]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/crypto.h
Merge tag 'mvebu-dt-4.8-1' of git://git.infradead.org/linux-mvebu into next/dt
[mirror_ubuntu-zesty-kernel.git] / include / linux / crypto.h
1 /*
2 * Scatterlist Cryptographic API.
3 *
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
7 *
8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
9 * and Nettle, by Niels Möller.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 *
16 */
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
19
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27
28 /*
29 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
30 * arbitrary modules to be loaded. Loading from userspace may still need the
31 * unprefixed names, so retains those aliases as well.
32 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
33 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
34 * expands twice on the same line. Instead, use a separate base name for the
35 * alias.
36 */
37 #define MODULE_ALIAS_CRYPTO(name) \
38 __MODULE_INFO(alias, alias_userspace, name); \
39 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
40
41 /*
42 * Algorithm masks and types.
43 */
44 #define CRYPTO_ALG_TYPE_MASK 0x0000000f
45 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001
46 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
47 #define CRYPTO_ALG_TYPE_AEAD 0x00000003
48 #define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004
49 #define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005
50 #define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006
51 #define CRYPTO_ALG_TYPE_DIGEST 0x00000008
52 #define CRYPTO_ALG_TYPE_HASH 0x00000008
53 #define CRYPTO_ALG_TYPE_SHASH 0x00000009
54 #define CRYPTO_ALG_TYPE_AHASH 0x0000000a
55 #define CRYPTO_ALG_TYPE_RNG 0x0000000c
56 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
57
58 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
59 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000c
60 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c
61
62 #define CRYPTO_ALG_LARVAL 0x00000010
63 #define CRYPTO_ALG_DEAD 0x00000020
64 #define CRYPTO_ALG_DYING 0x00000040
65 #define CRYPTO_ALG_ASYNC 0x00000080
66
67 /*
68 * Set this bit if and only if the algorithm requires another algorithm of
69 * the same type to handle corner cases.
70 */
71 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100
72
73 /*
74 * This bit is set for symmetric key ciphers that have already been wrapped
75 * with a generic IV generator to prevent them from being wrapped again.
76 */
77 #define CRYPTO_ALG_GENIV 0x00000200
78
79 /*
80 * Set if the algorithm has passed automated run-time testing. Note that
81 * if there is no run-time testing for a given algorithm it is considered
82 * to have passed.
83 */
84
85 #define CRYPTO_ALG_TESTED 0x00000400
86
87 /*
88 * Set if the algorithm is an instance that is build from templates.
89 */
90 #define CRYPTO_ALG_INSTANCE 0x00000800
91
92 /* Set this bit if the algorithm provided is hardware accelerated but
93 * not available to userspace via instruction set or so.
94 */
95 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
96
97 /*
98 * Mark a cipher as a service implementation only usable by another
99 * cipher and never by a normal user of the kernel crypto API
100 */
101 #define CRYPTO_ALG_INTERNAL 0x00002000
102
103 /*
104 * Transform masks and values (for crt_flags).
105 */
106 #define CRYPTO_TFM_REQ_MASK 0x000fff00
107 #define CRYPTO_TFM_RES_MASK 0xfff00000
108
109 #define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100
110 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
111 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
112 #define CRYPTO_TFM_RES_WEAK_KEY 0x00100000
113 #define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000
114 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000
115 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000
116 #define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000
117
118 /*
119 * Miscellaneous stuff.
120 */
121 #define CRYPTO_MAX_ALG_NAME 64
122
123 /*
124 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
125 * declaration) is used to ensure that the crypto_tfm context structure is
126 * aligned correctly for the given architecture so that there are no alignment
127 * faults for C data types. In particular, this is required on platforms such
128 * as arm where pointers are 32-bit aligned but there are data types such as
129 * u64 which require 64-bit alignment.
130 */
131 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
132
133 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
134
135 struct scatterlist;
136 struct crypto_ablkcipher;
137 struct crypto_async_request;
138 struct crypto_blkcipher;
139 struct crypto_tfm;
140 struct crypto_type;
141 struct skcipher_givcrypt_request;
142
143 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
144
145 /**
146 * DOC: Block Cipher Context Data Structures
147 *
148 * These data structures define the operating context for each block cipher
149 * type.
150 */
151
152 struct crypto_async_request {
153 struct list_head list;
154 crypto_completion_t complete;
155 void *data;
156 struct crypto_tfm *tfm;
157
158 u32 flags;
159 };
160
161 struct ablkcipher_request {
162 struct crypto_async_request base;
163
164 unsigned int nbytes;
165
166 void *info;
167
168 struct scatterlist *src;
169 struct scatterlist *dst;
170
171 void *__ctx[] CRYPTO_MINALIGN_ATTR;
172 };
173
174 struct blkcipher_desc {
175 struct crypto_blkcipher *tfm;
176 void *info;
177 u32 flags;
178 };
179
180 struct cipher_desc {
181 struct crypto_tfm *tfm;
182 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
183 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
184 const u8 *src, unsigned int nbytes);
185 void *info;
186 };
187
188 /**
189 * DOC: Block Cipher Algorithm Definitions
190 *
191 * These data structures define modular crypto algorithm implementations,
192 * managed via crypto_register_alg() and crypto_unregister_alg().
193 */
194
195 /**
196 * struct ablkcipher_alg - asynchronous block cipher definition
197 * @min_keysize: Minimum key size supported by the transformation. This is the
198 * smallest key length supported by this transformation algorithm.
199 * This must be set to one of the pre-defined values as this is
200 * not hardware specific. Possible values for this field can be
201 * found via git grep "_MIN_KEY_SIZE" include/crypto/
202 * @max_keysize: Maximum key size supported by the transformation. This is the
203 * largest key length supported by this transformation algorithm.
204 * This must be set to one of the pre-defined values as this is
205 * not hardware specific. Possible values for this field can be
206 * found via git grep "_MAX_KEY_SIZE" include/crypto/
207 * @setkey: Set key for the transformation. This function is used to either
208 * program a supplied key into the hardware or store the key in the
209 * transformation context for programming it later. Note that this
210 * function does modify the transformation context. This function can
211 * be called multiple times during the existence of the transformation
212 * object, so one must make sure the key is properly reprogrammed into
213 * the hardware. This function is also responsible for checking the key
214 * length for validity. In case a software fallback was put in place in
215 * the @cra_init call, this function might need to use the fallback if
216 * the algorithm doesn't support all of the key sizes.
217 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
218 * the supplied scatterlist containing the blocks of data. The crypto
219 * API consumer is responsible for aligning the entries of the
220 * scatterlist properly and making sure the chunks are correctly
221 * sized. In case a software fallback was put in place in the
222 * @cra_init call, this function might need to use the fallback if
223 * the algorithm doesn't support all of the key sizes. In case the
224 * key was stored in transformation context, the key might need to be
225 * re-programmed into the hardware in this function. This function
226 * shall not modify the transformation context, as this function may
227 * be called in parallel with the same transformation object.
228 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
229 * and the conditions are exactly the same.
230 * @givencrypt: Update the IV for encryption. With this function, a cipher
231 * implementation may provide the function on how to update the IV
232 * for encryption.
233 * @givdecrypt: Update the IV for decryption. This is the reverse of
234 * @givencrypt .
235 * @geniv: The transformation implementation may use an "IV generator" provided
236 * by the kernel crypto API. Several use cases have a predefined
237 * approach how IVs are to be updated. For such use cases, the kernel
238 * crypto API provides ready-to-use implementations that can be
239 * referenced with this variable.
240 * @ivsize: IV size applicable for transformation. The consumer must provide an
241 * IV of exactly that size to perform the encrypt or decrypt operation.
242 *
243 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
244 * mandatory and must be filled.
245 */
246 struct ablkcipher_alg {
247 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
248 unsigned int keylen);
249 int (*encrypt)(struct ablkcipher_request *req);
250 int (*decrypt)(struct ablkcipher_request *req);
251 int (*givencrypt)(struct skcipher_givcrypt_request *req);
252 int (*givdecrypt)(struct skcipher_givcrypt_request *req);
253
254 const char *geniv;
255
256 unsigned int min_keysize;
257 unsigned int max_keysize;
258 unsigned int ivsize;
259 };
260
261 /**
262 * struct blkcipher_alg - synchronous block cipher definition
263 * @min_keysize: see struct ablkcipher_alg
264 * @max_keysize: see struct ablkcipher_alg
265 * @setkey: see struct ablkcipher_alg
266 * @encrypt: see struct ablkcipher_alg
267 * @decrypt: see struct ablkcipher_alg
268 * @geniv: see struct ablkcipher_alg
269 * @ivsize: see struct ablkcipher_alg
270 *
271 * All fields except @geniv and @ivsize are mandatory and must be filled.
272 */
273 struct blkcipher_alg {
274 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
275 unsigned int keylen);
276 int (*encrypt)(struct blkcipher_desc *desc,
277 struct scatterlist *dst, struct scatterlist *src,
278 unsigned int nbytes);
279 int (*decrypt)(struct blkcipher_desc *desc,
280 struct scatterlist *dst, struct scatterlist *src,
281 unsigned int nbytes);
282
283 const char *geniv;
284
285 unsigned int min_keysize;
286 unsigned int max_keysize;
287 unsigned int ivsize;
288 };
289
290 /**
291 * struct cipher_alg - single-block symmetric ciphers definition
292 * @cia_min_keysize: Minimum key size supported by the transformation. This is
293 * the smallest key length supported by this transformation
294 * algorithm. This must be set to one of the pre-defined
295 * values as this is not hardware specific. Possible values
296 * for this field can be found via git grep "_MIN_KEY_SIZE"
297 * include/crypto/
298 * @cia_max_keysize: Maximum key size supported by the transformation. This is
299 * the largest key length supported by this transformation
300 * algorithm. This must be set to one of the pre-defined values
301 * as this is not hardware specific. Possible values for this
302 * field can be found via git grep "_MAX_KEY_SIZE"
303 * include/crypto/
304 * @cia_setkey: Set key for the transformation. This function is used to either
305 * program a supplied key into the hardware or store the key in the
306 * transformation context for programming it later. Note that this
307 * function does modify the transformation context. This function
308 * can be called multiple times during the existence of the
309 * transformation object, so one must make sure the key is properly
310 * reprogrammed into the hardware. This function is also
311 * responsible for checking the key length for validity.
312 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
313 * single block of data, which must be @cra_blocksize big. This
314 * always operates on a full @cra_blocksize and it is not possible
315 * to encrypt a block of smaller size. The supplied buffers must
316 * therefore also be at least of @cra_blocksize size. Both the
317 * input and output buffers are always aligned to @cra_alignmask.
318 * In case either of the input or output buffer supplied by user
319 * of the crypto API is not aligned to @cra_alignmask, the crypto
320 * API will re-align the buffers. The re-alignment means that a
321 * new buffer will be allocated, the data will be copied into the
322 * new buffer, then the processing will happen on the new buffer,
323 * then the data will be copied back into the original buffer and
324 * finally the new buffer will be freed. In case a software
325 * fallback was put in place in the @cra_init call, this function
326 * might need to use the fallback if the algorithm doesn't support
327 * all of the key sizes. In case the key was stored in
328 * transformation context, the key might need to be re-programmed
329 * into the hardware in this function. This function shall not
330 * modify the transformation context, as this function may be
331 * called in parallel with the same transformation object.
332 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
333 * @cia_encrypt, and the conditions are exactly the same.
334 *
335 * All fields are mandatory and must be filled.
336 */
337 struct cipher_alg {
338 unsigned int cia_min_keysize;
339 unsigned int cia_max_keysize;
340 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
341 unsigned int keylen);
342 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
343 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
344 };
345
346 struct compress_alg {
347 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
348 unsigned int slen, u8 *dst, unsigned int *dlen);
349 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
350 unsigned int slen, u8 *dst, unsigned int *dlen);
351 };
352
353
354 #define cra_ablkcipher cra_u.ablkcipher
355 #define cra_blkcipher cra_u.blkcipher
356 #define cra_cipher cra_u.cipher
357 #define cra_compress cra_u.compress
358
359 /**
360 * struct crypto_alg - definition of a cryptograpic cipher algorithm
361 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
362 * CRYPTO_ALG_* flags for the flags which go in here. Those are
363 * used for fine-tuning the description of the transformation
364 * algorithm.
365 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
366 * of the smallest possible unit which can be transformed with
367 * this algorithm. The users must respect this value.
368 * In case of HASH transformation, it is possible for a smaller
369 * block than @cra_blocksize to be passed to the crypto API for
370 * transformation, in case of any other transformation type, an
371 * error will be returned upon any attempt to transform smaller
372 * than @cra_blocksize chunks.
373 * @cra_ctxsize: Size of the operational context of the transformation. This
374 * value informs the kernel crypto API about the memory size
375 * needed to be allocated for the transformation context.
376 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
377 * buffer containing the input data for the algorithm must be
378 * aligned to this alignment mask. The data buffer for the
379 * output data must be aligned to this alignment mask. Note that
380 * the Crypto API will do the re-alignment in software, but
381 * only under special conditions and there is a performance hit.
382 * The re-alignment happens at these occasions for different
383 * @cra_u types: cipher -- For both input data and output data
384 * buffer; ahash -- For output hash destination buf; shash --
385 * For output hash destination buf.
386 * This is needed on hardware which is flawed by design and
387 * cannot pick data from arbitrary addresses.
388 * @cra_priority: Priority of this transformation implementation. In case
389 * multiple transformations with same @cra_name are available to
390 * the Crypto API, the kernel will use the one with highest
391 * @cra_priority.
392 * @cra_name: Generic name (usable by multiple implementations) of the
393 * transformation algorithm. This is the name of the transformation
394 * itself. This field is used by the kernel when looking up the
395 * providers of particular transformation.
396 * @cra_driver_name: Unique name of the transformation provider. This is the
397 * name of the provider of the transformation. This can be any
398 * arbitrary value, but in the usual case, this contains the
399 * name of the chip or provider and the name of the
400 * transformation algorithm.
401 * @cra_type: Type of the cryptographic transformation. This is a pointer to
402 * struct crypto_type, which implements callbacks common for all
403 * transformation types. There are multiple options:
404 * &crypto_blkcipher_type, &crypto_ablkcipher_type,
405 * &crypto_ahash_type, &crypto_rng_type.
406 * This field might be empty. In that case, there are no common
407 * callbacks. This is the case for: cipher, compress, shash.
408 * @cra_u: Callbacks implementing the transformation. This is a union of
409 * multiple structures. Depending on the type of transformation selected
410 * by @cra_type and @cra_flags above, the associated structure must be
411 * filled with callbacks. This field might be empty. This is the case
412 * for ahash, shash.
413 * @cra_init: Initialize the cryptographic transformation object. This function
414 * is used to initialize the cryptographic transformation object.
415 * This function is called only once at the instantiation time, right
416 * after the transformation context was allocated. In case the
417 * cryptographic hardware has some special requirements which need to
418 * be handled by software, this function shall check for the precise
419 * requirement of the transformation and put any software fallbacks
420 * in place.
421 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
422 * counterpart to @cra_init, used to remove various changes set in
423 * @cra_init.
424 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
425 * @cra_list: internally used
426 * @cra_users: internally used
427 * @cra_refcnt: internally used
428 * @cra_destroy: internally used
429 *
430 * The struct crypto_alg describes a generic Crypto API algorithm and is common
431 * for all of the transformations. Any variable not documented here shall not
432 * be used by a cipher implementation as it is internal to the Crypto API.
433 */
434 struct crypto_alg {
435 struct list_head cra_list;
436 struct list_head cra_users;
437
438 u32 cra_flags;
439 unsigned int cra_blocksize;
440 unsigned int cra_ctxsize;
441 unsigned int cra_alignmask;
442
443 int cra_priority;
444 atomic_t cra_refcnt;
445
446 char cra_name[CRYPTO_MAX_ALG_NAME];
447 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
448
449 const struct crypto_type *cra_type;
450
451 union {
452 struct ablkcipher_alg ablkcipher;
453 struct blkcipher_alg blkcipher;
454 struct cipher_alg cipher;
455 struct compress_alg compress;
456 } cra_u;
457
458 int (*cra_init)(struct crypto_tfm *tfm);
459 void (*cra_exit)(struct crypto_tfm *tfm);
460 void (*cra_destroy)(struct crypto_alg *alg);
461
462 struct module *cra_module;
463 } CRYPTO_MINALIGN_ATTR;
464
465 /*
466 * Algorithm registration interface.
467 */
468 int crypto_register_alg(struct crypto_alg *alg);
469 int crypto_unregister_alg(struct crypto_alg *alg);
470 int crypto_register_algs(struct crypto_alg *algs, int count);
471 int crypto_unregister_algs(struct crypto_alg *algs, int count);
472
473 /*
474 * Algorithm query interface.
475 */
476 int crypto_has_alg(const char *name, u32 type, u32 mask);
477
478 /*
479 * Transforms: user-instantiated objects which encapsulate algorithms
480 * and core processing logic. Managed via crypto_alloc_*() and
481 * crypto_free_*(), as well as the various helpers below.
482 */
483
484 struct ablkcipher_tfm {
485 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
486 unsigned int keylen);
487 int (*encrypt)(struct ablkcipher_request *req);
488 int (*decrypt)(struct ablkcipher_request *req);
489 int (*givencrypt)(struct skcipher_givcrypt_request *req);
490 int (*givdecrypt)(struct skcipher_givcrypt_request *req);
491
492 struct crypto_ablkcipher *base;
493
494 unsigned int ivsize;
495 unsigned int reqsize;
496 };
497
498 struct blkcipher_tfm {
499 void *iv;
500 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
501 unsigned int keylen);
502 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
503 struct scatterlist *src, unsigned int nbytes);
504 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
505 struct scatterlist *src, unsigned int nbytes);
506 };
507
508 struct cipher_tfm {
509 int (*cit_setkey)(struct crypto_tfm *tfm,
510 const u8 *key, unsigned int keylen);
511 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
512 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
513 };
514
515 struct compress_tfm {
516 int (*cot_compress)(struct crypto_tfm *tfm,
517 const u8 *src, unsigned int slen,
518 u8 *dst, unsigned int *dlen);
519 int (*cot_decompress)(struct crypto_tfm *tfm,
520 const u8 *src, unsigned int slen,
521 u8 *dst, unsigned int *dlen);
522 };
523
524 #define crt_ablkcipher crt_u.ablkcipher
525 #define crt_blkcipher crt_u.blkcipher
526 #define crt_cipher crt_u.cipher
527 #define crt_compress crt_u.compress
528
529 struct crypto_tfm {
530
531 u32 crt_flags;
532
533 union {
534 struct ablkcipher_tfm ablkcipher;
535 struct blkcipher_tfm blkcipher;
536 struct cipher_tfm cipher;
537 struct compress_tfm compress;
538 } crt_u;
539
540 void (*exit)(struct crypto_tfm *tfm);
541
542 struct crypto_alg *__crt_alg;
543
544 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
545 };
546
547 struct crypto_ablkcipher {
548 struct crypto_tfm base;
549 };
550
551 struct crypto_blkcipher {
552 struct crypto_tfm base;
553 };
554
555 struct crypto_cipher {
556 struct crypto_tfm base;
557 };
558
559 struct crypto_comp {
560 struct crypto_tfm base;
561 };
562
563 enum {
564 CRYPTOA_UNSPEC,
565 CRYPTOA_ALG,
566 CRYPTOA_TYPE,
567 CRYPTOA_U32,
568 __CRYPTOA_MAX,
569 };
570
571 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
572
573 /* Maximum number of (rtattr) parameters for each template. */
574 #define CRYPTO_MAX_ATTRS 32
575
576 struct crypto_attr_alg {
577 char name[CRYPTO_MAX_ALG_NAME];
578 };
579
580 struct crypto_attr_type {
581 u32 type;
582 u32 mask;
583 };
584
585 struct crypto_attr_u32 {
586 u32 num;
587 };
588
589 /*
590 * Transform user interface.
591 */
592
593 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
594 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
595
596 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
597 {
598 return crypto_destroy_tfm(tfm, tfm);
599 }
600
601 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
602
603 /*
604 * Transform helpers which query the underlying algorithm.
605 */
606 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
607 {
608 return tfm->__crt_alg->cra_name;
609 }
610
611 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
612 {
613 return tfm->__crt_alg->cra_driver_name;
614 }
615
616 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
617 {
618 return tfm->__crt_alg->cra_priority;
619 }
620
621 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
622 {
623 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
624 }
625
626 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
627 {
628 return tfm->__crt_alg->cra_blocksize;
629 }
630
631 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
632 {
633 return tfm->__crt_alg->cra_alignmask;
634 }
635
636 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
637 {
638 return tfm->crt_flags;
639 }
640
641 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
642 {
643 tfm->crt_flags |= flags;
644 }
645
646 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
647 {
648 tfm->crt_flags &= ~flags;
649 }
650
651 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
652 {
653 return tfm->__crt_ctx;
654 }
655
656 static inline unsigned int crypto_tfm_ctx_alignment(void)
657 {
658 struct crypto_tfm *tfm;
659 return __alignof__(tfm->__crt_ctx);
660 }
661
662 /*
663 * API wrappers.
664 */
665 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
666 struct crypto_tfm *tfm)
667 {
668 return (struct crypto_ablkcipher *)tfm;
669 }
670
671 static inline u32 crypto_skcipher_type(u32 type)
672 {
673 type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
674 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
675 return type;
676 }
677
678 static inline u32 crypto_skcipher_mask(u32 mask)
679 {
680 mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
681 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
682 return mask;
683 }
684
685 /**
686 * DOC: Asynchronous Block Cipher API
687 *
688 * Asynchronous block cipher API is used with the ciphers of type
689 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
690 *
691 * Asynchronous cipher operations imply that the function invocation for a
692 * cipher request returns immediately before the completion of the operation.
693 * The cipher request is scheduled as a separate kernel thread and therefore
694 * load-balanced on the different CPUs via the process scheduler. To allow
695 * the kernel crypto API to inform the caller about the completion of a cipher
696 * request, the caller must provide a callback function. That function is
697 * invoked with the cipher handle when the request completes.
698 *
699 * To support the asynchronous operation, additional information than just the
700 * cipher handle must be supplied to the kernel crypto API. That additional
701 * information is given by filling in the ablkcipher_request data structure.
702 *
703 * For the asynchronous block cipher API, the state is maintained with the tfm
704 * cipher handle. A single tfm can be used across multiple calls and in
705 * parallel. For asynchronous block cipher calls, context data supplied and
706 * only used by the caller can be referenced the request data structure in
707 * addition to the IV used for the cipher request. The maintenance of such
708 * state information would be important for a crypto driver implementer to
709 * have, because when calling the callback function upon completion of the
710 * cipher operation, that callback function may need some information about
711 * which operation just finished if it invoked multiple in parallel. This
712 * state information is unused by the kernel crypto API.
713 */
714
715 /**
716 * crypto_alloc_ablkcipher() - allocate asynchronous block cipher handle
717 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
718 * ablkcipher cipher
719 * @type: specifies the type of the cipher
720 * @mask: specifies the mask for the cipher
721 *
722 * Allocate a cipher handle for an ablkcipher. The returned struct
723 * crypto_ablkcipher is the cipher handle that is required for any subsequent
724 * API invocation for that ablkcipher.
725 *
726 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
727 * of an error, PTR_ERR() returns the error code.
728 */
729 struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name,
730 u32 type, u32 mask);
731
732 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
733 struct crypto_ablkcipher *tfm)
734 {
735 return &tfm->base;
736 }
737
738 /**
739 * crypto_free_ablkcipher() - zeroize and free cipher handle
740 * @tfm: cipher handle to be freed
741 */
742 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
743 {
744 crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
745 }
746
747 /**
748 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
749 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
750 * ablkcipher
751 * @type: specifies the type of the cipher
752 * @mask: specifies the mask for the cipher
753 *
754 * Return: true when the ablkcipher is known to the kernel crypto API; false
755 * otherwise
756 */
757 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
758 u32 mask)
759 {
760 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
761 crypto_skcipher_mask(mask));
762 }
763
764 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
765 struct crypto_ablkcipher *tfm)
766 {
767 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
768 }
769
770 /**
771 * crypto_ablkcipher_ivsize() - obtain IV size
772 * @tfm: cipher handle
773 *
774 * The size of the IV for the ablkcipher referenced by the cipher handle is
775 * returned. This IV size may be zero if the cipher does not need an IV.
776 *
777 * Return: IV size in bytes
778 */
779 static inline unsigned int crypto_ablkcipher_ivsize(
780 struct crypto_ablkcipher *tfm)
781 {
782 return crypto_ablkcipher_crt(tfm)->ivsize;
783 }
784
785 /**
786 * crypto_ablkcipher_blocksize() - obtain block size of cipher
787 * @tfm: cipher handle
788 *
789 * The block size for the ablkcipher referenced with the cipher handle is
790 * returned. The caller may use that information to allocate appropriate
791 * memory for the data returned by the encryption or decryption operation
792 *
793 * Return: block size of cipher
794 */
795 static inline unsigned int crypto_ablkcipher_blocksize(
796 struct crypto_ablkcipher *tfm)
797 {
798 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
799 }
800
801 static inline unsigned int crypto_ablkcipher_alignmask(
802 struct crypto_ablkcipher *tfm)
803 {
804 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
805 }
806
807 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
808 {
809 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
810 }
811
812 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
813 u32 flags)
814 {
815 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
816 }
817
818 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
819 u32 flags)
820 {
821 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
822 }
823
824 /**
825 * crypto_ablkcipher_setkey() - set key for cipher
826 * @tfm: cipher handle
827 * @key: buffer holding the key
828 * @keylen: length of the key in bytes
829 *
830 * The caller provided key is set for the ablkcipher referenced by the cipher
831 * handle.
832 *
833 * Note, the key length determines the cipher type. Many block ciphers implement
834 * different cipher modes depending on the key size, such as AES-128 vs AES-192
835 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
836 * is performed.
837 *
838 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
839 */
840 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
841 const u8 *key, unsigned int keylen)
842 {
843 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
844
845 return crt->setkey(crt->base, key, keylen);
846 }
847
848 /**
849 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
850 * @req: ablkcipher_request out of which the cipher handle is to be obtained
851 *
852 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
853 * data structure.
854 *
855 * Return: crypto_ablkcipher handle
856 */
857 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
858 struct ablkcipher_request *req)
859 {
860 return __crypto_ablkcipher_cast(req->base.tfm);
861 }
862
863 /**
864 * crypto_ablkcipher_encrypt() - encrypt plaintext
865 * @req: reference to the ablkcipher_request handle that holds all information
866 * needed to perform the cipher operation
867 *
868 * Encrypt plaintext data using the ablkcipher_request handle. That data
869 * structure and how it is filled with data is discussed with the
870 * ablkcipher_request_* functions.
871 *
872 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
873 */
874 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
875 {
876 struct ablkcipher_tfm *crt =
877 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
878 return crt->encrypt(req);
879 }
880
881 /**
882 * crypto_ablkcipher_decrypt() - decrypt ciphertext
883 * @req: reference to the ablkcipher_request handle that holds all information
884 * needed to perform the cipher operation
885 *
886 * Decrypt ciphertext data using the ablkcipher_request handle. That data
887 * structure and how it is filled with data is discussed with the
888 * ablkcipher_request_* functions.
889 *
890 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
891 */
892 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
893 {
894 struct ablkcipher_tfm *crt =
895 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
896 return crt->decrypt(req);
897 }
898
899 /**
900 * DOC: Asynchronous Cipher Request Handle
901 *
902 * The ablkcipher_request data structure contains all pointers to data
903 * required for the asynchronous cipher operation. This includes the cipher
904 * handle (which can be used by multiple ablkcipher_request instances), pointer
905 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
906 * as a handle to the ablkcipher_request_* API calls in a similar way as
907 * ablkcipher handle to the crypto_ablkcipher_* API calls.
908 */
909
910 /**
911 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
912 * @tfm: cipher handle
913 *
914 * Return: number of bytes
915 */
916 static inline unsigned int crypto_ablkcipher_reqsize(
917 struct crypto_ablkcipher *tfm)
918 {
919 return crypto_ablkcipher_crt(tfm)->reqsize;
920 }
921
922 /**
923 * ablkcipher_request_set_tfm() - update cipher handle reference in request
924 * @req: request handle to be modified
925 * @tfm: cipher handle that shall be added to the request handle
926 *
927 * Allow the caller to replace the existing ablkcipher handle in the request
928 * data structure with a different one.
929 */
930 static inline void ablkcipher_request_set_tfm(
931 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
932 {
933 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
934 }
935
936 static inline struct ablkcipher_request *ablkcipher_request_cast(
937 struct crypto_async_request *req)
938 {
939 return container_of(req, struct ablkcipher_request, base);
940 }
941
942 /**
943 * ablkcipher_request_alloc() - allocate request data structure
944 * @tfm: cipher handle to be registered with the request
945 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
946 *
947 * Allocate the request data structure that must be used with the ablkcipher
948 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
949 * handle is registered in the request data structure.
950 *
951 * Return: allocated request handle in case of success, or NULL if out of memory
952 */
953 static inline struct ablkcipher_request *ablkcipher_request_alloc(
954 struct crypto_ablkcipher *tfm, gfp_t gfp)
955 {
956 struct ablkcipher_request *req;
957
958 req = kmalloc(sizeof(struct ablkcipher_request) +
959 crypto_ablkcipher_reqsize(tfm), gfp);
960
961 if (likely(req))
962 ablkcipher_request_set_tfm(req, tfm);
963
964 return req;
965 }
966
967 /**
968 * ablkcipher_request_free() - zeroize and free request data structure
969 * @req: request data structure cipher handle to be freed
970 */
971 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
972 {
973 kzfree(req);
974 }
975
976 /**
977 * ablkcipher_request_set_callback() - set asynchronous callback function
978 * @req: request handle
979 * @flags: specify zero or an ORing of the flags
980 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
981 * increase the wait queue beyond the initial maximum size;
982 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
983 * @compl: callback function pointer to be registered with the request handle
984 * @data: The data pointer refers to memory that is not used by the kernel
985 * crypto API, but provided to the callback function for it to use. Here,
986 * the caller can provide a reference to memory the callback function can
987 * operate on. As the callback function is invoked asynchronously to the
988 * related functionality, it may need to access data structures of the
989 * related functionality which can be referenced using this pointer. The
990 * callback function can access the memory via the "data" field in the
991 * crypto_async_request data structure provided to the callback function.
992 *
993 * This function allows setting the callback function that is triggered once the
994 * cipher operation completes.
995 *
996 * The callback function is registered with the ablkcipher_request handle and
997 * must comply with the following template
998 *
999 * void callback_function(struct crypto_async_request *req, int error)
1000 */
1001 static inline void ablkcipher_request_set_callback(
1002 struct ablkcipher_request *req,
1003 u32 flags, crypto_completion_t compl, void *data)
1004 {
1005 req->base.complete = compl;
1006 req->base.data = data;
1007 req->base.flags = flags;
1008 }
1009
1010 /**
1011 * ablkcipher_request_set_crypt() - set data buffers
1012 * @req: request handle
1013 * @src: source scatter / gather list
1014 * @dst: destination scatter / gather list
1015 * @nbytes: number of bytes to process from @src
1016 * @iv: IV for the cipher operation which must comply with the IV size defined
1017 * by crypto_ablkcipher_ivsize
1018 *
1019 * This function allows setting of the source data and destination data
1020 * scatter / gather lists.
1021 *
1022 * For encryption, the source is treated as the plaintext and the
1023 * destination is the ciphertext. For a decryption operation, the use is
1024 * reversed - the source is the ciphertext and the destination is the plaintext.
1025 */
1026 static inline void ablkcipher_request_set_crypt(
1027 struct ablkcipher_request *req,
1028 struct scatterlist *src, struct scatterlist *dst,
1029 unsigned int nbytes, void *iv)
1030 {
1031 req->src = src;
1032 req->dst = dst;
1033 req->nbytes = nbytes;
1034 req->info = iv;
1035 }
1036
1037 /**
1038 * DOC: Synchronous Block Cipher API
1039 *
1040 * The synchronous block cipher API is used with the ciphers of type
1041 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1042 *
1043 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1044 * used in multiple calls and in parallel, this info should not be changeable
1045 * (unless a lock is used). This applies, for example, to the symmetric key.
1046 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1047 * structure for synchronous blkcipher api. So, its the only state info that can
1048 * be kept for synchronous calls without using a big lock across a tfm.
1049 *
1050 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1051 * consisting of a template (a block chaining mode) and a single block cipher
1052 * primitive (e.g. AES).
1053 *
1054 * The plaintext data buffer and the ciphertext data buffer are pointed to
1055 * by using scatter/gather lists. The cipher operation is performed
1056 * on all segments of the provided scatter/gather lists.
1057 *
1058 * The kernel crypto API supports a cipher operation "in-place" which means that
1059 * the caller may provide the same scatter/gather list for the plaintext and
1060 * cipher text. After the completion of the cipher operation, the plaintext
1061 * data is replaced with the ciphertext data in case of an encryption and vice
1062 * versa for a decryption. The caller must ensure that the scatter/gather lists
1063 * for the output data point to sufficiently large buffers, i.e. multiples of
1064 * the block size of the cipher.
1065 */
1066
1067 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1068 struct crypto_tfm *tfm)
1069 {
1070 return (struct crypto_blkcipher *)tfm;
1071 }
1072
1073 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1074 struct crypto_tfm *tfm)
1075 {
1076 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1077 return __crypto_blkcipher_cast(tfm);
1078 }
1079
1080 /**
1081 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1082 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1083 * blkcipher cipher
1084 * @type: specifies the type of the cipher
1085 * @mask: specifies the mask for the cipher
1086 *
1087 * Allocate a cipher handle for a block cipher. The returned struct
1088 * crypto_blkcipher is the cipher handle that is required for any subsequent
1089 * API invocation for that block cipher.
1090 *
1091 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1092 * of an error, PTR_ERR() returns the error code.
1093 */
1094 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1095 const char *alg_name, u32 type, u32 mask)
1096 {
1097 type &= ~CRYPTO_ALG_TYPE_MASK;
1098 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1099 mask |= CRYPTO_ALG_TYPE_MASK;
1100
1101 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1102 }
1103
1104 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1105 struct crypto_blkcipher *tfm)
1106 {
1107 return &tfm->base;
1108 }
1109
1110 /**
1111 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1112 * @tfm: cipher handle to be freed
1113 */
1114 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1115 {
1116 crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1117 }
1118
1119 /**
1120 * crypto_has_blkcipher() - Search for the availability of a block cipher
1121 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1122 * block cipher
1123 * @type: specifies the type of the cipher
1124 * @mask: specifies the mask for the cipher
1125 *
1126 * Return: true when the block cipher is known to the kernel crypto API; false
1127 * otherwise
1128 */
1129 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1130 {
1131 type &= ~CRYPTO_ALG_TYPE_MASK;
1132 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1133 mask |= CRYPTO_ALG_TYPE_MASK;
1134
1135 return crypto_has_alg(alg_name, type, mask);
1136 }
1137
1138 /**
1139 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1140 * @tfm: cipher handle
1141 *
1142 * Return: The character string holding the name of the cipher
1143 */
1144 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1145 {
1146 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1147 }
1148
1149 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1150 struct crypto_blkcipher *tfm)
1151 {
1152 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1153 }
1154
1155 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1156 struct crypto_blkcipher *tfm)
1157 {
1158 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1159 }
1160
1161 /**
1162 * crypto_blkcipher_ivsize() - obtain IV size
1163 * @tfm: cipher handle
1164 *
1165 * The size of the IV for the block cipher referenced by the cipher handle is
1166 * returned. This IV size may be zero if the cipher does not need an IV.
1167 *
1168 * Return: IV size in bytes
1169 */
1170 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1171 {
1172 return crypto_blkcipher_alg(tfm)->ivsize;
1173 }
1174
1175 /**
1176 * crypto_blkcipher_blocksize() - obtain block size of cipher
1177 * @tfm: cipher handle
1178 *
1179 * The block size for the block cipher referenced with the cipher handle is
1180 * returned. The caller may use that information to allocate appropriate
1181 * memory for the data returned by the encryption or decryption operation.
1182 *
1183 * Return: block size of cipher
1184 */
1185 static inline unsigned int crypto_blkcipher_blocksize(
1186 struct crypto_blkcipher *tfm)
1187 {
1188 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1189 }
1190
1191 static inline unsigned int crypto_blkcipher_alignmask(
1192 struct crypto_blkcipher *tfm)
1193 {
1194 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1195 }
1196
1197 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1198 {
1199 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1200 }
1201
1202 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1203 u32 flags)
1204 {
1205 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1206 }
1207
1208 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1209 u32 flags)
1210 {
1211 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1212 }
1213
1214 /**
1215 * crypto_blkcipher_setkey() - set key for cipher
1216 * @tfm: cipher handle
1217 * @key: buffer holding the key
1218 * @keylen: length of the key in bytes
1219 *
1220 * The caller provided key is set for the block cipher referenced by the cipher
1221 * handle.
1222 *
1223 * Note, the key length determines the cipher type. Many block ciphers implement
1224 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1225 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1226 * is performed.
1227 *
1228 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1229 */
1230 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1231 const u8 *key, unsigned int keylen)
1232 {
1233 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1234 key, keylen);
1235 }
1236
1237 /**
1238 * crypto_blkcipher_encrypt() - encrypt plaintext
1239 * @desc: reference to the block cipher handle with meta data
1240 * @dst: scatter/gather list that is filled by the cipher operation with the
1241 * ciphertext
1242 * @src: scatter/gather list that holds the plaintext
1243 * @nbytes: number of bytes of the plaintext to encrypt.
1244 *
1245 * Encrypt plaintext data using the IV set by the caller with a preceding
1246 * call of crypto_blkcipher_set_iv.
1247 *
1248 * The blkcipher_desc data structure must be filled by the caller and can
1249 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1250 * with the block cipher handle; desc.flags is filled with either
1251 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1252 *
1253 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1254 */
1255 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1256 struct scatterlist *dst,
1257 struct scatterlist *src,
1258 unsigned int nbytes)
1259 {
1260 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1261 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1262 }
1263
1264 /**
1265 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1266 * @desc: reference to the block cipher handle with meta data
1267 * @dst: scatter/gather list that is filled by the cipher operation with the
1268 * ciphertext
1269 * @src: scatter/gather list that holds the plaintext
1270 * @nbytes: number of bytes of the plaintext to encrypt.
1271 *
1272 * Encrypt plaintext data with the use of an IV that is solely used for this
1273 * cipher operation. Any previously set IV is not used.
1274 *
1275 * The blkcipher_desc data structure must be filled by the caller and can
1276 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1277 * with the block cipher handle; desc.info is filled with the IV to be used for
1278 * the current operation; desc.flags is filled with either
1279 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1280 *
1281 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1282 */
1283 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1284 struct scatterlist *dst,
1285 struct scatterlist *src,
1286 unsigned int nbytes)
1287 {
1288 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1289 }
1290
1291 /**
1292 * crypto_blkcipher_decrypt() - decrypt ciphertext
1293 * @desc: reference to the block cipher handle with meta data
1294 * @dst: scatter/gather list that is filled by the cipher operation with the
1295 * plaintext
1296 * @src: scatter/gather list that holds the ciphertext
1297 * @nbytes: number of bytes of the ciphertext to decrypt.
1298 *
1299 * Decrypt ciphertext data using the IV set by the caller with a preceding
1300 * call of crypto_blkcipher_set_iv.
1301 *
1302 * The blkcipher_desc data structure must be filled by the caller as documented
1303 * for the crypto_blkcipher_encrypt call above.
1304 *
1305 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1306 *
1307 */
1308 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1309 struct scatterlist *dst,
1310 struct scatterlist *src,
1311 unsigned int nbytes)
1312 {
1313 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1314 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1315 }
1316
1317 /**
1318 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1319 * @desc: reference to the block cipher handle with meta data
1320 * @dst: scatter/gather list that is filled by the cipher operation with the
1321 * plaintext
1322 * @src: scatter/gather list that holds the ciphertext
1323 * @nbytes: number of bytes of the ciphertext to decrypt.
1324 *
1325 * Decrypt ciphertext data with the use of an IV that is solely used for this
1326 * cipher operation. Any previously set IV is not used.
1327 *
1328 * The blkcipher_desc data structure must be filled by the caller as documented
1329 * for the crypto_blkcipher_encrypt_iv call above.
1330 *
1331 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1332 */
1333 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1334 struct scatterlist *dst,
1335 struct scatterlist *src,
1336 unsigned int nbytes)
1337 {
1338 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1339 }
1340
1341 /**
1342 * crypto_blkcipher_set_iv() - set IV for cipher
1343 * @tfm: cipher handle
1344 * @src: buffer holding the IV
1345 * @len: length of the IV in bytes
1346 *
1347 * The caller provided IV is set for the block cipher referenced by the cipher
1348 * handle.
1349 */
1350 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1351 const u8 *src, unsigned int len)
1352 {
1353 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1354 }
1355
1356 /**
1357 * crypto_blkcipher_get_iv() - obtain IV from cipher
1358 * @tfm: cipher handle
1359 * @dst: buffer filled with the IV
1360 * @len: length of the buffer dst
1361 *
1362 * The caller can obtain the IV set for the block cipher referenced by the
1363 * cipher handle and store it into the user-provided buffer. If the buffer
1364 * has an insufficient space, the IV is truncated to fit the buffer.
1365 */
1366 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1367 u8 *dst, unsigned int len)
1368 {
1369 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1370 }
1371
1372 /**
1373 * DOC: Single Block Cipher API
1374 *
1375 * The single block cipher API is used with the ciphers of type
1376 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1377 *
1378 * Using the single block cipher API calls, operations with the basic cipher
1379 * primitive can be implemented. These cipher primitives exclude any block
1380 * chaining operations including IV handling.
1381 *
1382 * The purpose of this single block cipher API is to support the implementation
1383 * of templates or other concepts that only need to perform the cipher operation
1384 * on one block at a time. Templates invoke the underlying cipher primitive
1385 * block-wise and process either the input or the output data of these cipher
1386 * operations.
1387 */
1388
1389 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1390 {
1391 return (struct crypto_cipher *)tfm;
1392 }
1393
1394 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1395 {
1396 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1397 return __crypto_cipher_cast(tfm);
1398 }
1399
1400 /**
1401 * crypto_alloc_cipher() - allocate single block cipher handle
1402 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1403 * single block cipher
1404 * @type: specifies the type of the cipher
1405 * @mask: specifies the mask for the cipher
1406 *
1407 * Allocate a cipher handle for a single block cipher. The returned struct
1408 * crypto_cipher is the cipher handle that is required for any subsequent API
1409 * invocation for that single block cipher.
1410 *
1411 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1412 * of an error, PTR_ERR() returns the error code.
1413 */
1414 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1415 u32 type, u32 mask)
1416 {
1417 type &= ~CRYPTO_ALG_TYPE_MASK;
1418 type |= CRYPTO_ALG_TYPE_CIPHER;
1419 mask |= CRYPTO_ALG_TYPE_MASK;
1420
1421 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1422 }
1423
1424 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1425 {
1426 return &tfm->base;
1427 }
1428
1429 /**
1430 * crypto_free_cipher() - zeroize and free the single block cipher handle
1431 * @tfm: cipher handle to be freed
1432 */
1433 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1434 {
1435 crypto_free_tfm(crypto_cipher_tfm(tfm));
1436 }
1437
1438 /**
1439 * crypto_has_cipher() - Search for the availability of a single block cipher
1440 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1441 * single block cipher
1442 * @type: specifies the type of the cipher
1443 * @mask: specifies the mask for the cipher
1444 *
1445 * Return: true when the single block cipher is known to the kernel crypto API;
1446 * false otherwise
1447 */
1448 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1449 {
1450 type &= ~CRYPTO_ALG_TYPE_MASK;
1451 type |= CRYPTO_ALG_TYPE_CIPHER;
1452 mask |= CRYPTO_ALG_TYPE_MASK;
1453
1454 return crypto_has_alg(alg_name, type, mask);
1455 }
1456
1457 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1458 {
1459 return &crypto_cipher_tfm(tfm)->crt_cipher;
1460 }
1461
1462 /**
1463 * crypto_cipher_blocksize() - obtain block size for cipher
1464 * @tfm: cipher handle
1465 *
1466 * The block size for the single block cipher referenced with the cipher handle
1467 * tfm is returned. The caller may use that information to allocate appropriate
1468 * memory for the data returned by the encryption or decryption operation
1469 *
1470 * Return: block size of cipher
1471 */
1472 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1473 {
1474 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1475 }
1476
1477 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1478 {
1479 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1480 }
1481
1482 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1483 {
1484 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1485 }
1486
1487 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1488 u32 flags)
1489 {
1490 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1491 }
1492
1493 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1494 u32 flags)
1495 {
1496 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1497 }
1498
1499 /**
1500 * crypto_cipher_setkey() - set key for cipher
1501 * @tfm: cipher handle
1502 * @key: buffer holding the key
1503 * @keylen: length of the key in bytes
1504 *
1505 * The caller provided key is set for the single block cipher referenced by the
1506 * cipher handle.
1507 *
1508 * Note, the key length determines the cipher type. Many block ciphers implement
1509 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1510 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1511 * is performed.
1512 *
1513 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1514 */
1515 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1516 const u8 *key, unsigned int keylen)
1517 {
1518 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1519 key, keylen);
1520 }
1521
1522 /**
1523 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1524 * @tfm: cipher handle
1525 * @dst: points to the buffer that will be filled with the ciphertext
1526 * @src: buffer holding the plaintext to be encrypted
1527 *
1528 * Invoke the encryption operation of one block. The caller must ensure that
1529 * the plaintext and ciphertext buffers are at least one block in size.
1530 */
1531 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1532 u8 *dst, const u8 *src)
1533 {
1534 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1535 dst, src);
1536 }
1537
1538 /**
1539 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1540 * @tfm: cipher handle
1541 * @dst: points to the buffer that will be filled with the plaintext
1542 * @src: buffer holding the ciphertext to be decrypted
1543 *
1544 * Invoke the decryption operation of one block. The caller must ensure that
1545 * the plaintext and ciphertext buffers are at least one block in size.
1546 */
1547 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1548 u8 *dst, const u8 *src)
1549 {
1550 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1551 dst, src);
1552 }
1553
1554 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1555 {
1556 return (struct crypto_comp *)tfm;
1557 }
1558
1559 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1560 {
1561 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1562 CRYPTO_ALG_TYPE_MASK);
1563 return __crypto_comp_cast(tfm);
1564 }
1565
1566 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1567 u32 type, u32 mask)
1568 {
1569 type &= ~CRYPTO_ALG_TYPE_MASK;
1570 type |= CRYPTO_ALG_TYPE_COMPRESS;
1571 mask |= CRYPTO_ALG_TYPE_MASK;
1572
1573 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1574 }
1575
1576 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1577 {
1578 return &tfm->base;
1579 }
1580
1581 static inline void crypto_free_comp(struct crypto_comp *tfm)
1582 {
1583 crypto_free_tfm(crypto_comp_tfm(tfm));
1584 }
1585
1586 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1587 {
1588 type &= ~CRYPTO_ALG_TYPE_MASK;
1589 type |= CRYPTO_ALG_TYPE_COMPRESS;
1590 mask |= CRYPTO_ALG_TYPE_MASK;
1591
1592 return crypto_has_alg(alg_name, type, mask);
1593 }
1594
1595 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1596 {
1597 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1598 }
1599
1600 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1601 {
1602 return &crypto_comp_tfm(tfm)->crt_compress;
1603 }
1604
1605 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1606 const u8 *src, unsigned int slen,
1607 u8 *dst, unsigned int *dlen)
1608 {
1609 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1610 src, slen, dst, dlen);
1611 }
1612
1613 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1614 const u8 *src, unsigned int slen,
1615 u8 *dst, unsigned int *dlen)
1616 {
1617 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1618 src, slen, dst, dlen);
1619 }
1620
1621 #endif /* _LINUX_CRYPTO_H */
1622