]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/crypto.h
iommu/amd: Remove PD_DMA_OPS_MASK
[mirror_ubuntu-jammy-kernel.git] / include / linux / crypto.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Scatterlist Cryptographic API.
4 *
5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
6 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
7 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
8 *
9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
10 * and Nettle, by Niels Möller.
11 */
12 #ifndef _LINUX_CRYPTO_H
13 #define _LINUX_CRYPTO_H
14
15 #include <linux/atomic.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/bug.h>
19 #include <linux/slab.h>
20 #include <linux/string.h>
21 #include <linux/uaccess.h>
22 #include <linux/completion.h>
23
24 /*
25 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
26 * arbitrary modules to be loaded. Loading from userspace may still need the
27 * unprefixed names, so retains those aliases as well.
28 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
29 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
30 * expands twice on the same line. Instead, use a separate base name for the
31 * alias.
32 */
33 #define MODULE_ALIAS_CRYPTO(name) \
34 __MODULE_INFO(alias, alias_userspace, name); \
35 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
36
37 /*
38 * Algorithm masks and types.
39 */
40 #define CRYPTO_ALG_TYPE_MASK 0x0000000f
41 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001
42 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
43 #define CRYPTO_ALG_TYPE_AEAD 0x00000003
44 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005
45 #define CRYPTO_ALG_TYPE_KPP 0x00000008
46 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a
47 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b
48 #define CRYPTO_ALG_TYPE_RNG 0x0000000c
49 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
50 #define CRYPTO_ALG_TYPE_HASH 0x0000000e
51 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e
52 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f
53
54 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
55 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e
56 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e
57
58 #define CRYPTO_ALG_LARVAL 0x00000010
59 #define CRYPTO_ALG_DEAD 0x00000020
60 #define CRYPTO_ALG_DYING 0x00000040
61 #define CRYPTO_ALG_ASYNC 0x00000080
62
63 /*
64 * Set this bit if and only if the algorithm requires another algorithm of
65 * the same type to handle corner cases.
66 */
67 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100
68
69 /*
70 * Set if the algorithm has passed automated run-time testing. Note that
71 * if there is no run-time testing for a given algorithm it is considered
72 * to have passed.
73 */
74
75 #define CRYPTO_ALG_TESTED 0x00000400
76
77 /*
78 * Set if the algorithm is an instance that is built from templates.
79 */
80 #define CRYPTO_ALG_INSTANCE 0x00000800
81
82 /* Set this bit if the algorithm provided is hardware accelerated but
83 * not available to userspace via instruction set or so.
84 */
85 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
86
87 /*
88 * Mark a cipher as a service implementation only usable by another
89 * cipher and never by a normal user of the kernel crypto API
90 */
91 #define CRYPTO_ALG_INTERNAL 0x00002000
92
93 /*
94 * Set if the algorithm has a ->setkey() method but can be used without
95 * calling it first, i.e. there is a default key.
96 */
97 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000
98
99 /*
100 * Don't trigger module loading
101 */
102 #define CRYPTO_NOLOAD 0x00008000
103
104 /*
105 * Transform masks and values (for crt_flags).
106 */
107 #define CRYPTO_TFM_NEED_KEY 0x00000001
108
109 #define CRYPTO_TFM_REQ_MASK 0x000fff00
110 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100
111 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
112 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
113
114 /*
115 * Miscellaneous stuff.
116 */
117 #define CRYPTO_MAX_ALG_NAME 128
118
119 /*
120 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
121 * declaration) is used to ensure that the crypto_tfm context structure is
122 * aligned correctly for the given architecture so that there are no alignment
123 * faults for C data types. In particular, this is required on platforms such
124 * as arm where pointers are 32-bit aligned but there are data types such as
125 * u64 which require 64-bit alignment.
126 */
127 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
128
129 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
130
131 struct scatterlist;
132 struct crypto_async_request;
133 struct crypto_tfm;
134 struct crypto_type;
135
136 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
137
138 /**
139 * DOC: Block Cipher Context Data Structures
140 *
141 * These data structures define the operating context for each block cipher
142 * type.
143 */
144
145 struct crypto_async_request {
146 struct list_head list;
147 crypto_completion_t complete;
148 void *data;
149 struct crypto_tfm *tfm;
150
151 u32 flags;
152 };
153
154 /**
155 * DOC: Block Cipher Algorithm Definitions
156 *
157 * These data structures define modular crypto algorithm implementations,
158 * managed via crypto_register_alg() and crypto_unregister_alg().
159 */
160
161 /**
162 * struct cipher_alg - single-block symmetric ciphers definition
163 * @cia_min_keysize: Minimum key size supported by the transformation. This is
164 * the smallest key length supported by this transformation
165 * algorithm. This must be set to one of the pre-defined
166 * values as this is not hardware specific. Possible values
167 * for this field can be found via git grep "_MIN_KEY_SIZE"
168 * include/crypto/
169 * @cia_max_keysize: Maximum key size supported by the transformation. This is
170 * the largest key length supported by this transformation
171 * algorithm. This must be set to one of the pre-defined values
172 * as this is not hardware specific. Possible values for this
173 * field can be found via git grep "_MAX_KEY_SIZE"
174 * include/crypto/
175 * @cia_setkey: Set key for the transformation. This function is used to either
176 * program a supplied key into the hardware or store the key in the
177 * transformation context for programming it later. Note that this
178 * function does modify the transformation context. This function
179 * can be called multiple times during the existence of the
180 * transformation object, so one must make sure the key is properly
181 * reprogrammed into the hardware. This function is also
182 * responsible for checking the key length for validity.
183 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
184 * single block of data, which must be @cra_blocksize big. This
185 * always operates on a full @cra_blocksize and it is not possible
186 * to encrypt a block of smaller size. The supplied buffers must
187 * therefore also be at least of @cra_blocksize size. Both the
188 * input and output buffers are always aligned to @cra_alignmask.
189 * In case either of the input or output buffer supplied by user
190 * of the crypto API is not aligned to @cra_alignmask, the crypto
191 * API will re-align the buffers. The re-alignment means that a
192 * new buffer will be allocated, the data will be copied into the
193 * new buffer, then the processing will happen on the new buffer,
194 * then the data will be copied back into the original buffer and
195 * finally the new buffer will be freed. In case a software
196 * fallback was put in place in the @cra_init call, this function
197 * might need to use the fallback if the algorithm doesn't support
198 * all of the key sizes. In case the key was stored in
199 * transformation context, the key might need to be re-programmed
200 * into the hardware in this function. This function shall not
201 * modify the transformation context, as this function may be
202 * called in parallel with the same transformation object.
203 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
204 * @cia_encrypt, and the conditions are exactly the same.
205 *
206 * All fields are mandatory and must be filled.
207 */
208 struct cipher_alg {
209 unsigned int cia_min_keysize;
210 unsigned int cia_max_keysize;
211 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
212 unsigned int keylen);
213 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
214 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
215 };
216
217 /**
218 * struct compress_alg - compression/decompression algorithm
219 * @coa_compress: Compress a buffer of specified length, storing the resulting
220 * data in the specified buffer. Return the length of the
221 * compressed data in dlen.
222 * @coa_decompress: Decompress the source buffer, storing the uncompressed
223 * data in the specified buffer. The length of the data is
224 * returned in dlen.
225 *
226 * All fields are mandatory.
227 */
228 struct compress_alg {
229 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
230 unsigned int slen, u8 *dst, unsigned int *dlen);
231 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
232 unsigned int slen, u8 *dst, unsigned int *dlen);
233 };
234
235 #ifdef CONFIG_CRYPTO_STATS
236 /*
237 * struct crypto_istat_aead - statistics for AEAD algorithm
238 * @encrypt_cnt: number of encrypt requests
239 * @encrypt_tlen: total data size handled by encrypt requests
240 * @decrypt_cnt: number of decrypt requests
241 * @decrypt_tlen: total data size handled by decrypt requests
242 * @err_cnt: number of error for AEAD requests
243 */
244 struct crypto_istat_aead {
245 atomic64_t encrypt_cnt;
246 atomic64_t encrypt_tlen;
247 atomic64_t decrypt_cnt;
248 atomic64_t decrypt_tlen;
249 atomic64_t err_cnt;
250 };
251
252 /*
253 * struct crypto_istat_akcipher - statistics for akcipher algorithm
254 * @encrypt_cnt: number of encrypt requests
255 * @encrypt_tlen: total data size handled by encrypt requests
256 * @decrypt_cnt: number of decrypt requests
257 * @decrypt_tlen: total data size handled by decrypt requests
258 * @verify_cnt: number of verify operation
259 * @sign_cnt: number of sign requests
260 * @err_cnt: number of error for akcipher requests
261 */
262 struct crypto_istat_akcipher {
263 atomic64_t encrypt_cnt;
264 atomic64_t encrypt_tlen;
265 atomic64_t decrypt_cnt;
266 atomic64_t decrypt_tlen;
267 atomic64_t verify_cnt;
268 atomic64_t sign_cnt;
269 atomic64_t err_cnt;
270 };
271
272 /*
273 * struct crypto_istat_cipher - statistics for cipher algorithm
274 * @encrypt_cnt: number of encrypt requests
275 * @encrypt_tlen: total data size handled by encrypt requests
276 * @decrypt_cnt: number of decrypt requests
277 * @decrypt_tlen: total data size handled by decrypt requests
278 * @err_cnt: number of error for cipher requests
279 */
280 struct crypto_istat_cipher {
281 atomic64_t encrypt_cnt;
282 atomic64_t encrypt_tlen;
283 atomic64_t decrypt_cnt;
284 atomic64_t decrypt_tlen;
285 atomic64_t err_cnt;
286 };
287
288 /*
289 * struct crypto_istat_compress - statistics for compress algorithm
290 * @compress_cnt: number of compress requests
291 * @compress_tlen: total data size handled by compress requests
292 * @decompress_cnt: number of decompress requests
293 * @decompress_tlen: total data size handled by decompress requests
294 * @err_cnt: number of error for compress requests
295 */
296 struct crypto_istat_compress {
297 atomic64_t compress_cnt;
298 atomic64_t compress_tlen;
299 atomic64_t decompress_cnt;
300 atomic64_t decompress_tlen;
301 atomic64_t err_cnt;
302 };
303
304 /*
305 * struct crypto_istat_hash - statistics for has algorithm
306 * @hash_cnt: number of hash requests
307 * @hash_tlen: total data size hashed
308 * @err_cnt: number of error for hash requests
309 */
310 struct crypto_istat_hash {
311 atomic64_t hash_cnt;
312 atomic64_t hash_tlen;
313 atomic64_t err_cnt;
314 };
315
316 /*
317 * struct crypto_istat_kpp - statistics for KPP algorithm
318 * @setsecret_cnt: number of setsecrey operation
319 * @generate_public_key_cnt: number of generate_public_key operation
320 * @compute_shared_secret_cnt: number of compute_shared_secret operation
321 * @err_cnt: number of error for KPP requests
322 */
323 struct crypto_istat_kpp {
324 atomic64_t setsecret_cnt;
325 atomic64_t generate_public_key_cnt;
326 atomic64_t compute_shared_secret_cnt;
327 atomic64_t err_cnt;
328 };
329
330 /*
331 * struct crypto_istat_rng: statistics for RNG algorithm
332 * @generate_cnt: number of RNG generate requests
333 * @generate_tlen: total data size of generated data by the RNG
334 * @seed_cnt: number of times the RNG was seeded
335 * @err_cnt: number of error for RNG requests
336 */
337 struct crypto_istat_rng {
338 atomic64_t generate_cnt;
339 atomic64_t generate_tlen;
340 atomic64_t seed_cnt;
341 atomic64_t err_cnt;
342 };
343 #endif /* CONFIG_CRYPTO_STATS */
344
345 #define cra_cipher cra_u.cipher
346 #define cra_compress cra_u.compress
347
348 /**
349 * struct crypto_alg - definition of a cryptograpic cipher algorithm
350 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
351 * CRYPTO_ALG_* flags for the flags which go in here. Those are
352 * used for fine-tuning the description of the transformation
353 * algorithm.
354 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
355 * of the smallest possible unit which can be transformed with
356 * this algorithm. The users must respect this value.
357 * In case of HASH transformation, it is possible for a smaller
358 * block than @cra_blocksize to be passed to the crypto API for
359 * transformation, in case of any other transformation type, an
360 * error will be returned upon any attempt to transform smaller
361 * than @cra_blocksize chunks.
362 * @cra_ctxsize: Size of the operational context of the transformation. This
363 * value informs the kernel crypto API about the memory size
364 * needed to be allocated for the transformation context.
365 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
366 * buffer containing the input data for the algorithm must be
367 * aligned to this alignment mask. The data buffer for the
368 * output data must be aligned to this alignment mask. Note that
369 * the Crypto API will do the re-alignment in software, but
370 * only under special conditions and there is a performance hit.
371 * The re-alignment happens at these occasions for different
372 * @cra_u types: cipher -- For both input data and output data
373 * buffer; ahash -- For output hash destination buf; shash --
374 * For output hash destination buf.
375 * This is needed on hardware which is flawed by design and
376 * cannot pick data from arbitrary addresses.
377 * @cra_priority: Priority of this transformation implementation. In case
378 * multiple transformations with same @cra_name are available to
379 * the Crypto API, the kernel will use the one with highest
380 * @cra_priority.
381 * @cra_name: Generic name (usable by multiple implementations) of the
382 * transformation algorithm. This is the name of the transformation
383 * itself. This field is used by the kernel when looking up the
384 * providers of particular transformation.
385 * @cra_driver_name: Unique name of the transformation provider. This is the
386 * name of the provider of the transformation. This can be any
387 * arbitrary value, but in the usual case, this contains the
388 * name of the chip or provider and the name of the
389 * transformation algorithm.
390 * @cra_type: Type of the cryptographic transformation. This is a pointer to
391 * struct crypto_type, which implements callbacks common for all
392 * transformation types. There are multiple options, such as
393 * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type.
394 * This field might be empty. In that case, there are no common
395 * callbacks. This is the case for: cipher, compress, shash.
396 * @cra_u: Callbacks implementing the transformation. This is a union of
397 * multiple structures. Depending on the type of transformation selected
398 * by @cra_type and @cra_flags above, the associated structure must be
399 * filled with callbacks. This field might be empty. This is the case
400 * for ahash, shash.
401 * @cra_init: Initialize the cryptographic transformation object. This function
402 * is used to initialize the cryptographic transformation object.
403 * This function is called only once at the instantiation time, right
404 * after the transformation context was allocated. In case the
405 * cryptographic hardware has some special requirements which need to
406 * be handled by software, this function shall check for the precise
407 * requirement of the transformation and put any software fallbacks
408 * in place.
409 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
410 * counterpart to @cra_init, used to remove various changes set in
411 * @cra_init.
412 * @cra_u.cipher: Union member which contains a single-block symmetric cipher
413 * definition. See @struct @cipher_alg.
414 * @cra_u.compress: Union member which contains a (de)compression algorithm.
415 * See @struct @compress_alg.
416 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
417 * @cra_list: internally used
418 * @cra_users: internally used
419 * @cra_refcnt: internally used
420 * @cra_destroy: internally used
421 *
422 * @stats: union of all possible crypto_istat_xxx structures
423 * @stats.aead: statistics for AEAD algorithm
424 * @stats.akcipher: statistics for akcipher algorithm
425 * @stats.cipher: statistics for cipher algorithm
426 * @stats.compress: statistics for compress algorithm
427 * @stats.hash: statistics for hash algorithm
428 * @stats.rng: statistics for rng algorithm
429 * @stats.kpp: statistics for KPP algorithm
430 *
431 * The struct crypto_alg describes a generic Crypto API algorithm and is common
432 * for all of the transformations. Any variable not documented here shall not
433 * be used by a cipher implementation as it is internal to the Crypto API.
434 */
435 struct crypto_alg {
436 struct list_head cra_list;
437 struct list_head cra_users;
438
439 u32 cra_flags;
440 unsigned int cra_blocksize;
441 unsigned int cra_ctxsize;
442 unsigned int cra_alignmask;
443
444 int cra_priority;
445 refcount_t cra_refcnt;
446
447 char cra_name[CRYPTO_MAX_ALG_NAME];
448 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
449
450 const struct crypto_type *cra_type;
451
452 union {
453 struct cipher_alg cipher;
454 struct compress_alg compress;
455 } cra_u;
456
457 int (*cra_init)(struct crypto_tfm *tfm);
458 void (*cra_exit)(struct crypto_tfm *tfm);
459 void (*cra_destroy)(struct crypto_alg *alg);
460
461 struct module *cra_module;
462
463 #ifdef CONFIG_CRYPTO_STATS
464 union {
465 struct crypto_istat_aead aead;
466 struct crypto_istat_akcipher akcipher;
467 struct crypto_istat_cipher cipher;
468 struct crypto_istat_compress compress;
469 struct crypto_istat_hash hash;
470 struct crypto_istat_rng rng;
471 struct crypto_istat_kpp kpp;
472 } stats;
473 #endif /* CONFIG_CRYPTO_STATS */
474
475 } CRYPTO_MINALIGN_ATTR;
476
477 #ifdef CONFIG_CRYPTO_STATS
478 void crypto_stats_init(struct crypto_alg *alg);
479 void crypto_stats_get(struct crypto_alg *alg);
480 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
481 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
482 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
483 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
484 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
485 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
486 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
487 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
488 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
489 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
490 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
491 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
492 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
493 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
494 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
495 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
496 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
497 #else
498 static inline void crypto_stats_init(struct crypto_alg *alg)
499 {}
500 static inline void crypto_stats_get(struct crypto_alg *alg)
501 {}
502 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
503 {}
504 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
505 {}
506 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
507 {}
508 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
509 {}
510 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
511 {}
512 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
513 {}
514 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
515 {}
516 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
517 {}
518 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
519 {}
520 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
521 {}
522 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
523 {}
524 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
525 {}
526 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
527 {}
528 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
529 {}
530 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
531 {}
532 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
533 {}
534 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
535 {}
536 #endif
537 /*
538 * A helper struct for waiting for completion of async crypto ops
539 */
540 struct crypto_wait {
541 struct completion completion;
542 int err;
543 };
544
545 /*
546 * Macro for declaring a crypto op async wait object on stack
547 */
548 #define DECLARE_CRYPTO_WAIT(_wait) \
549 struct crypto_wait _wait = { \
550 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
551
552 /*
553 * Async ops completion helper functioons
554 */
555 void crypto_req_done(struct crypto_async_request *req, int err);
556
557 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
558 {
559 switch (err) {
560 case -EINPROGRESS:
561 case -EBUSY:
562 wait_for_completion(&wait->completion);
563 reinit_completion(&wait->completion);
564 err = wait->err;
565 break;
566 }
567
568 return err;
569 }
570
571 static inline void crypto_init_wait(struct crypto_wait *wait)
572 {
573 init_completion(&wait->completion);
574 }
575
576 /*
577 * Algorithm registration interface.
578 */
579 int crypto_register_alg(struct crypto_alg *alg);
580 void crypto_unregister_alg(struct crypto_alg *alg);
581 int crypto_register_algs(struct crypto_alg *algs, int count);
582 void crypto_unregister_algs(struct crypto_alg *algs, int count);
583
584 /*
585 * Algorithm query interface.
586 */
587 int crypto_has_alg(const char *name, u32 type, u32 mask);
588
589 /*
590 * Transforms: user-instantiated objects which encapsulate algorithms
591 * and core processing logic. Managed via crypto_alloc_*() and
592 * crypto_free_*(), as well as the various helpers below.
593 */
594
595 struct crypto_tfm {
596
597 u32 crt_flags;
598
599 void (*exit)(struct crypto_tfm *tfm);
600
601 struct crypto_alg *__crt_alg;
602
603 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
604 };
605
606 struct crypto_cipher {
607 struct crypto_tfm base;
608 };
609
610 struct crypto_comp {
611 struct crypto_tfm base;
612 };
613
614 enum {
615 CRYPTOA_UNSPEC,
616 CRYPTOA_ALG,
617 CRYPTOA_TYPE,
618 CRYPTOA_U32,
619 __CRYPTOA_MAX,
620 };
621
622 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
623
624 /* Maximum number of (rtattr) parameters for each template. */
625 #define CRYPTO_MAX_ATTRS 32
626
627 struct crypto_attr_alg {
628 char name[CRYPTO_MAX_ALG_NAME];
629 };
630
631 struct crypto_attr_type {
632 u32 type;
633 u32 mask;
634 };
635
636 struct crypto_attr_u32 {
637 u32 num;
638 };
639
640 /*
641 * Transform user interface.
642 */
643
644 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
645 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
646
647 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
648 {
649 return crypto_destroy_tfm(tfm, tfm);
650 }
651
652 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
653
654 /*
655 * Transform helpers which query the underlying algorithm.
656 */
657 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
658 {
659 return tfm->__crt_alg->cra_name;
660 }
661
662 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
663 {
664 return tfm->__crt_alg->cra_driver_name;
665 }
666
667 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
668 {
669 return tfm->__crt_alg->cra_priority;
670 }
671
672 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
673 {
674 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
675 }
676
677 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
678 {
679 return tfm->__crt_alg->cra_blocksize;
680 }
681
682 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
683 {
684 return tfm->__crt_alg->cra_alignmask;
685 }
686
687 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
688 {
689 return tfm->crt_flags;
690 }
691
692 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
693 {
694 tfm->crt_flags |= flags;
695 }
696
697 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
698 {
699 tfm->crt_flags &= ~flags;
700 }
701
702 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
703 {
704 return tfm->__crt_ctx;
705 }
706
707 static inline unsigned int crypto_tfm_ctx_alignment(void)
708 {
709 struct crypto_tfm *tfm;
710 return __alignof__(tfm->__crt_ctx);
711 }
712
713 /**
714 * DOC: Single Block Cipher API
715 *
716 * The single block cipher API is used with the ciphers of type
717 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
718 *
719 * Using the single block cipher API calls, operations with the basic cipher
720 * primitive can be implemented. These cipher primitives exclude any block
721 * chaining operations including IV handling.
722 *
723 * The purpose of this single block cipher API is to support the implementation
724 * of templates or other concepts that only need to perform the cipher operation
725 * on one block at a time. Templates invoke the underlying cipher primitive
726 * block-wise and process either the input or the output data of these cipher
727 * operations.
728 */
729
730 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
731 {
732 return (struct crypto_cipher *)tfm;
733 }
734
735 /**
736 * crypto_alloc_cipher() - allocate single block cipher handle
737 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
738 * single block cipher
739 * @type: specifies the type of the cipher
740 * @mask: specifies the mask for the cipher
741 *
742 * Allocate a cipher handle for a single block cipher. The returned struct
743 * crypto_cipher is the cipher handle that is required for any subsequent API
744 * invocation for that single block cipher.
745 *
746 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
747 * of an error, PTR_ERR() returns the error code.
748 */
749 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
750 u32 type, u32 mask)
751 {
752 type &= ~CRYPTO_ALG_TYPE_MASK;
753 type |= CRYPTO_ALG_TYPE_CIPHER;
754 mask |= CRYPTO_ALG_TYPE_MASK;
755
756 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
757 }
758
759 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
760 {
761 return &tfm->base;
762 }
763
764 /**
765 * crypto_free_cipher() - zeroize and free the single block cipher handle
766 * @tfm: cipher handle to be freed
767 */
768 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
769 {
770 crypto_free_tfm(crypto_cipher_tfm(tfm));
771 }
772
773 /**
774 * crypto_has_cipher() - Search for the availability of a single block cipher
775 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
776 * single block cipher
777 * @type: specifies the type of the cipher
778 * @mask: specifies the mask for the cipher
779 *
780 * Return: true when the single block cipher is known to the kernel crypto API;
781 * false otherwise
782 */
783 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
784 {
785 type &= ~CRYPTO_ALG_TYPE_MASK;
786 type |= CRYPTO_ALG_TYPE_CIPHER;
787 mask |= CRYPTO_ALG_TYPE_MASK;
788
789 return crypto_has_alg(alg_name, type, mask);
790 }
791
792 /**
793 * crypto_cipher_blocksize() - obtain block size for cipher
794 * @tfm: cipher handle
795 *
796 * The block size for the single block cipher referenced with the cipher handle
797 * tfm is returned. The caller may use that information to allocate appropriate
798 * memory for the data returned by the encryption or decryption operation
799 *
800 * Return: block size of cipher
801 */
802 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
803 {
804 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
805 }
806
807 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
808 {
809 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
810 }
811
812 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
813 {
814 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
815 }
816
817 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
818 u32 flags)
819 {
820 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
821 }
822
823 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
824 u32 flags)
825 {
826 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
827 }
828
829 /**
830 * crypto_cipher_setkey() - set key for cipher
831 * @tfm: cipher handle
832 * @key: buffer holding the key
833 * @keylen: length of the key in bytes
834 *
835 * The caller provided key is set for the single block cipher referenced by the
836 * cipher handle.
837 *
838 * Note, the key length determines the cipher type. Many block ciphers implement
839 * different cipher modes depending on the key size, such as AES-128 vs AES-192
840 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
841 * is performed.
842 *
843 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
844 */
845 int crypto_cipher_setkey(struct crypto_cipher *tfm,
846 const u8 *key, unsigned int keylen);
847
848 /**
849 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
850 * @tfm: cipher handle
851 * @dst: points to the buffer that will be filled with the ciphertext
852 * @src: buffer holding the plaintext to be encrypted
853 *
854 * Invoke the encryption operation of one block. The caller must ensure that
855 * the plaintext and ciphertext buffers are at least one block in size.
856 */
857 void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
858 u8 *dst, const u8 *src);
859
860 /**
861 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
862 * @tfm: cipher handle
863 * @dst: points to the buffer that will be filled with the plaintext
864 * @src: buffer holding the ciphertext to be decrypted
865 *
866 * Invoke the decryption operation of one block. The caller must ensure that
867 * the plaintext and ciphertext buffers are at least one block in size.
868 */
869 void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
870 u8 *dst, const u8 *src);
871
872 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
873 {
874 return (struct crypto_comp *)tfm;
875 }
876
877 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
878 u32 type, u32 mask)
879 {
880 type &= ~CRYPTO_ALG_TYPE_MASK;
881 type |= CRYPTO_ALG_TYPE_COMPRESS;
882 mask |= CRYPTO_ALG_TYPE_MASK;
883
884 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
885 }
886
887 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
888 {
889 return &tfm->base;
890 }
891
892 static inline void crypto_free_comp(struct crypto_comp *tfm)
893 {
894 crypto_free_tfm(crypto_comp_tfm(tfm));
895 }
896
897 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
898 {
899 type &= ~CRYPTO_ALG_TYPE_MASK;
900 type |= CRYPTO_ALG_TYPE_COMPRESS;
901 mask |= CRYPTO_ALG_TYPE_MASK;
902
903 return crypto_has_alg(alg_name, type, mask);
904 }
905
906 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
907 {
908 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
909 }
910
911 int crypto_comp_compress(struct crypto_comp *tfm,
912 const u8 *src, unsigned int slen,
913 u8 *dst, unsigned int *dlen);
914
915 int crypto_comp_decompress(struct crypto_comp *tfm,
916 const u8 *src, unsigned int slen,
917 u8 *dst, unsigned int *dlen);
918
919 #endif /* _LINUX_CRYPTO_H */
920