definition
311 * @cia_min_keysize: Minimum key size supported by the transformation. This is
312 * the smallest key length supported by this transformation
313 * algorithm. This must be set to one of the pre-defined
314 * values as this is not hardware specific. Possible values
315 * for this field can be found via git grep "_MIN_KEY_SIZE"
316 * include/crypto/
317 * @cia_max_keysize: Maximum key size supported by the transformation. This is
318 * the largest key length supported by this transformation
319 * algorithm. This must be set to one of the pre-defined values
320 * as this is not hardware specific. Possible values for this
321 * field can be found via git grep "_MAX_KEY_SIZE"
322 * include/crypto/
323 * @cia_setkey: Set key for the transformation. This function is used to either
324 * program a supplied key into the hardware or store the key in the
325 * transformation context for programming it later. Note that this
326 * function does modify the transformation context. This function
327 * can be called multiple times during the existence of the
328 * transformation object, so one must make sure the key is properly
329 * reprogrammed into the hardware. This function is also
330 * responsible for checking the key length for validity.
331 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
332 * single block of data, which must be @cra_blocksize big. This
333 * always operates on a full @cra_blocksize and it is not possible
334 * to encrypt a block of smaller size. The supplied buffers must
335 * therefore also be at least of @cra_blocksize size. Both the
336 * input and output buffers are always aligned to @cra_alignmask.
337 * In case either of the input or output buffer supplied by user
338 * of the crypto API is not aligned to @cra_alignmask, the crypto
339 * API will re-align the buffers. The re-alignment means that a
340 * new buffer will be allocated, the data will be copied into the
341 * new buffer, then the processing will happen on the new buffer,
342 * then the data will be copied back into the original buffer and
343 * finally the new buffer will be freed. In case a software
344 * fallback was put in place in the @cra_init call, this function
345 * might need to use the fallback if the algorithm doesn't support
346 * all of the key sizes. In case the key was stored in
347 * transformation context, the key might need to be re-programmed
348 * into the hardware in this function. This function shall not
349 * modify the transformation context, as this function may be
350 * called in parallel with the same transformation object.
351 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
352 * @cia_encrypt, and the conditions are exactly the same.
353 *
354 * All fields are mandatory and must be filled.
355 */
356 struct cipher_alg {
357 unsigned int cia_min_keysize;
358 unsigned int cia_max_keysize;
359 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
360 unsigned int keylen);
361 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
362 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
363 };
364
365 struct compress_alg {
366 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
367 unsigned int slen, u8 *dst, unsigned int *dlen);
368 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
369 unsigned int slen, u8 *dst, unsigned int *dlen);
370 };
371
372
373 #define cra_ablkcipher cra_u.ablkcipher
374 #define cra_blkcipher cra_u.blkcipher
375 #define cra_cipher cra_u.cipher
376 #define cra_compress cra_u.compress
377
378 /**
379 * struct crypto_alg - definition of a cryptograpic cipher algorithm
380 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
381 * CRYPTO_ALG_* flags for the flags which go in here. Those are
382 * used for fine-tuning the description of the transformation
383 * algorithm.
384 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
385 * of the smallest possible unit which can be transformed with
386 * this algorithm. The users must respect this value.
387 * In case of HASH transformation, it is possible for a smaller
388 * block than @cra_blocksize to be passed to the crypto API for
389 * transformation, in case of any other transformation type, an
390 * error will be returned upon any attempt to transform smaller
391 * than @cra_blocksize chunks.
392 * @cra_ctxsize: Size of the operational context of the transformation. This
393 * value informs the kernel crypto API about the memory size
394 * needed to be allocated for the transformation context.
395 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
396 * buffer containing the input data for the algorithm must be
397 * aligned to this alignment mask. The data buffer for the
398 * output data must be aligned to this alignment mask. Note that
399 * the Crypto API will do the re-alignment in software, but
400 * only under special conditions and there is a performance hit.
401 * The re-alignment happens at these occasions for different
402 * @cra_u types: cipher -- For both input data and output data
403 * buffer; ahash -- For output hash destination buf; shash --
404 * For output hash destination buf.
405 * This is needed on hardware which is flawed by design and
406 * cannot pick data from arbitrary addresses.
407 * @cra_priority: Priority of this transformation implementation. In case
408 * multiple transformations with same @cra_name are available to
409 * the Crypto API, the kernel will use the one with highest
410 * @cra_priority.
411 * @cra_name: Generic name (usable by multiple implementations) of the
412 * transformation algorithm. This is the name of the transformation
413 * itself. This field is used by the kernel when looking up the
414 * providers of particular transformation.
415 * @cra_driver_name: Unique name of the transformation provider. This is the
416 * name of the provider of the transformation. This can be any
417 * arbitrary value, but in the usual case, this contains the
418 * name of the chip or provider and the name of the
419 * transformation algorithm.
420 * @cra_type: Type of the cryptographic transformation. This is a pointer to
421 * struct crypto_type, which implements callbacks common for all
422 * transformation types. There are multiple options:
423 * &crypto_blkcipher_type, &crypto_ablkcipher_type,
424 * &crypto_ahash_type, &crypto_rng_type.
425 * This field might be empty. In that case, there are no common
426 * callbacks. This is the case for: cipher, compress, shash.
427 * @cra_u: Callbacks implementing the transformation. This is a union of
428 * multiple structures. Depending on the type of transformation selected
429 * by @cra_type and @cra_flags above, the associated structure must be
430 * filled with callbacks. This field might be empty. This is the case
431 * for ahash, shash.
432 * @cra_init: Initialize the cryptographic transformation object. This function
433 * is used to initialize the cryptographic transformation object.
434 * This function is called only once at the instantiation time, right
435 * after the transformation context was allocated. In case the
436 * cryptographic hardware has some special requirements which need to
437 * be handled by software, this function shall check for the precise
438 * requirement of the transformation and put any software fallbacks
439 * in place.
440 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
441 * counterpart to @cra_init, used to remove various changes set in
442 * @cra_init.
443 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
444 * @cra_list: internally used
445 * @cra_users: internally used
446 * @cra_refcnt: internally used
447 * @cra_destroy: internally used
448 *
449 * The struct crypto_alg describes a generic Crypto API algorithm and is common
450 * for all of the transformations. Any variable not documented here shall not
451 * be used by a cipher implementation as it is internal to the Crypto API.
452 */
453 struct crypto_alg {
454 struct list_head cra_list;
455 struct list_head cra_users;
456
457 u32 cra_flags;
458 unsigned int cra_blocksize;
459 unsigned int cra_ctxsize;
460 unsigned int cra_alignmask;
461
462 int cra_priority;
463 atomic_t cra_refcnt;
464
465 char cra_name[CRYPTO_MAX_ALG_NAME];
466 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
467
468 const struct crypto_type *cra_type;
469
470 union {
471 struct ablkcipher_alg ablkcipher;
472 struct blkcipher_alg blkcipher;
473 struct cipher_alg cipher;
474 struct compress_alg compress;
475 } cra_u;
476
477 int (*cra_init)(struct crypto_tfm *tfm);
478 void (*cra_exit)(struct crypto_tfm *tfm);
479 void (*cra_destroy)(struct crypto_alg *alg);
480
481 struct module *cra_module;
482 } CRYPTO_MINALIGN_ATTR;
483
484 /*
485 * A helper struct for waiting for completion of async crypto ops
486 */
487 struct crypto_wait {
488 struct completion completion;
489 int err;
490 };
491
492 /*
493 * Macro for declaring a crypto op async wait object on stack
494 */
495 #define DECLARE_CRYPTO_WAIT(_wait) \
496 struct crypto_wait _wait = { \
497 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
498
499 /*
500 * Async ops completion helper functioons
501 */
502 void crypto_req_done(struct crypto_async_request *req, int err);
503
504 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
505 {
506 switch (err) {
507 case -EINPROGRESS:
508 case -EBUSY:
509 wait_for_completion(&wait->completion);
510 reinit_completion(&wait->completion);
511 err = wait->err;
512 break;
513 };
514
515 return err;
516 }
517
518 static inline void crypto_init_wait(struct crypto_wait *wait)
519 {
520 init_completion(&wait->completion);
521 }
522
523 /*
524 * Algorithm registration interface.
525 */
526 int crypto_register_alg(struct crypto_alg *alg);
527 int crypto_unregister_alg(struct crypto_alg *alg);
528 int crypto_register_algs(struct crypto_alg *algs, int count);
529 int crypto_unregister_algs(struct crypto_alg *algs, int count);
530
531 /*
532 * Algorithm query interface.
533 */
534 int crypto_has_alg(const char *name, u32 type, u32 mask);
535
536 /*
537 * Transforms: user-instantiated objects which encapsulate algorithms
538 * and core processing logic. Managed via crypto_alloc_*() and
539 * crypto_free_*(), as well as the various helpers below.
540 */
541
542 struct ablkcipher_tfm {
543 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
544 unsigned int keylen);
545 int (*encrypt)(struct ablkcipher_request *req);
546 int (*decrypt)(struct ablkcipher_request *req);
547
548 struct crypto_ablkcipher *base;
549
550 unsigned int ivsize;
551 unsigned int reqsize;
552 };
553
554 struct blkcipher_tfm {
555 void *iv;
556 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
557 unsigned int keylen);
558 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
559 struct scatterlist *src, unsigned int nbytes);
560 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
561 struct scatterlist *src, unsigned int nbytes);
562 };
563
564 struct cipher_tfm {
565 int (*cit_setkey)(struct crypto_tfm *tfm,
566 const u8 *key, unsigned int keylen);
567 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
568 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
569 };
570
571 struct compress_tfm {
572 int (*cot_compress)(struct crypto_tfm *tfm,
573 const u8 *src, unsigned int slen,
574 u8 *dst, unsigned int *dlen);
575 int (*cot_decompress)(struct crypto_tfm *tfm,
576 const u8 *src, unsigned int slen,
577 u8 *dst, unsigned int *dlen);
578 };
579
580 #define crt_ablkcipher crt_u.ablkcipher
581 #define crt_blkcipher crt_u.blkcipher
582 #define crt_cipher crt_u.cipher
583 #define crt_compress crt_u.compress
584
585 struct crypto_tfm {
586
587 u32 crt_flags;
588
589 union {
590 struct ablkcipher_tfm ablkcipher;
591 struct blkcipher_tfm blkcipher;
592 struct cipher_tfm cipher;
593 struct compress_tfm compress;
594 } crt_u;
595
596 void (*exit)(struct crypto_tfm *tfm);
597
598 struct crypto_alg *__crt_alg;
599
600 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
601 };
602
603 struct crypto_ablkcipher {
604 struct crypto_tfm base;
605 };
606
607 struct crypto_blkcipher {
608 struct crypto_tfm base;
609 };
610
611 struct crypto_cipher {
612 struct crypto_tfm base;
613 };
614
615 struct crypto_comp {
616 struct crypto_tfm base;
617 };
618
619 enum {
620 CRYPTOA_UNSPEC,
621 CRYPTOA_ALG,
622 CRYPTOA_TYPE,
623 CRYPTOA_U32,
624 __CRYPTOA_MAX,
625 };
626
627 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
628
629 /* Maximum number of (rtattr) parameters for each template. */
630 #define CRYPTO_MAX_ATTRS 32
631
632 struct crypto_attr_alg {
633 char name[CRYPTO_MAX_ALG_NAME];
634 };
635
636 struct crypto_attr_type {
637 u32 type;
638 u32 mask;
639 };
640
641 struct crypto_attr_u32 {
642 u32 num;
643 };
644
645 /*
646 * Transform user interface.
647 */
648
649 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
650 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
651
652 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
653 {
654 return crypto_destroy_tfm(tfm, tfm);
655 }
656
657 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
658
659 /*
660 * Transform helpers which query the underlying algorithm.
661 */
662 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
663 {
664 return tfm->__crt_alg->cra_name;
665 }
666
667 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
668 {
669 return tfm->__crt_alg->cra_driver_name;
670 }
671
672 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
673 {
674 return tfm->__crt_alg->cra_priority;
675 }
676
677 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
678 {
679 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
680 }
681
682 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
683 {
684 return tfm->__crt_alg->cra_blocksize;
685 }
686
687 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
688 {
689 return tfm->__crt_alg->cra_alignmask;
690 }
691
692 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
693 {
694 return tfm->crt_flags;
695 }
696
697 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
698 {
699 tfm->crt_flags |= flags;
700 }
701
702 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
703 {
704 tfm->crt_flags &= ~flags;
705 }
706
707 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
708 {
709 return tfm->__crt_ctx;
710 }
711
712 static inline unsigned int crypto_tfm_ctx_alignment(void)
713 {
714 struct crypto_tfm *tfm;
715 return __alignof__(tfm->__crt_ctx);
716 }
717
718 /*
719 * API wrappers.
720 */
721 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
722 struct crypto_tfm *tfm)
723 {
724 return (struct crypto_ablkcipher *)tfm;
725 }
726
727 static inline u32 crypto_skcipher_type(u32 type)
728 {
729 type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
730 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
731 return type;
732 }
733
734 static inline u32 crypto_skcipher_mask(u32 mask)
735 {
736 mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
737 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
738 return mask;
739 }
740
741 /**
742 * DOC: Asynchronous Block Cipher API
743 *
744 * Asynchronous block cipher API is used with the ciphers of type
745 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
746 *
747 * Asynchronous cipher operations imply that the function invocation for a
748 * cipher request returns immediately before the completion of the operation.
749 * The cipher request is scheduled as a separate kernel thread and therefore
750 * load-balanced on the different CPUs via the process scheduler. To allow
751 * the kernel crypto API to inform the caller about the completion of a cipher
752 * request, the caller must provide a callback function. That function is
753 * invoked with the cipher handle when the request completes.
754 *
755 * To support the asynchronous operation, additional information than just the
756 * cipher handle must be supplied to the kernel crypto API. That additional
757 * information is given by filling in the ablkcipher_request data structure.
758 *
759 * For the asynchronous block cipher API, the state is maintained with the tfm
760 * cipher handle. A single tfm can be used across multiple calls and in
761 * parallel. For asynchronous block cipher calls, context data supplied and
762 * only used by the caller can be referenced the request data structure in
763 * addition to the IV used for the cipher request. The maintenance of such
764 * state information would be important for a crypto driver implementer to
765 * have, because when calling the callback function upon completion of the
766 * cipher operation, that callback function may need some information about
767 * which operation just finished if it invoked multiple in parallel. This
768 * state information is unused by the kernel crypto API.
769 */
770
771 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
772 struct crypto_ablkcipher *tfm)
773 {
774 return &tfm->base;
775 }
776
777 /**
778 * crypto_free_ablkcipher() - zeroize and free cipher handle
779 * @tfm: cipher handle to be freed
780 */
781 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
782 {
783 crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
784 }
785
786 /**
787 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
788 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
789 * ablkcipher
790 * @type: specifies the type of the cipher
791 * @mask: specifies the mask for the cipher
792 *
793 * Return: true when the ablkcipher is known to the kernel crypto API; false
794 * otherwise
795 */
796 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
797 u32 mask)
798 {
799 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
800 crypto_skcipher_mask(mask));
801 }
802
803 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
804 struct crypto_ablkcipher *tfm)
805 {
806 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
807 }
808
809 /**
810 * crypto_ablkcipher_ivsize() - obtain IV size
811 * @tfm: cipher handle
812 *
813 * The size of the IV for the ablkcipher referenced by the cipher handle is
814 * returned. This IV size may be zero if the cipher does not need an IV.
815 *
816 * Return: IV size in bytes
817 */
818 static inline unsigned int crypto_ablkcipher_ivsize(
819 struct crypto_ablkcipher *tfm)
820 {
821 return crypto_ablkcipher_crt(tfm)->ivsize;
822 }
823
824 /**
825 * crypto_ablkcipher_blocksize() - obtain block size of cipher
826 * @tfm: cipher handle
827 *
828 * The block size for the ablkcipher referenced with the cipher handle is
829 * returned. The caller may use that information to allocate appropriate
830 * memory for the data returned by the encryption or decryption operation
831 *
832 * Return: block size of cipher
833 */
834 static inline unsigned int crypto_ablkcipher_blocksize(
835 struct crypto_ablkcipher *tfm)
836 {
837 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
838 }
839
840 static inline unsigned int crypto_ablkcipher_alignmask(
841 struct crypto_ablkcipher *tfm)
842 {
843 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
844 }
845
846 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
847 {
848 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
849 }
850
851 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
852 u32 flags)
853 {
854 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
855 }
856
857 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
858 u32 flags)
859 {
860 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
861 }
862
863 /**
864 * crypto_ablkcipher_setkey() - set key for cipher
865 * @tfm: cipher handle
866 * @key: buffer holding the key
867 * @keylen: length of the key in bytes
868 *
869 * The caller provided key is set for the ablkcipher referenced by the cipher
870 * handle.
871 *
872 * Note, the key length determines the cipher type. Many block ciphers implement
873 * different cipher modes depending on the key size, such as AES-128 vs AES-192
874 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
875 * is performed.
876 *
877 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
878 */
879 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
880 const u8 *key, unsigned int keylen)
881 {
882 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
883
884 return crt->setkey(crt->base, key, keylen);
885 }
886
887 /**
888 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
889 * @req: ablkcipher_request out of which the cipher handle is to be obtained
890 *
891 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
892 * data structure.
893 *
894 * Return: crypto_ablkcipher handle
895 */
896 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
897 struct ablkcipher_request *req)
898 {
899 return __crypto_ablkcipher_cast(req->base.tfm);
900 }
901
902 /**
903 * crypto_ablkcipher_encrypt() - encrypt plaintext
904 * @req: reference to the ablkcipher_request handle that holds all information
905 * needed to perform the cipher operation
906 *
907 * Encrypt plaintext data using the ablkcipher_request handle. That data
908 * structure and how it is filled with data is discussed with the
909 * ablkcipher_request_* functions.
910 *
911 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
912 */
913 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
914 {
915 struct ablkcipher_tfm *crt =
916 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
917 return crt->encrypt(req);
918 }
919
920 /**
921 * crypto_ablkcipher_decrypt() - decrypt ciphertext
922 * @req: reference to the ablkcipher_request handle that holds all information
923 * needed to perform the cipher operation
924 *
925 * Decrypt ciphertext data using the ablkcipher_request handle. That data
926 * structure and how it is filled with data is discussed with the
927 * ablkcipher_request_* functions.
928 *
929 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
930 */
931 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
932 {
933 struct ablkcipher_tfm *crt =
934 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
935 return crt->decrypt(req);
936 }
937
938 /**
939 * DOC: Asynchronous Cipher Request Handle
940 *
941 * The ablkcipher_request data structure contains all pointers to data
942 * required for the asynchronous cipher operation. This includes the cipher
943 * handle (which can be used by multiple ablkcipher_request instances), pointer
944 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
945 * as a handle to the ablkcipher_request_* API calls in a similar way as
946 * ablkcipher handle to the crypto_ablkcipher_* API calls.
947 */
948
949 /**
950 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
951 * @tfm: cipher handle
952 *
953 * Return: number of bytes
954 */
955 static inline unsigned int crypto_ablkcipher_reqsize(
956 struct crypto_ablkcipher *tfm)
957 {
958 return crypto_ablkcipher_crt(tfm)->reqsize;
959 }
960
961 /**
962 * ablkcipher_request_set_tfm() - update cipher handle reference in request
963 * @req: request handle to be modified
964 * @tfm: cipher handle that shall be added to the request handle
965 *
966 * Allow the caller to replace the existing ablkcipher handle in the request
967 * data structure with a different one.
968 */
969 static inline void ablkcipher_request_set_tfm(
970 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
971 {
972 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
973 }
974
975 static inline struct ablkcipher_request *ablkcipher_request_cast(
976 struct crypto_async_request *req)
977 {
978 return container_of(req, struct ablkcipher_request, base);
979 }
980
981 /**
982 * ablkcipher_request_alloc() - allocate request data structure
983 * @tfm: cipher handle to be registered with the request
984 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
985 *
986 * Allocate the request data structure that must be used with the ablkcipher
987 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
988 * handle is registered in the request data structure.
989 *
990 * Return: allocated request handle in case of success, or NULL if out of memory
991 */
992 static inline struct ablkcipher_request *ablkcipher_request_alloc(
993 struct crypto_ablkcipher *tfm, gfp_t gfp)
994 {
995 struct ablkcipher_request *req;
996
997 req = kmalloc(sizeof(struct ablkcipher_request) +
998 crypto_ablkcipher_reqsize(tfm), gfp);
999
1000 if (likely(req))
1001 ablkcipher_request_set_tfm(req, tfm);
1002
1003 return req;
1004 }
1005
1006 /**
1007 * ablkcipher_request_free() - zeroize and free request data structure
1008 * @req: request data structure cipher handle to be freed
1009 */
1010 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1011 {
1012 kzfree(req);
1013 }
1014
1015 /**
1016 * ablkcipher_request_set_callback() - set asynchronous callback function
1017 * @req: request handle
1018 * @flags: specify zero or an ORing of the flags
1019 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1020 * increase the wait queue beyond the initial maximum size;
1021 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1022 * @compl: callback function pointer to be registered with the request handle
1023 * @data: The data pointer refers to memory that is not used by the kernel
1024 * crypto API, but provided to the callback function for it to use. Here,
1025 * the caller can provide a reference to memory the callback function can
1026 * operate on. As the callback function is invoked asynchronously to the
1027 * related functionality, it may need to access data structures of the
1028 * related functionality which can be referenced using this pointer. The
1029 * callback function can access the memory via the "data" field in the
1030 * crypto_async_request data structure provided to the callback function.
1031 *
1032 * This function allows setting the callback function that is triggered once the
1033 * cipher operation completes.
1034 *
1035 * The callback function is registered with the ablkcipher_request handle and
1036 * must comply with the following template::
1037 *
1038 * void callback_function(struct crypto_async_request *req, int error)
1039 */
1040 static inline void ablkcipher_request_set_callback(
1041 struct ablkcipher_request *req,
1042 u32 flags, crypto_completion_t compl, void *data)
1043 {
1044 req->base.complete = compl;
1045 req->base.data = data;
1046 req->base.flags = flags;
1047 }
1048
1049 /**
1050 * ablkcipher_request_set_crypt() - set data buffers
1051 * @req: request handle
1052 * @src: source scatter / gather list
1053 * @dst: destination scatter / gather list
1054 * @nbytes: number of bytes to process from @src
1055 * @iv: IV for the cipher operation which must comply with the IV size defined
1056 * by crypto_ablkcipher_ivsize
1057 *
1058 * This function allows setting of the source data and destination data
1059 * scatter / gather lists.
1060 *
1061 * For encryption, the source is treated as the plaintext and the
1062 * destination is the ciphertext. For a decryption operation, the use is
1063 * reversed - the source is the ciphertext and the destination is the plaintext.
1064 */
1065 static inline void ablkcipher_request_set_crypt(
1066 struct ablkcipher_request *req,
1067 struct scatterlist *src, struct scatterlist *dst,
1068 unsigned int nbytes, void *iv)
1069 {
1070 req->src = src;
1071 req->dst = dst;
1072 req->nbytes = nbytes;
1073 req->info = iv;
1074 }
1075
1076 /**
1077 * DOC: Synchronous Block Cipher API
1078 *
1079 * The synchronous block cipher API is used with the ciphers of type
1080 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1081 *
1082 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1083 * used in multiple calls and in parallel, this info should not be changeable
1084 * (unless a lock is used). This applies, for example, to the symmetric key.
1085 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1086 * structure for synchronous blkcipher api. So, its the only state info that can
1087 * be kept for synchronous calls without using a big lock across a tfm.
1088 *
1089 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1090 * consisting of a template (a block chaining mode) and a single block cipher
1091 * primitive (e.g. AES).
1092 *
1093 * The plaintext data buffer and the ciphertext data buffer are pointed to
1094 * by using scatter/gather lists. The cipher operation is performed
1095 * on all segments of the provided scatter/gather lists.
1096 *
1097 * The kernel crypto API supports a cipher operation "in-place" which means that
1098 * the caller may provide the same scatter/gather list for the plaintext and
1099 * cipher text. After the completion of the cipher operation, the plaintext
1100 * data is replaced with the ciphertext data in case of an encryption and vice
1101 * versa for a decryption. The caller must ensure that the scatter/gather lists
1102 * for the output data point to sufficiently large buffers, i.e. multiples of
1103 * the block size of the cipher.
1104 */
1105
1106 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1107 struct crypto_tfm *tfm)
1108 {
1109 return (struct crypto_blkcipher *)tfm;
1110 }
1111
1112 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1113 struct crypto_tfm *tfm)
1114 {
1115 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1116 return __crypto_blkcipher_cast(tfm);
1117 }
1118
1119 /**
1120 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1121 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1122 * blkcipher cipher
1123 * @type: specifies the type of the cipher
1124 * @mask: specifies the mask for the cipher
1125 *
1126 * Allocate a cipher handle for a block cipher. The returned struct
1127 * crypto_blkcipher is the cipher handle that is required for any subsequent
1128 * API invocation for that block cipher.
1129 *
1130 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1131 * of an error, PTR_ERR() returns the error code.
1132 */
1133 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1134 const char *alg_name, u32 type, u32 mask)
1135 {
1136 type &= ~CRYPTO_ALG_TYPE_MASK;
1137 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1138 mask |= CRYPTO_ALG_TYPE_MASK;
1139
1140 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1141 }
1142
1143 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1144 struct crypto_blkcipher *tfm)
1145 {
1146 return &tfm->base;
1147 }
1148
1149 /**
1150 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1151 * @tfm: cipher handle to be freed
1152 */
1153 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1154 {
1155 crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1156 }
1157
1158 /**
1159 * crypto_has_blkcipher() - Search for the availability of a block cipher
1160 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1161 * block cipher
1162 * @type: specifies the type of the cipher
1163 * @mask: specifies the mask for the cipher
1164 *
1165 * Return: true when the block cipher is known to the kernel crypto API; false
1166 * otherwise
1167 */
1168 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1169 {
1170 type &= ~CRYPTO_ALG_TYPE_MASK;
1171 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1172 mask |= CRYPTO_ALG_TYPE_MASK;
1173
1174 return crypto_has_alg(alg_name, type, mask);
1175 }
1176
1177 /**
1178 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1179 * @tfm: cipher handle
1180 *
1181 * Return: The character string holding the name of the cipher
1182 */
1183 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1184 {
1185 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1186 }
1187
1188 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1189 struct crypto_blkcipher *tfm)
1190 {
1191 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1192 }
1193
1194 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1195 struct crypto_blkcipher *tfm)
1196 {
1197 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1198 }
1199
1200 /**
1201 * crypto_blkcipher_ivsize() - obtain IV size
1202 * @tfm: cipher handle
1203 *
1204 * The size of the IV for the block cipher referenced by the cipher handle is
1205 * returned. This IV size may be zero if the cipher does not need an IV.
1206 *
1207 * Return: IV size in bytes
1208 */
1209 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1210 {
1211 return crypto_blkcipher_alg(tfm)->ivsize;
1212 }
1213
1214 /**
1215 * crypto_blkcipher_blocksize() - obtain block size of cipher
1216 * @tfm: cipher handle
1217 *
1218 * The block size for the block cipher referenced with the cipher handle is
1219 * returned. The caller may use that information to allocate appropriate
1220 * memory for the data returned by the encryption or decryption operation.
1221 *
1222 * Return: block size of cipher
1223 */
1224 static inline unsigned int crypto_blkcipher_blocksize(
1225 struct crypto_blkcipher *tfm)
1226 {
1227 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1228 }
1229
1230 static inline unsigned int crypto_blkcipher_alignmask(
1231 struct crypto_blkcipher *tfm)
1232 {
1233 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1234 }
1235
1236 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1237 {
1238 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1239 }
1240
1241 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1242 u32 flags)
1243 {
1244 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1245 }
1246
1247 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1248 u32 flags)
1249 {
1250 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1251 }
1252
1253 /**
1254 * crypto_blkcipher_setkey() - set key for cipher
1255 * @tfm: cipher handle
1256 * @key: buffer holding the key
1257 * @keylen: length of the key in bytes
1258 *
1259 * The caller provided key is set for the block cipher referenced by the cipher
1260 * handle.
1261 *
1262 * Note, the key length determines the cipher type. Many block ciphers implement
1263 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1264 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1265 * is performed.
1266 *
1267 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1268 */
1269 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1270 const u8 *key, unsigned int keylen)
1271 {
1272 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1273 key, keylen);
1274 }
1275
1276 /**
1277 * crypto_blkcipher_encrypt() - encrypt plaintext
1278 * @desc: reference to the block cipher handle with meta data
1279 * @dst: scatter/gather list that is filled by the cipher operation with the
1280 * ciphertext
1281 * @src: scatter/gather list that holds the plaintext
1282 * @nbytes: number of bytes of the plaintext to encrypt.
1283 *
1284 * Encrypt plaintext data using the IV set by the caller with a preceding
1285 * call of crypto_blkcipher_set_iv.
1286 *
1287 * The blkcipher_desc data structure must be filled by the caller and can
1288 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1289 * with the block cipher handle; desc.flags is filled with either
1290 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1291 *
1292 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1293 */
1294 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1295 struct scatterlist *dst,
1296 struct scatterlist *src,
1297 unsigned int nbytes)
1298 {
1299 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1300 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1301 }
1302
1303 /**
1304 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1305 * @desc: reference to the block cipher handle with meta data
1306 * @dst: scatter/gather list that is filled by the cipher operation with the
1307 * ciphertext
1308 * @src: scatter/gather list that holds the plaintext
1309 * @nbytes: number of bytes of the plaintext to encrypt.
1310 *
1311 * Encrypt plaintext data with the use of an IV that is solely used for this
1312 * cipher operation. Any previously set IV is not used.
1313 *
1314 * The blkcipher_desc data structure must be filled by the caller and can
1315 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1316 * with the block cipher handle; desc.info is filled with the IV to be used for
1317 * the current operation; desc.flags is filled with either
1318 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1319 *
1320 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1321 */
1322 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1323 struct scatterlist *dst,
1324 struct scatterlist *src,
1325 unsigned int nbytes)
1326 {
1327 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1328 }
1329
1330 /**
1331 * crypto_blkcipher_decrypt() - decrypt ciphertext
1332 * @desc: reference to the block cipher handle with meta data
1333 * @dst: scatter/gather list that is filled by the cipher operation with the
1334 * plaintext
1335 * @src: scatter/gather list that holds the ciphertext
1336 * @nbytes: number of bytes of the ciphertext to decrypt.
1337 *
1338 * Decrypt ciphertext data using the IV set by the caller with a preceding
1339 * call of crypto_blkcipher_set_iv.
1340 *
1341 * The blkcipher_desc data structure must be filled by the caller as documented
1342 * for the crypto_blkcipher_encrypt call above.
1343 *
1344 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1345 *
1346 */
1347 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1348 struct scatterlist *dst,
1349 struct scatterlist *src,
1350 unsigned int nbytes)
1351 {
1352 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1353 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1354 }
1355
1356 /**
1357 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1358 * @desc: reference to the block cipher handle with meta data
1359 * @dst: scatter/gather list that is filled by the cipher operation with the
1360 * plaintext
1361 * @src: scatter/gather list that holds the ciphertext
1362 * @nbytes: number of bytes of the ciphertext to decrypt.
1363 *
1364 * Decrypt ciphertext data with the use of an IV that is solely used for this
1365 * cipher operation. Any previously set IV is not used.
1366 *
1367 * The blkcipher_desc data structure must be filled by the caller as documented
1368 * for the crypto_blkcipher_encrypt_iv call above.
1369 *
1370 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1371 */
1372 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1373 struct scatterlist *dst,
1374 struct scatterlist *src,
1375 unsigned int nbytes)
1376 {
1377 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1378 }
1379
1380 /**
1381 * crypto_blkcipher_set_iv() - set IV for cipher
1382 * @tfm: cipher handle
1383 * @src: buffer holding the IV
1384 * @len: length of the IV in bytes
1385 *
1386 * The caller provided IV is set for the block cipher referenced by the cipher
1387 * handle.
1388 */
1389 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1390 const u8 *src, unsigned int len)
1391 {
1392 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1393 }
1394
1395 /**
1396 * crypto_blkcipher_get_iv() - obtain IV from cipher
1397 * @tfm: cipher handle
1398 * @dst: buffer filled with the IV
1399 * @len: length of the buffer dst
1400 *
1401 * The caller can obtain the IV set for the block cipher referenced by the
1402 * cipher handle and store it into the user-provided buffer. If the buffer
1403 * has an insufficient space, the IV is truncated to fit the buffer.
1404 */
1405 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1406 u8 *dst, unsigned int len)
1407 {
1408 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1409 }
1410
1411 /**
1412 * DOC: Single Block Cipher API
1413 *
1414 * The single block cipher API is used with the ciphers of type
1415 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1416 *
1417 * Using the single block cipher API calls, operations with the basic cipher
1418 * primitive can be implemented. These cipher primitives exclude any block
1419 * chaining operations including IV handling.
1420 *
1421 * The purpose of this single block cipher API is to support the implementation
1422 * of templates or other concepts that only need to perform the cipher operation
1423 * on one block at a time. Templates invoke the underlying cipher primitive
1424 * block-wise and process either the input or the output data of these cipher
1425 * operations.
1426 */
1427
1428 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1429 {
1430 return (struct crypto_cipher *)tfm;
1431 }
1432
1433 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1434 {
1435 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1436 return __crypto_cipher_cast(tfm);
1437 }
1438
1439 /**
1440 * crypto_alloc_cipher() - allocate single block cipher handle
1441 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1442 * single block cipher
1443 * @type: specifies the type of the cipher
1444 * @mask: specifies the mask for the cipher
1445 *
1446 * Allocate a cipher handle for a single block cipher. The returned struct
1447 * crypto_cipher is the cipher handle that is required for any subsequent API
1448 * invocation for that single block cipher.
1449 *
1450 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1451 * of an error, PTR_ERR() returns the error code.
1452 */
1453 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1454 u32 type, u32 mask)
1455 {
1456 type &= ~CRYPTO_ALG_TYPE_MASK;
1457 type |= CRYPTO_ALG_TYPE_CIPHER;
1458 mask |= CRYPTO_ALG_TYPE_MASK;
1459
1460 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1461 }
1462
1463 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1464 {
1465 return &tfm->base;
1466 }
1467
1468 /**
1469 * crypto_free_cipher() - zeroize and free the single block cipher handle
1470 * @tfm: cipher handle to be freed
1471 */
1472 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1473 {
1474 crypto_free_tfm(crypto_cipher_tfm(tfm));
1475 }
1476
1477 /**
1478 * crypto_has_cipher() - Search for the availability of a single block cipher
1479 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1480 * single block cipher
1481 * @type: specifies the type of the cipher
1482 * @mask: specifies the mask for the cipher
1483 *
1484 * Return: true when the single block cipher is known to the kernel crypto API;
1485 * false otherwise
1486 */
1487 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1488 {
1489 type &= ~CRYPTO_ALG_TYPE_MASK;
1490 type |= CRYPTO_ALG_TYPE_CIPHER;
1491 mask |= CRYPTO_ALG_TYPE_MASK;
1492
1493 return crypto_has_alg(alg_name, type, mask);
1494 }
1495
1496 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1497 {
1498 return &crypto_cipher_tfm(tfm)->crt_cipher;
1499 }
1500
1501 /**
1502 * crypto_cipher_blocksize() - obtain block size for cipher
1503 * @tfm: cipher handle
1504 *
1505 * The block size for the single block cipher referenced with the cipher handle
1506 * tfm is returned. The caller may use that information to allocate appropriate
1507 * memory for the data returned by the encryption or decryption operation
1508 *
1509 * Return: block size of cipher
1510 */
1511 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1512 {
1513 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1514 }
1515
1516 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1517 {
1518 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1519 }
1520
1521 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1522 {
1523 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1524 }
1525
1526 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1527 u32 flags)
1528 {
1529 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1530 }
1531
1532 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1533 u32 flags)
1534 {
1535 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1536 }
1537
1538 /**
1539 * crypto_cipher_setkey() - set key for cipher
1540 * @tfm: cipher handle
1541 * @key: buffer holding the key
1542 * @keylen: length of the key in bytes
1543 *
1544 * The caller provided key is set for the single block cipher referenced by the
1545 * cipher handle.
1546 *
1547 * Note, the key length determines the cipher type. Many block ciphers implement
1548 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1549 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1550 * is performed.
1551 *
1552 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1553 */
1554 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1555 const u8 *key, unsigned int keylen)
1556 {
1557 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1558 key, keylen);
1559 }
1560
1561 /**
1562 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1563 * @tfm: cipher handle
1564 * @dst: points to the buffer that will be filled with the ciphertext
1565 * @src: buffer holding the plaintext to be encrypted
1566 *
1567 * Invoke the encryption operation of one block. The caller must ensure that
1568 * the plaintext and ciphertext buffers are at least one block in size.
1569 */
1570 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1571 u8 *dst, const u8 *src)
1572 {
1573 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1574 dst, src);
1575 }
1576
1577 /**
1578 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1579 * @tfm: cipher handle
1580 * @dst: points to the buffer that will be filled with the plaintext
1581 * @src: buffer holding the ciphertext to be decrypted
1582 *
1583 * Invoke the decryption operation of one block. The caller must ensure that
1584 * the plaintext and ciphertext buffers are at least one block in size.
1585 */
1586 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1587 u8 *dst, const u8 *src)
1588 {
1589 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1590 dst, src);
1591 }
1592
1593 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1594 {
1595 return (struct crypto_comp *)tfm;
1596 }
1597
1598 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1599 {
1600 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1601 CRYPTO_ALG_TYPE_MASK);
1602 return __crypto_comp_cast(tfm);
1603 }
1604
1605 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1606 u32 type, u32 mask)
1607 {
1608 type &= ~CRYPTO_ALG_TYPE_MASK;
1609 type |= CRYPTO_ALG_TYPE_COMPRESS;
1610 mask |= CRYPTO_ALG_TYPE_MASK;
1611
1612 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1613 }
1614
1615 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1616 {
1617 return &tfm->base;
1618 }
1619
1620 static inline void crypto_free_comp(struct crypto_comp *tfm)
1621 {
1622 crypto_free_tfm(crypto_comp_tfm(tfm));
1623 }
1624
1625 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1626 {
1627 type &= ~CRYPTO_ALG_TYPE_MASK;
1628 type |= CRYPTO_ALG_TYPE_COMPRESS;
1629 mask |= CRYPTO_ALG_TYPE_MASK;
1630
1631 return crypto_has_alg(alg_name, type, mask);
1632 }
1633
1634 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1635 {
1636 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1637 }
1638
1639 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1640 {
1641 return &crypto_comp_tfm(tfm)->crt_compress;
1642 }
1643
1644 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1645 const u8 *src, unsigned int slen,
1646 u8 *dst, unsigned int *dlen)
1647 {
1648 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1649 src, slen, dst, dlen);
1650 }
1651
1652 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1653 const u8 *src, unsigned int slen,
1654 u8 *dst, unsigned int *dlen)
1655 {
1656 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1657 src, slen, dst, dlen);
1658 }
1659
1660 #endif /* _LINUX_CRYPTO_H */
1661