]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/crypto.h
Merge git://www.linux-watchdog.org/linux-watchdog
[mirror_ubuntu-bionic-kernel.git] / include / linux / crypto.h
1 /*
2 * Scatterlist Cryptographic API.
3 *
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
7 *
8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
9 * and Nettle, by Niels Möller.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 *
16 */
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
19
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27
28 /*
29 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
30 * arbitrary modules to be loaded. Loading from userspace may still need the
31 * unprefixed names, so retains those aliases as well.
32 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
33 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
34 * expands twice on the same line. Instead, use a separate base name for the
35 * alias.
36 */
37 #define MODULE_ALIAS_CRYPTO(name) \
38 __MODULE_INFO(alias, alias_userspace, name); \
39 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
40
41 /*
42 * Algorithm masks and types.
43 */
44 #define CRYPTO_ALG_TYPE_MASK 0x0000000f
45 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001
46 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
47 #define CRYPTO_ALG_TYPE_AEAD 0x00000003
48 #define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004
49 #define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005
50 #define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006
51 #define CRYPTO_ALG_TYPE_DIGEST 0x00000008
52 #define CRYPTO_ALG_TYPE_HASH 0x00000008
53 #define CRYPTO_ALG_TYPE_SHASH 0x00000009
54 #define CRYPTO_ALG_TYPE_AHASH 0x0000000a
55 #define CRYPTO_ALG_TYPE_RNG 0x0000000c
56 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
57 #define CRYPTO_ALG_TYPE_PCOMPRESS 0x0000000f
58
59 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
60 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000c
61 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c
62
63 #define CRYPTO_ALG_LARVAL 0x00000010
64 #define CRYPTO_ALG_DEAD 0x00000020
65 #define CRYPTO_ALG_DYING 0x00000040
66 #define CRYPTO_ALG_ASYNC 0x00000080
67
68 /*
69 * Set this bit if and only if the algorithm requires another algorithm of
70 * the same type to handle corner cases.
71 */
72 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100
73
74 /*
75 * This bit is set for symmetric key ciphers that have already been wrapped
76 * with a generic IV generator to prevent them from being wrapped again.
77 */
78 #define CRYPTO_ALG_GENIV 0x00000200
79
80 /*
81 * Set if the algorithm has passed automated run-time testing. Note that
82 * if there is no run-time testing for a given algorithm it is considered
83 * to have passed.
84 */
85
86 #define CRYPTO_ALG_TESTED 0x00000400
87
88 /*
89 * Set if the algorithm is an instance that is build from templates.
90 */
91 #define CRYPTO_ALG_INSTANCE 0x00000800
92
93 /* Set this bit if the algorithm provided is hardware accelerated but
94 * not available to userspace via instruction set or so.
95 */
96 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
97
98 /*
99 * Mark a cipher as a service implementation only usable by another
100 * cipher and never by a normal user of the kernel crypto API
101 */
102 #define CRYPTO_ALG_INTERNAL 0x00002000
103
104 /*
105 * Temporary flag used to prevent legacy AEAD implementations from
106 * being used by user-space.
107 */
108 #define CRYPTO_ALG_AEAD_NEW 0x00004000
109
110 /*
111 * Transform masks and values (for crt_flags).
112 */
113 #define CRYPTO_TFM_REQ_MASK 0x000fff00
114 #define CRYPTO_TFM_RES_MASK 0xfff00000
115
116 #define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100
117 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
118 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
119 #define CRYPTO_TFM_RES_WEAK_KEY 0x00100000
120 #define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000
121 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000
122 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000
123 #define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000
124
125 /*
126 * Miscellaneous stuff.
127 */
128 #define CRYPTO_MAX_ALG_NAME 64
129
130 /*
131 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
132 * declaration) is used to ensure that the crypto_tfm context structure is
133 * aligned correctly for the given architecture so that there are no alignment
134 * faults for C data types. In particular, this is required on platforms such
135 * as arm where pointers are 32-bit aligned but there are data types such as
136 * u64 which require 64-bit alignment.
137 */
138 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
139
140 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
141
142 struct scatterlist;
143 struct crypto_ablkcipher;
144 struct crypto_async_request;
145 struct crypto_aead;
146 struct crypto_blkcipher;
147 struct crypto_hash;
148 struct crypto_tfm;
149 struct crypto_type;
150 struct aead_request;
151 struct aead_givcrypt_request;
152 struct skcipher_givcrypt_request;
153
154 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
155
156 /**
157 * DOC: Block Cipher Context Data Structures
158 *
159 * These data structures define the operating context for each block cipher
160 * type.
161 */
162
163 struct crypto_async_request {
164 struct list_head list;
165 crypto_completion_t complete;
166 void *data;
167 struct crypto_tfm *tfm;
168
169 u32 flags;
170 };
171
172 struct ablkcipher_request {
173 struct crypto_async_request base;
174
175 unsigned int nbytes;
176
177 void *info;
178
179 struct scatterlist *src;
180 struct scatterlist *dst;
181
182 void *__ctx[] CRYPTO_MINALIGN_ATTR;
183 };
184
185 struct blkcipher_desc {
186 struct crypto_blkcipher *tfm;
187 void *info;
188 u32 flags;
189 };
190
191 struct cipher_desc {
192 struct crypto_tfm *tfm;
193 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
194 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
195 const u8 *src, unsigned int nbytes);
196 void *info;
197 };
198
199 struct hash_desc {
200 struct crypto_hash *tfm;
201 u32 flags;
202 };
203
204 /**
205 * DOC: Block Cipher Algorithm Definitions
206 *
207 * These data structures define modular crypto algorithm implementations,
208 * managed via crypto_register_alg() and crypto_unregister_alg().
209 */
210
211 /**
212 * struct ablkcipher_alg - asynchronous block cipher definition
213 * @min_keysize: Minimum key size supported by the transformation. This is the
214 * smallest key length supported by this transformation algorithm.
215 * This must be set to one of the pre-defined values as this is
216 * not hardware specific. Possible values for this field can be
217 * found via git grep "_MIN_KEY_SIZE" include/crypto/
218 * @max_keysize: Maximum key size supported by the transformation. This is the
219 * largest key length supported by this transformation algorithm.
220 * This must be set to one of the pre-defined values as this is
221 * not hardware specific. Possible values for this field can be
222 * found via git grep "_MAX_KEY_SIZE" include/crypto/
223 * @setkey: Set key for the transformation. This function is used to either
224 * program a supplied key into the hardware or store the key in the
225 * transformation context for programming it later. Note that this
226 * function does modify the transformation context. This function can
227 * be called multiple times during the existence of the transformation
228 * object, so one must make sure the key is properly reprogrammed into
229 * the hardware. This function is also responsible for checking the key
230 * length for validity. In case a software fallback was put in place in
231 * the @cra_init call, this function might need to use the fallback if
232 * the algorithm doesn't support all of the key sizes.
233 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
234 * the supplied scatterlist containing the blocks of data. The crypto
235 * API consumer is responsible for aligning the entries of the
236 * scatterlist properly and making sure the chunks are correctly
237 * sized. In case a software fallback was put in place in the
238 * @cra_init call, this function might need to use the fallback if
239 * the algorithm doesn't support all of the key sizes. In case the
240 * key was stored in transformation context, the key might need to be
241 * re-programmed into the hardware in this function. This function
242 * shall not modify the transformation context, as this function may
243 * be called in parallel with the same transformation object.
244 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
245 * and the conditions are exactly the same.
246 * @givencrypt: Update the IV for encryption. With this function, a cipher
247 * implementation may provide the function on how to update the IV
248 * for encryption.
249 * @givdecrypt: Update the IV for decryption. This is the reverse of
250 * @givencrypt .
251 * @geniv: The transformation implementation may use an "IV generator" provided
252 * by the kernel crypto API. Several use cases have a predefined
253 * approach how IVs are to be updated. For such use cases, the kernel
254 * crypto API provides ready-to-use implementations that can be
255 * referenced with this variable.
256 * @ivsize: IV size applicable for transformation. The consumer must provide an
257 * IV of exactly that size to perform the encrypt or decrypt operation.
258 *
259 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
260 * mandatory and must be filled.
261 */
262 struct ablkcipher_alg {
263 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
264 unsigned int keylen);
265 int (*encrypt)(struct ablkcipher_request *req);
266 int (*decrypt)(struct ablkcipher_request *req);
267 int (*givencrypt)(struct skcipher_givcrypt_request *req);
268 int (*givdecrypt)(struct skcipher_givcrypt_request *req);
269
270 const char *geniv;
271
272 unsigned int min_keysize;
273 unsigned int max_keysize;
274 unsigned int ivsize;
275 };
276
277 /**
278 * struct old_aead_alg - AEAD cipher definition
279 * @maxauthsize: Set the maximum authentication tag size supported by the
280 * transformation. A transformation may support smaller tag sizes.
281 * As the authentication tag is a message digest to ensure the
282 * integrity of the encrypted data, a consumer typically wants the
283 * largest authentication tag possible as defined by this
284 * variable.
285 * @setauthsize: Set authentication size for the AEAD transformation. This
286 * function is used to specify the consumer requested size of the
287 * authentication tag to be either generated by the transformation
288 * during encryption or the size of the authentication tag to be
289 * supplied during the decryption operation. This function is also
290 * responsible for checking the authentication tag size for
291 * validity.
292 * @setkey: see struct ablkcipher_alg
293 * @encrypt: see struct ablkcipher_alg
294 * @decrypt: see struct ablkcipher_alg
295 * @givencrypt: see struct ablkcipher_alg
296 * @givdecrypt: see struct ablkcipher_alg
297 * @geniv: see struct ablkcipher_alg
298 * @ivsize: see struct ablkcipher_alg
299 *
300 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
301 * mandatory and must be filled.
302 */
303 struct old_aead_alg {
304 int (*setkey)(struct crypto_aead *tfm, const u8 *key,
305 unsigned int keylen);
306 int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
307 int (*encrypt)(struct aead_request *req);
308 int (*decrypt)(struct aead_request *req);
309 int (*givencrypt)(struct aead_givcrypt_request *req);
310 int (*givdecrypt)(struct aead_givcrypt_request *req);
311
312 const char *geniv;
313
314 unsigned int ivsize;
315 unsigned int maxauthsize;
316 };
317
318 /**
319 * struct blkcipher_alg - synchronous block cipher definition
320 * @min_keysize: see struct ablkcipher_alg
321 * @max_keysize: see struct ablkcipher_alg
322 * @setkey: see struct ablkcipher_alg
323 * @encrypt: see struct ablkcipher_alg
324 * @decrypt: see struct ablkcipher_alg
325 * @geniv: see struct ablkcipher_alg
326 * @ivsize: see struct ablkcipher_alg
327 *
328 * All fields except @geniv and @ivsize are mandatory and must be filled.
329 */
330 struct blkcipher_alg {
331 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
332 unsigned int keylen);
333 int (*encrypt)(struct blkcipher_desc *desc,
334 struct scatterlist *dst, struct scatterlist *src,
335 unsigned int nbytes);
336 int (*decrypt)(struct blkcipher_desc *desc,
337 struct scatterlist *dst, struct scatterlist *src,
338 unsigned int nbytes);
339
340 const char *geniv;
341
342 unsigned int min_keysize;
343 unsigned int max_keysize;
344 unsigned int ivsize;
345 };
346
347 /**
348 * struct cipher_alg - single-block symmetric ciphers definition
349 * @cia_min_keysize: Minimum key size supported by the transformation. This is
350 * the smallest key length supported by this transformation
351 * algorithm. This must be set to one of the pre-defined
352 * values as this is not hardware specific. Possible values
353 * for this field can be found via git grep "_MIN_KEY_SIZE"
354 * include/crypto/
355 * @cia_max_keysize: Maximum key size supported by the transformation. This is
356 * the largest key length supported by this transformation
357 * algorithm. This must be set to one of the pre-defined values
358 * as this is not hardware specific. Possible values for this
359 * field can be found via git grep "_MAX_KEY_SIZE"
360 * include/crypto/
361 * @cia_setkey: Set key for the transformation. This function is used to either
362 * program a supplied key into the hardware or store the key in the
363 * transformation context for programming it later. Note that this
364 * function does modify the transformation context. This function
365 * can be called multiple times during the existence of the
366 * transformation object, so one must make sure the key is properly
367 * reprogrammed into the hardware. This function is also
368 * responsible for checking the key length for validity.
369 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
370 * single block of data, which must be @cra_blocksize big. This
371 * always operates on a full @cra_blocksize and it is not possible
372 * to encrypt a block of smaller size. The supplied buffers must
373 * therefore also be at least of @cra_blocksize size. Both the
374 * input and output buffers are always aligned to @cra_alignmask.
375 * In case either of the input or output buffer supplied by user
376 * of the crypto API is not aligned to @cra_alignmask, the crypto
377 * API will re-align the buffers. The re-alignment means that a
378 * new buffer will be allocated, the data will be copied into the
379 * new buffer, then the processing will happen on the new buffer,
380 * then the data will be copied back into the original buffer and
381 * finally the new buffer will be freed. In case a software
382 * fallback was put in place in the @cra_init call, this function
383 * might need to use the fallback if the algorithm doesn't support
384 * all of the key sizes. In case the key was stored in
385 * transformation context, the key might need to be re-programmed
386 * into the hardware in this function. This function shall not
387 * modify the transformation context, as this function may be
388 * called in parallel with the same transformation object.
389 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
390 * @cia_encrypt, and the conditions are exactly the same.
391 *
392 * All fields are mandatory and must be filled.
393 */
394 struct cipher_alg {
395 unsigned int cia_min_keysize;
396 unsigned int cia_max_keysize;
397 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
398 unsigned int keylen);
399 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
400 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
401 };
402
403 struct compress_alg {
404 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
405 unsigned int slen, u8 *dst, unsigned int *dlen);
406 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
407 unsigned int slen, u8 *dst, unsigned int *dlen);
408 };
409
410
411 #define cra_ablkcipher cra_u.ablkcipher
412 #define cra_aead cra_u.aead
413 #define cra_blkcipher cra_u.blkcipher
414 #define cra_cipher cra_u.cipher
415 #define cra_compress cra_u.compress
416
417 /**
418 * struct crypto_alg - definition of a cryptograpic cipher algorithm
419 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
420 * CRYPTO_ALG_* flags for the flags which go in here. Those are
421 * used for fine-tuning the description of the transformation
422 * algorithm.
423 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
424 * of the smallest possible unit which can be transformed with
425 * this algorithm. The users must respect this value.
426 * In case of HASH transformation, it is possible for a smaller
427 * block than @cra_blocksize to be passed to the crypto API for
428 * transformation, in case of any other transformation type, an
429 * error will be returned upon any attempt to transform smaller
430 * than @cra_blocksize chunks.
431 * @cra_ctxsize: Size of the operational context of the transformation. This
432 * value informs the kernel crypto API about the memory size
433 * needed to be allocated for the transformation context.
434 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
435 * buffer containing the input data for the algorithm must be
436 * aligned to this alignment mask. The data buffer for the
437 * output data must be aligned to this alignment mask. Note that
438 * the Crypto API will do the re-alignment in software, but
439 * only under special conditions and there is a performance hit.
440 * The re-alignment happens at these occasions for different
441 * @cra_u types: cipher -- For both input data and output data
442 * buffer; ahash -- For output hash destination buf; shash --
443 * For output hash destination buf.
444 * This is needed on hardware which is flawed by design and
445 * cannot pick data from arbitrary addresses.
446 * @cra_priority: Priority of this transformation implementation. In case
447 * multiple transformations with same @cra_name are available to
448 * the Crypto API, the kernel will use the one with highest
449 * @cra_priority.
450 * @cra_name: Generic name (usable by multiple implementations) of the
451 * transformation algorithm. This is the name of the transformation
452 * itself. This field is used by the kernel when looking up the
453 * providers of particular transformation.
454 * @cra_driver_name: Unique name of the transformation provider. This is the
455 * name of the provider of the transformation. This can be any
456 * arbitrary value, but in the usual case, this contains the
457 * name of the chip or provider and the name of the
458 * transformation algorithm.
459 * @cra_type: Type of the cryptographic transformation. This is a pointer to
460 * struct crypto_type, which implements callbacks common for all
461 * transformation types. There are multiple options:
462 * &crypto_blkcipher_type, &crypto_ablkcipher_type,
463 * &crypto_ahash_type, &crypto_aead_type, &crypto_rng_type.
464 * This field might be empty. In that case, there are no common
465 * callbacks. This is the case for: cipher, compress, shash.
466 * @cra_u: Callbacks implementing the transformation. This is a union of
467 * multiple structures. Depending on the type of transformation selected
468 * by @cra_type and @cra_flags above, the associated structure must be
469 * filled with callbacks. This field might be empty. This is the case
470 * for ahash, shash.
471 * @cra_init: Initialize the cryptographic transformation object. This function
472 * is used to initialize the cryptographic transformation object.
473 * This function is called only once at the instantiation time, right
474 * after the transformation context was allocated. In case the
475 * cryptographic hardware has some special requirements which need to
476 * be handled by software, this function shall check for the precise
477 * requirement of the transformation and put any software fallbacks
478 * in place.
479 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
480 * counterpart to @cra_init, used to remove various changes set in
481 * @cra_init.
482 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
483 * @cra_list: internally used
484 * @cra_users: internally used
485 * @cra_refcnt: internally used
486 * @cra_destroy: internally used
487 *
488 * The struct crypto_alg describes a generic Crypto API algorithm and is common
489 * for all of the transformations. Any variable not documented here shall not
490 * be used by a cipher implementation as it is internal to the Crypto API.
491 */
492 struct crypto_alg {
493 struct list_head cra_list;
494 struct list_head cra_users;
495
496 u32 cra_flags;
497 unsigned int cra_blocksize;
498 unsigned int cra_ctxsize;
499 unsigned int cra_alignmask;
500
501 int cra_priority;
502 atomic_t cra_refcnt;
503
504 char cra_name[CRYPTO_MAX_ALG_NAME];
505 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
506
507 const struct crypto_type *cra_type;
508
509 union {
510 struct ablkcipher_alg ablkcipher;
511 struct old_aead_alg aead;
512 struct blkcipher_alg blkcipher;
513 struct cipher_alg cipher;
514 struct compress_alg compress;
515 } cra_u;
516
517 int (*cra_init)(struct crypto_tfm *tfm);
518 void (*cra_exit)(struct crypto_tfm *tfm);
519 void (*cra_destroy)(struct crypto_alg *alg);
520
521 struct module *cra_module;
522 } CRYPTO_MINALIGN_ATTR;
523
524 /*
525 * Algorithm registration interface.
526 */
527 int crypto_register_alg(struct crypto_alg *alg);
528 int crypto_unregister_alg(struct crypto_alg *alg);
529 int crypto_register_algs(struct crypto_alg *algs, int count);
530 int crypto_unregister_algs(struct crypto_alg *algs, int count);
531
532 /*
533 * Algorithm query interface.
534 */
535 int crypto_has_alg(const char *name, u32 type, u32 mask);
536
537 /*
538 * Transforms: user-instantiated objects which encapsulate algorithms
539 * and core processing logic. Managed via crypto_alloc_*() and
540 * crypto_free_*(), as well as the various helpers below.
541 */
542
543 struct ablkcipher_tfm {
544 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
545 unsigned int keylen);
546 int (*encrypt)(struct ablkcipher_request *req);
547 int (*decrypt)(struct ablkcipher_request *req);
548 int (*givencrypt)(struct skcipher_givcrypt_request *req);
549 int (*givdecrypt)(struct skcipher_givcrypt_request *req);
550
551 struct crypto_ablkcipher *base;
552
553 unsigned int ivsize;
554 unsigned int reqsize;
555 };
556
557 struct blkcipher_tfm {
558 void *iv;
559 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
560 unsigned int keylen);
561 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
562 struct scatterlist *src, unsigned int nbytes);
563 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
564 struct scatterlist *src, unsigned int nbytes);
565 };
566
567 struct cipher_tfm {
568 int (*cit_setkey)(struct crypto_tfm *tfm,
569 const u8 *key, unsigned int keylen);
570 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
571 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
572 };
573
574 struct hash_tfm {
575 int (*init)(struct hash_desc *desc);
576 int (*update)(struct hash_desc *desc,
577 struct scatterlist *sg, unsigned int nsg);
578 int (*final)(struct hash_desc *desc, u8 *out);
579 int (*digest)(struct hash_desc *desc, struct scatterlist *sg,
580 unsigned int nsg, u8 *out);
581 int (*setkey)(struct crypto_hash *tfm, const u8 *key,
582 unsigned int keylen);
583 unsigned int digestsize;
584 };
585
586 struct compress_tfm {
587 int (*cot_compress)(struct crypto_tfm *tfm,
588 const u8 *src, unsigned int slen,
589 u8 *dst, unsigned int *dlen);
590 int (*cot_decompress)(struct crypto_tfm *tfm,
591 const u8 *src, unsigned int slen,
592 u8 *dst, unsigned int *dlen);
593 };
594
595 #define crt_ablkcipher crt_u.ablkcipher
596 #define crt_blkcipher crt_u.blkcipher
597 #define crt_cipher crt_u.cipher
598 #define crt_hash crt_u.hash
599 #define crt_compress crt_u.compress
600
601 struct crypto_tfm {
602
603 u32 crt_flags;
604
605 union {
606 struct ablkcipher_tfm ablkcipher;
607 struct blkcipher_tfm blkcipher;
608 struct cipher_tfm cipher;
609 struct hash_tfm hash;
610 struct compress_tfm compress;
611 } crt_u;
612
613 void (*exit)(struct crypto_tfm *tfm);
614
615 struct crypto_alg *__crt_alg;
616
617 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
618 };
619
620 struct crypto_ablkcipher {
621 struct crypto_tfm base;
622 };
623
624 struct crypto_blkcipher {
625 struct crypto_tfm base;
626 };
627
628 struct crypto_cipher {
629 struct crypto_tfm base;
630 };
631
632 struct crypto_comp {
633 struct crypto_tfm base;
634 };
635
636 struct crypto_hash {
637 struct crypto_tfm base;
638 };
639
640 enum {
641 CRYPTOA_UNSPEC,
642 CRYPTOA_ALG,
643 CRYPTOA_TYPE,
644 CRYPTOA_U32,
645 __CRYPTOA_MAX,
646 };
647
648 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
649
650 /* Maximum number of (rtattr) parameters for each template. */
651 #define CRYPTO_MAX_ATTRS 32
652
653 struct crypto_attr_alg {
654 char name[CRYPTO_MAX_ALG_NAME];
655 };
656
657 struct crypto_attr_type {
658 u32 type;
659 u32 mask;
660 };
661
662 struct crypto_attr_u32 {
663 u32 num;
664 };
665
666 /*
667 * Transform user interface.
668 */
669
670 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
671 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
672
673 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
674 {
675 return crypto_destroy_tfm(tfm, tfm);
676 }
677
678 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
679
680 /*
681 * Transform helpers which query the underlying algorithm.
682 */
683 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
684 {
685 return tfm->__crt_alg->cra_name;
686 }
687
688 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
689 {
690 return tfm->__crt_alg->cra_driver_name;
691 }
692
693 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
694 {
695 return tfm->__crt_alg->cra_priority;
696 }
697
698 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
699 {
700 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
701 }
702
703 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
704 {
705 return tfm->__crt_alg->cra_blocksize;
706 }
707
708 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
709 {
710 return tfm->__crt_alg->cra_alignmask;
711 }
712
713 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
714 {
715 return tfm->crt_flags;
716 }
717
718 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
719 {
720 tfm->crt_flags |= flags;
721 }
722
723 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
724 {
725 tfm->crt_flags &= ~flags;
726 }
727
728 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
729 {
730 return tfm->__crt_ctx;
731 }
732
733 static inline unsigned int crypto_tfm_ctx_alignment(void)
734 {
735 struct crypto_tfm *tfm;
736 return __alignof__(tfm->__crt_ctx);
737 }
738
739 /*
740 * API wrappers.
741 */
742 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
743 struct crypto_tfm *tfm)
744 {
745 return (struct crypto_ablkcipher *)tfm;
746 }
747
748 static inline u32 crypto_skcipher_type(u32 type)
749 {
750 type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
751 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
752 return type;
753 }
754
755 static inline u32 crypto_skcipher_mask(u32 mask)
756 {
757 mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
758 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
759 return mask;
760 }
761
762 /**
763 * DOC: Asynchronous Block Cipher API
764 *
765 * Asynchronous block cipher API is used with the ciphers of type
766 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
767 *
768 * Asynchronous cipher operations imply that the function invocation for a
769 * cipher request returns immediately before the completion of the operation.
770 * The cipher request is scheduled as a separate kernel thread and therefore
771 * load-balanced on the different CPUs via the process scheduler. To allow
772 * the kernel crypto API to inform the caller about the completion of a cipher
773 * request, the caller must provide a callback function. That function is
774 * invoked with the cipher handle when the request completes.
775 *
776 * To support the asynchronous operation, additional information than just the
777 * cipher handle must be supplied to the kernel crypto API. That additional
778 * information is given by filling in the ablkcipher_request data structure.
779 *
780 * For the asynchronous block cipher API, the state is maintained with the tfm
781 * cipher handle. A single tfm can be used across multiple calls and in
782 * parallel. For asynchronous block cipher calls, context data supplied and
783 * only used by the caller can be referenced the request data structure in
784 * addition to the IV used for the cipher request. The maintenance of such
785 * state information would be important for a crypto driver implementer to
786 * have, because when calling the callback function upon completion of the
787 * cipher operation, that callback function may need some information about
788 * which operation just finished if it invoked multiple in parallel. This
789 * state information is unused by the kernel crypto API.
790 */
791
792 /**
793 * crypto_alloc_ablkcipher() - allocate asynchronous block cipher handle
794 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
795 * ablkcipher cipher
796 * @type: specifies the type of the cipher
797 * @mask: specifies the mask for the cipher
798 *
799 * Allocate a cipher handle for an ablkcipher. The returned struct
800 * crypto_ablkcipher is the cipher handle that is required for any subsequent
801 * API invocation for that ablkcipher.
802 *
803 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
804 * of an error, PTR_ERR() returns the error code.
805 */
806 struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name,
807 u32 type, u32 mask);
808
809 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
810 struct crypto_ablkcipher *tfm)
811 {
812 return &tfm->base;
813 }
814
815 /**
816 * crypto_free_ablkcipher() - zeroize and free cipher handle
817 * @tfm: cipher handle to be freed
818 */
819 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
820 {
821 crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
822 }
823
824 /**
825 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
826 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
827 * ablkcipher
828 * @type: specifies the type of the cipher
829 * @mask: specifies the mask for the cipher
830 *
831 * Return: true when the ablkcipher is known to the kernel crypto API; false
832 * otherwise
833 */
834 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
835 u32 mask)
836 {
837 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
838 crypto_skcipher_mask(mask));
839 }
840
841 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
842 struct crypto_ablkcipher *tfm)
843 {
844 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
845 }
846
847 /**
848 * crypto_ablkcipher_ivsize() - obtain IV size
849 * @tfm: cipher handle
850 *
851 * The size of the IV for the ablkcipher referenced by the cipher handle is
852 * returned. This IV size may be zero if the cipher does not need an IV.
853 *
854 * Return: IV size in bytes
855 */
856 static inline unsigned int crypto_ablkcipher_ivsize(
857 struct crypto_ablkcipher *tfm)
858 {
859 return crypto_ablkcipher_crt(tfm)->ivsize;
860 }
861
862 /**
863 * crypto_ablkcipher_blocksize() - obtain block size of cipher
864 * @tfm: cipher handle
865 *
866 * The block size for the ablkcipher referenced with the cipher handle is
867 * returned. The caller may use that information to allocate appropriate
868 * memory for the data returned by the encryption or decryption operation
869 *
870 * Return: block size of cipher
871 */
872 static inline unsigned int crypto_ablkcipher_blocksize(
873 struct crypto_ablkcipher *tfm)
874 {
875 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
876 }
877
878 static inline unsigned int crypto_ablkcipher_alignmask(
879 struct crypto_ablkcipher *tfm)
880 {
881 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
882 }
883
884 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
885 {
886 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
887 }
888
889 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
890 u32 flags)
891 {
892 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
893 }
894
895 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
896 u32 flags)
897 {
898 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
899 }
900
901 /**
902 * crypto_ablkcipher_setkey() - set key for cipher
903 * @tfm: cipher handle
904 * @key: buffer holding the key
905 * @keylen: length of the key in bytes
906 *
907 * The caller provided key is set for the ablkcipher referenced by the cipher
908 * handle.
909 *
910 * Note, the key length determines the cipher type. Many block ciphers implement
911 * different cipher modes depending on the key size, such as AES-128 vs AES-192
912 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
913 * is performed.
914 *
915 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
916 */
917 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
918 const u8 *key, unsigned int keylen)
919 {
920 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
921
922 return crt->setkey(crt->base, key, keylen);
923 }
924
925 /**
926 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
927 * @req: ablkcipher_request out of which the cipher handle is to be obtained
928 *
929 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
930 * data structure.
931 *
932 * Return: crypto_ablkcipher handle
933 */
934 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
935 struct ablkcipher_request *req)
936 {
937 return __crypto_ablkcipher_cast(req->base.tfm);
938 }
939
940 /**
941 * crypto_ablkcipher_encrypt() - encrypt plaintext
942 * @req: reference to the ablkcipher_request handle that holds all information
943 * needed to perform the cipher operation
944 *
945 * Encrypt plaintext data using the ablkcipher_request handle. That data
946 * structure and how it is filled with data is discussed with the
947 * ablkcipher_request_* functions.
948 *
949 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
950 */
951 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
952 {
953 struct ablkcipher_tfm *crt =
954 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
955 return crt->encrypt(req);
956 }
957
958 /**
959 * crypto_ablkcipher_decrypt() - decrypt ciphertext
960 * @req: reference to the ablkcipher_request handle that holds all information
961 * needed to perform the cipher operation
962 *
963 * Decrypt ciphertext data using the ablkcipher_request handle. That data
964 * structure and how it is filled with data is discussed with the
965 * ablkcipher_request_* functions.
966 *
967 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
968 */
969 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
970 {
971 struct ablkcipher_tfm *crt =
972 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
973 return crt->decrypt(req);
974 }
975
976 /**
977 * DOC: Asynchronous Cipher Request Handle
978 *
979 * The ablkcipher_request data structure contains all pointers to data
980 * required for the asynchronous cipher operation. This includes the cipher
981 * handle (which can be used by multiple ablkcipher_request instances), pointer
982 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
983 * as a handle to the ablkcipher_request_* API calls in a similar way as
984 * ablkcipher handle to the crypto_ablkcipher_* API calls.
985 */
986
987 /**
988 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
989 * @tfm: cipher handle
990 *
991 * Return: number of bytes
992 */
993 static inline unsigned int crypto_ablkcipher_reqsize(
994 struct crypto_ablkcipher *tfm)
995 {
996 return crypto_ablkcipher_crt(tfm)->reqsize;
997 }
998
999 /**
1000 * ablkcipher_request_set_tfm() - update cipher handle reference in request
1001 * @req: request handle to be modified
1002 * @tfm: cipher handle that shall be added to the request handle
1003 *
1004 * Allow the caller to replace the existing ablkcipher handle in the request
1005 * data structure with a different one.
1006 */
1007 static inline void ablkcipher_request_set_tfm(
1008 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
1009 {
1010 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
1011 }
1012
1013 static inline struct ablkcipher_request *ablkcipher_request_cast(
1014 struct crypto_async_request *req)
1015 {
1016 return container_of(req, struct ablkcipher_request, base);
1017 }
1018
1019 /**
1020 * ablkcipher_request_alloc() - allocate request data structure
1021 * @tfm: cipher handle to be registered with the request
1022 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1023 *
1024 * Allocate the request data structure that must be used with the ablkcipher
1025 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1026 * handle is registered in the request data structure.
1027 *
1028 * Return: allocated request handle in case of success; IS_ERR() is true in case
1029 * of an error, PTR_ERR() returns the error code.
1030 */
1031 static inline struct ablkcipher_request *ablkcipher_request_alloc(
1032 struct crypto_ablkcipher *tfm, gfp_t gfp)
1033 {
1034 struct ablkcipher_request *req;
1035
1036 req = kmalloc(sizeof(struct ablkcipher_request) +
1037 crypto_ablkcipher_reqsize(tfm), gfp);
1038
1039 if (likely(req))
1040 ablkcipher_request_set_tfm(req, tfm);
1041
1042 return req;
1043 }
1044
1045 /**
1046 * ablkcipher_request_free() - zeroize and free request data structure
1047 * @req: request data structure cipher handle to be freed
1048 */
1049 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1050 {
1051 kzfree(req);
1052 }
1053
1054 /**
1055 * ablkcipher_request_set_callback() - set asynchronous callback function
1056 * @req: request handle
1057 * @flags: specify zero or an ORing of the flags
1058 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1059 * increase the wait queue beyond the initial maximum size;
1060 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1061 * @compl: callback function pointer to be registered with the request handle
1062 * @data: The data pointer refers to memory that is not used by the kernel
1063 * crypto API, but provided to the callback function for it to use. Here,
1064 * the caller can provide a reference to memory the callback function can
1065 * operate on. As the callback function is invoked asynchronously to the
1066 * related functionality, it may need to access data structures of the
1067 * related functionality which can be referenced using this pointer. The
1068 * callback function can access the memory via the "data" field in the
1069 * crypto_async_request data structure provided to the callback function.
1070 *
1071 * This function allows setting the callback function that is triggered once the
1072 * cipher operation completes.
1073 *
1074 * The callback function is registered with the ablkcipher_request handle and
1075 * must comply with the following template
1076 *
1077 * void callback_function(struct crypto_async_request *req, int error)
1078 */
1079 static inline void ablkcipher_request_set_callback(
1080 struct ablkcipher_request *req,
1081 u32 flags, crypto_completion_t compl, void *data)
1082 {
1083 req->base.complete = compl;
1084 req->base.data = data;
1085 req->base.flags = flags;
1086 }
1087
1088 /**
1089 * ablkcipher_request_set_crypt() - set data buffers
1090 * @req: request handle
1091 * @src: source scatter / gather list
1092 * @dst: destination scatter / gather list
1093 * @nbytes: number of bytes to process from @src
1094 * @iv: IV for the cipher operation which must comply with the IV size defined
1095 * by crypto_ablkcipher_ivsize
1096 *
1097 * This function allows setting of the source data and destination data
1098 * scatter / gather lists.
1099 *
1100 * For encryption, the source is treated as the plaintext and the
1101 * destination is the ciphertext. For a decryption operation, the use is
1102 * reversed - the source is the ciphertext and the destination is the plaintext.
1103 */
1104 static inline void ablkcipher_request_set_crypt(
1105 struct ablkcipher_request *req,
1106 struct scatterlist *src, struct scatterlist *dst,
1107 unsigned int nbytes, void *iv)
1108 {
1109 req->src = src;
1110 req->dst = dst;
1111 req->nbytes = nbytes;
1112 req->info = iv;
1113 }
1114
1115 /**
1116 * DOC: Synchronous Block Cipher API
1117 *
1118 * The synchronous block cipher API is used with the ciphers of type
1119 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1120 *
1121 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1122 * used in multiple calls and in parallel, this info should not be changeable
1123 * (unless a lock is used). This applies, for example, to the symmetric key.
1124 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1125 * structure for synchronous blkcipher api. So, its the only state info that can
1126 * be kept for synchronous calls without using a big lock across a tfm.
1127 *
1128 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1129 * consisting of a template (a block chaining mode) and a single block cipher
1130 * primitive (e.g. AES).
1131 *
1132 * The plaintext data buffer and the ciphertext data buffer are pointed to
1133 * by using scatter/gather lists. The cipher operation is performed
1134 * on all segments of the provided scatter/gather lists.
1135 *
1136 * The kernel crypto API supports a cipher operation "in-place" which means that
1137 * the caller may provide the same scatter/gather list for the plaintext and
1138 * cipher text. After the completion of the cipher operation, the plaintext
1139 * data is replaced with the ciphertext data in case of an encryption and vice
1140 * versa for a decryption. The caller must ensure that the scatter/gather lists
1141 * for the output data point to sufficiently large buffers, i.e. multiples of
1142 * the block size of the cipher.
1143 */
1144
1145 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1146 struct crypto_tfm *tfm)
1147 {
1148 return (struct crypto_blkcipher *)tfm;
1149 }
1150
1151 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1152 struct crypto_tfm *tfm)
1153 {
1154 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1155 return __crypto_blkcipher_cast(tfm);
1156 }
1157
1158 /**
1159 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1160 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1161 * blkcipher cipher
1162 * @type: specifies the type of the cipher
1163 * @mask: specifies the mask for the cipher
1164 *
1165 * Allocate a cipher handle for a block cipher. The returned struct
1166 * crypto_blkcipher is the cipher handle that is required for any subsequent
1167 * API invocation for that block cipher.
1168 *
1169 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1170 * of an error, PTR_ERR() returns the error code.
1171 */
1172 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1173 const char *alg_name, u32 type, u32 mask)
1174 {
1175 type &= ~CRYPTO_ALG_TYPE_MASK;
1176 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1177 mask |= CRYPTO_ALG_TYPE_MASK;
1178
1179 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1180 }
1181
1182 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1183 struct crypto_blkcipher *tfm)
1184 {
1185 return &tfm->base;
1186 }
1187
1188 /**
1189 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1190 * @tfm: cipher handle to be freed
1191 */
1192 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1193 {
1194 crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1195 }
1196
1197 /**
1198 * crypto_has_blkcipher() - Search for the availability of a block cipher
1199 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1200 * block cipher
1201 * @type: specifies the type of the cipher
1202 * @mask: specifies the mask for the cipher
1203 *
1204 * Return: true when the block cipher is known to the kernel crypto API; false
1205 * otherwise
1206 */
1207 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1208 {
1209 type &= ~CRYPTO_ALG_TYPE_MASK;
1210 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1211 mask |= CRYPTO_ALG_TYPE_MASK;
1212
1213 return crypto_has_alg(alg_name, type, mask);
1214 }
1215
1216 /**
1217 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1218 * @tfm: cipher handle
1219 *
1220 * Return: The character string holding the name of the cipher
1221 */
1222 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1223 {
1224 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1225 }
1226
1227 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1228 struct crypto_blkcipher *tfm)
1229 {
1230 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1231 }
1232
1233 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1234 struct crypto_blkcipher *tfm)
1235 {
1236 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1237 }
1238
1239 /**
1240 * crypto_blkcipher_ivsize() - obtain IV size
1241 * @tfm: cipher handle
1242 *
1243 * The size of the IV for the block cipher referenced by the cipher handle is
1244 * returned. This IV size may be zero if the cipher does not need an IV.
1245 *
1246 * Return: IV size in bytes
1247 */
1248 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1249 {
1250 return crypto_blkcipher_alg(tfm)->ivsize;
1251 }
1252
1253 /**
1254 * crypto_blkcipher_blocksize() - obtain block size of cipher
1255 * @tfm: cipher handle
1256 *
1257 * The block size for the block cipher referenced with the cipher handle is
1258 * returned. The caller may use that information to allocate appropriate
1259 * memory for the data returned by the encryption or decryption operation.
1260 *
1261 * Return: block size of cipher
1262 */
1263 static inline unsigned int crypto_blkcipher_blocksize(
1264 struct crypto_blkcipher *tfm)
1265 {
1266 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1267 }
1268
1269 static inline unsigned int crypto_blkcipher_alignmask(
1270 struct crypto_blkcipher *tfm)
1271 {
1272 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1273 }
1274
1275 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1276 {
1277 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1278 }
1279
1280 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1281 u32 flags)
1282 {
1283 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1284 }
1285
1286 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1287 u32 flags)
1288 {
1289 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1290 }
1291
1292 /**
1293 * crypto_blkcipher_setkey() - set key for cipher
1294 * @tfm: cipher handle
1295 * @key: buffer holding the key
1296 * @keylen: length of the key in bytes
1297 *
1298 * The caller provided key is set for the block cipher referenced by the cipher
1299 * handle.
1300 *
1301 * Note, the key length determines the cipher type. Many block ciphers implement
1302 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1303 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1304 * is performed.
1305 *
1306 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1307 */
1308 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1309 const u8 *key, unsigned int keylen)
1310 {
1311 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1312 key, keylen);
1313 }
1314
1315 /**
1316 * crypto_blkcipher_encrypt() - encrypt plaintext
1317 * @desc: reference to the block cipher handle with meta data
1318 * @dst: scatter/gather list that is filled by the cipher operation with the
1319 * ciphertext
1320 * @src: scatter/gather list that holds the plaintext
1321 * @nbytes: number of bytes of the plaintext to encrypt.
1322 *
1323 * Encrypt plaintext data using the IV set by the caller with a preceding
1324 * call of crypto_blkcipher_set_iv.
1325 *
1326 * The blkcipher_desc data structure must be filled by the caller and can
1327 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1328 * with the block cipher handle; desc.flags is filled with either
1329 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1330 *
1331 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1332 */
1333 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1334 struct scatterlist *dst,
1335 struct scatterlist *src,
1336 unsigned int nbytes)
1337 {
1338 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1339 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1340 }
1341
1342 /**
1343 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1344 * @desc: reference to the block cipher handle with meta data
1345 * @dst: scatter/gather list that is filled by the cipher operation with the
1346 * ciphertext
1347 * @src: scatter/gather list that holds the plaintext
1348 * @nbytes: number of bytes of the plaintext to encrypt.
1349 *
1350 * Encrypt plaintext data with the use of an IV that is solely used for this
1351 * cipher operation. Any previously set IV is not used.
1352 *
1353 * The blkcipher_desc data structure must be filled by the caller and can
1354 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1355 * with the block cipher handle; desc.info is filled with the IV to be used for
1356 * the current operation; desc.flags is filled with either
1357 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1358 *
1359 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1360 */
1361 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1362 struct scatterlist *dst,
1363 struct scatterlist *src,
1364 unsigned int nbytes)
1365 {
1366 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1367 }
1368
1369 /**
1370 * crypto_blkcipher_decrypt() - decrypt ciphertext
1371 * @desc: reference to the block cipher handle with meta data
1372 * @dst: scatter/gather list that is filled by the cipher operation with the
1373 * plaintext
1374 * @src: scatter/gather list that holds the ciphertext
1375 * @nbytes: number of bytes of the ciphertext to decrypt.
1376 *
1377 * Decrypt ciphertext data using the IV set by the caller with a preceding
1378 * call of crypto_blkcipher_set_iv.
1379 *
1380 * The blkcipher_desc data structure must be filled by the caller as documented
1381 * for the crypto_blkcipher_encrypt call above.
1382 *
1383 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1384 *
1385 */
1386 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1387 struct scatterlist *dst,
1388 struct scatterlist *src,
1389 unsigned int nbytes)
1390 {
1391 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1392 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1393 }
1394
1395 /**
1396 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1397 * @desc: reference to the block cipher handle with meta data
1398 * @dst: scatter/gather list that is filled by the cipher operation with the
1399 * plaintext
1400 * @src: scatter/gather list that holds the ciphertext
1401 * @nbytes: number of bytes of the ciphertext to decrypt.
1402 *
1403 * Decrypt ciphertext data with the use of an IV that is solely used for this
1404 * cipher operation. Any previously set IV is not used.
1405 *
1406 * The blkcipher_desc data structure must be filled by the caller as documented
1407 * for the crypto_blkcipher_encrypt_iv call above.
1408 *
1409 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1410 */
1411 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1412 struct scatterlist *dst,
1413 struct scatterlist *src,
1414 unsigned int nbytes)
1415 {
1416 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1417 }
1418
1419 /**
1420 * crypto_blkcipher_set_iv() - set IV for cipher
1421 * @tfm: cipher handle
1422 * @src: buffer holding the IV
1423 * @len: length of the IV in bytes
1424 *
1425 * The caller provided IV is set for the block cipher referenced by the cipher
1426 * handle.
1427 */
1428 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1429 const u8 *src, unsigned int len)
1430 {
1431 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1432 }
1433
1434 /**
1435 * crypto_blkcipher_get_iv() - obtain IV from cipher
1436 * @tfm: cipher handle
1437 * @dst: buffer filled with the IV
1438 * @len: length of the buffer dst
1439 *
1440 * The caller can obtain the IV set for the block cipher referenced by the
1441 * cipher handle and store it into the user-provided buffer. If the buffer
1442 * has an insufficient space, the IV is truncated to fit the buffer.
1443 */
1444 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1445 u8 *dst, unsigned int len)
1446 {
1447 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1448 }
1449
1450 /**
1451 * DOC: Single Block Cipher API
1452 *
1453 * The single block cipher API is used with the ciphers of type
1454 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1455 *
1456 * Using the single block cipher API calls, operations with the basic cipher
1457 * primitive can be implemented. These cipher primitives exclude any block
1458 * chaining operations including IV handling.
1459 *
1460 * The purpose of this single block cipher API is to support the implementation
1461 * of templates or other concepts that only need to perform the cipher operation
1462 * on one block at a time. Templates invoke the underlying cipher primitive
1463 * block-wise and process either the input or the output data of these cipher
1464 * operations.
1465 */
1466
1467 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1468 {
1469 return (struct crypto_cipher *)tfm;
1470 }
1471
1472 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1473 {
1474 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1475 return __crypto_cipher_cast(tfm);
1476 }
1477
1478 /**
1479 * crypto_alloc_cipher() - allocate single block cipher handle
1480 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1481 * single block cipher
1482 * @type: specifies the type of the cipher
1483 * @mask: specifies the mask for the cipher
1484 *
1485 * Allocate a cipher handle for a single block cipher. The returned struct
1486 * crypto_cipher is the cipher handle that is required for any subsequent API
1487 * invocation for that single block cipher.
1488 *
1489 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1490 * of an error, PTR_ERR() returns the error code.
1491 */
1492 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1493 u32 type, u32 mask)
1494 {
1495 type &= ~CRYPTO_ALG_TYPE_MASK;
1496 type |= CRYPTO_ALG_TYPE_CIPHER;
1497 mask |= CRYPTO_ALG_TYPE_MASK;
1498
1499 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1500 }
1501
1502 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1503 {
1504 return &tfm->base;
1505 }
1506
1507 /**
1508 * crypto_free_cipher() - zeroize and free the single block cipher handle
1509 * @tfm: cipher handle to be freed
1510 */
1511 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1512 {
1513 crypto_free_tfm(crypto_cipher_tfm(tfm));
1514 }
1515
1516 /**
1517 * crypto_has_cipher() - Search for the availability of a single block cipher
1518 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1519 * single block cipher
1520 * @type: specifies the type of the cipher
1521 * @mask: specifies the mask for the cipher
1522 *
1523 * Return: true when the single block cipher is known to the kernel crypto API;
1524 * false otherwise
1525 */
1526 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1527 {
1528 type &= ~CRYPTO_ALG_TYPE_MASK;
1529 type |= CRYPTO_ALG_TYPE_CIPHER;
1530 mask |= CRYPTO_ALG_TYPE_MASK;
1531
1532 return crypto_has_alg(alg_name, type, mask);
1533 }
1534
1535 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1536 {
1537 return &crypto_cipher_tfm(tfm)->crt_cipher;
1538 }
1539
1540 /**
1541 * crypto_cipher_blocksize() - obtain block size for cipher
1542 * @tfm: cipher handle
1543 *
1544 * The block size for the single block cipher referenced with the cipher handle
1545 * tfm is returned. The caller may use that information to allocate appropriate
1546 * memory for the data returned by the encryption or decryption operation
1547 *
1548 * Return: block size of cipher
1549 */
1550 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1551 {
1552 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1553 }
1554
1555 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1556 {
1557 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1558 }
1559
1560 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1561 {
1562 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1563 }
1564
1565 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1566 u32 flags)
1567 {
1568 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1569 }
1570
1571 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1572 u32 flags)
1573 {
1574 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1575 }
1576
1577 /**
1578 * crypto_cipher_setkey() - set key for cipher
1579 * @tfm: cipher handle
1580 * @key: buffer holding the key
1581 * @keylen: length of the key in bytes
1582 *
1583 * The caller provided key is set for the single block cipher referenced by the
1584 * cipher handle.
1585 *
1586 * Note, the key length determines the cipher type. Many block ciphers implement
1587 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1588 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1589 * is performed.
1590 *
1591 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1592 */
1593 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1594 const u8 *key, unsigned int keylen)
1595 {
1596 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1597 key, keylen);
1598 }
1599
1600 /**
1601 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1602 * @tfm: cipher handle
1603 * @dst: points to the buffer that will be filled with the ciphertext
1604 * @src: buffer holding the plaintext to be encrypted
1605 *
1606 * Invoke the encryption operation of one block. The caller must ensure that
1607 * the plaintext and ciphertext buffers are at least one block in size.
1608 */
1609 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1610 u8 *dst, const u8 *src)
1611 {
1612 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1613 dst, src);
1614 }
1615
1616 /**
1617 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1618 * @tfm: cipher handle
1619 * @dst: points to the buffer that will be filled with the plaintext
1620 * @src: buffer holding the ciphertext to be decrypted
1621 *
1622 * Invoke the decryption operation of one block. The caller must ensure that
1623 * the plaintext and ciphertext buffers are at least one block in size.
1624 */
1625 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1626 u8 *dst, const u8 *src)
1627 {
1628 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1629 dst, src);
1630 }
1631
1632 /**
1633 * DOC: Synchronous Message Digest API
1634 *
1635 * The synchronous message digest API is used with the ciphers of type
1636 * CRYPTO_ALG_TYPE_HASH (listed as type "hash" in /proc/crypto)
1637 */
1638
1639 static inline struct crypto_hash *__crypto_hash_cast(struct crypto_tfm *tfm)
1640 {
1641 return (struct crypto_hash *)tfm;
1642 }
1643
1644 static inline struct crypto_hash *crypto_hash_cast(struct crypto_tfm *tfm)
1645 {
1646 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_HASH) &
1647 CRYPTO_ALG_TYPE_HASH_MASK);
1648 return __crypto_hash_cast(tfm);
1649 }
1650
1651 /**
1652 * crypto_alloc_hash() - allocate synchronous message digest handle
1653 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1654 * message digest cipher
1655 * @type: specifies the type of the cipher
1656 * @mask: specifies the mask for the cipher
1657 *
1658 * Allocate a cipher handle for a message digest. The returned struct
1659 * crypto_hash is the cipher handle that is required for any subsequent
1660 * API invocation for that message digest.
1661 *
1662 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1663 * of an error, PTR_ERR() returns the error code.
1664 */
1665 static inline struct crypto_hash *crypto_alloc_hash(const char *alg_name,
1666 u32 type, u32 mask)
1667 {
1668 type &= ~CRYPTO_ALG_TYPE_MASK;
1669 mask &= ~CRYPTO_ALG_TYPE_MASK;
1670 type |= CRYPTO_ALG_TYPE_HASH;
1671 mask |= CRYPTO_ALG_TYPE_HASH_MASK;
1672
1673 return __crypto_hash_cast(crypto_alloc_base(alg_name, type, mask));
1674 }
1675
1676 static inline struct crypto_tfm *crypto_hash_tfm(struct crypto_hash *tfm)
1677 {
1678 return &tfm->base;
1679 }
1680
1681 /**
1682 * crypto_free_hash() - zeroize and free message digest handle
1683 * @tfm: cipher handle to be freed
1684 */
1685 static inline void crypto_free_hash(struct crypto_hash *tfm)
1686 {
1687 crypto_free_tfm(crypto_hash_tfm(tfm));
1688 }
1689
1690 /**
1691 * crypto_has_hash() - Search for the availability of a message digest
1692 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1693 * message digest cipher
1694 * @type: specifies the type of the cipher
1695 * @mask: specifies the mask for the cipher
1696 *
1697 * Return: true when the message digest cipher is known to the kernel crypto
1698 * API; false otherwise
1699 */
1700 static inline int crypto_has_hash(const char *alg_name, u32 type, u32 mask)
1701 {
1702 type &= ~CRYPTO_ALG_TYPE_MASK;
1703 mask &= ~CRYPTO_ALG_TYPE_MASK;
1704 type |= CRYPTO_ALG_TYPE_HASH;
1705 mask |= CRYPTO_ALG_TYPE_HASH_MASK;
1706
1707 return crypto_has_alg(alg_name, type, mask);
1708 }
1709
1710 static inline struct hash_tfm *crypto_hash_crt(struct crypto_hash *tfm)
1711 {
1712 return &crypto_hash_tfm(tfm)->crt_hash;
1713 }
1714
1715 /**
1716 * crypto_hash_blocksize() - obtain block size for message digest
1717 * @tfm: cipher handle
1718 *
1719 * The block size for the message digest cipher referenced with the cipher
1720 * handle is returned.
1721 *
1722 * Return: block size of cipher
1723 */
1724 static inline unsigned int crypto_hash_blocksize(struct crypto_hash *tfm)
1725 {
1726 return crypto_tfm_alg_blocksize(crypto_hash_tfm(tfm));
1727 }
1728
1729 static inline unsigned int crypto_hash_alignmask(struct crypto_hash *tfm)
1730 {
1731 return crypto_tfm_alg_alignmask(crypto_hash_tfm(tfm));
1732 }
1733
1734 /**
1735 * crypto_hash_digestsize() - obtain message digest size
1736 * @tfm: cipher handle
1737 *
1738 * The size for the message digest created by the message digest cipher
1739 * referenced with the cipher handle is returned.
1740 *
1741 * Return: message digest size
1742 */
1743 static inline unsigned int crypto_hash_digestsize(struct crypto_hash *tfm)
1744 {
1745 return crypto_hash_crt(tfm)->digestsize;
1746 }
1747
1748 static inline u32 crypto_hash_get_flags(struct crypto_hash *tfm)
1749 {
1750 return crypto_tfm_get_flags(crypto_hash_tfm(tfm));
1751 }
1752
1753 static inline void crypto_hash_set_flags(struct crypto_hash *tfm, u32 flags)
1754 {
1755 crypto_tfm_set_flags(crypto_hash_tfm(tfm), flags);
1756 }
1757
1758 static inline void crypto_hash_clear_flags(struct crypto_hash *tfm, u32 flags)
1759 {
1760 crypto_tfm_clear_flags(crypto_hash_tfm(tfm), flags);
1761 }
1762
1763 /**
1764 * crypto_hash_init() - (re)initialize message digest handle
1765 * @desc: cipher request handle that to be filled by caller --
1766 * desc.tfm is filled with the hash cipher handle;
1767 * desc.flags is filled with either CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1768 *
1769 * The call (re-)initializes the message digest referenced by the hash cipher
1770 * request handle. Any potentially existing state created by previous
1771 * operations is discarded.
1772 *
1773 * Return: 0 if the message digest initialization was successful; < 0 if an
1774 * error occurred
1775 */
1776 static inline int crypto_hash_init(struct hash_desc *desc)
1777 {
1778 return crypto_hash_crt(desc->tfm)->init(desc);
1779 }
1780
1781 /**
1782 * crypto_hash_update() - add data to message digest for processing
1783 * @desc: cipher request handle
1784 * @sg: scatter / gather list pointing to the data to be added to the message
1785 * digest
1786 * @nbytes: number of bytes to be processed from @sg
1787 *
1788 * Updates the message digest state of the cipher handle pointed to by the
1789 * hash cipher request handle with the input data pointed to by the
1790 * scatter/gather list.
1791 *
1792 * Return: 0 if the message digest update was successful; < 0 if an error
1793 * occurred
1794 */
1795 static inline int crypto_hash_update(struct hash_desc *desc,
1796 struct scatterlist *sg,
1797 unsigned int nbytes)
1798 {
1799 return crypto_hash_crt(desc->tfm)->update(desc, sg, nbytes);
1800 }
1801
1802 /**
1803 * crypto_hash_final() - calculate message digest
1804 * @desc: cipher request handle
1805 * @out: message digest output buffer -- The caller must ensure that the out
1806 * buffer has a sufficient size (e.g. by using the crypto_hash_digestsize
1807 * function).
1808 *
1809 * Finalize the message digest operation and create the message digest
1810 * based on all data added to the cipher handle. The message digest is placed
1811 * into the output buffer.
1812 *
1813 * Return: 0 if the message digest creation was successful; < 0 if an error
1814 * occurred
1815 */
1816 static inline int crypto_hash_final(struct hash_desc *desc, u8 *out)
1817 {
1818 return crypto_hash_crt(desc->tfm)->final(desc, out);
1819 }
1820
1821 /**
1822 * crypto_hash_digest() - calculate message digest for a buffer
1823 * @desc: see crypto_hash_final()
1824 * @sg: see crypto_hash_update()
1825 * @nbytes: see crypto_hash_update()
1826 * @out: see crypto_hash_final()
1827 *
1828 * This function is a "short-hand" for the function calls of crypto_hash_init,
1829 * crypto_hash_update and crypto_hash_final. The parameters have the same
1830 * meaning as discussed for those separate three functions.
1831 *
1832 * Return: 0 if the message digest creation was successful; < 0 if an error
1833 * occurred
1834 */
1835 static inline int crypto_hash_digest(struct hash_desc *desc,
1836 struct scatterlist *sg,
1837 unsigned int nbytes, u8 *out)
1838 {
1839 return crypto_hash_crt(desc->tfm)->digest(desc, sg, nbytes, out);
1840 }
1841
1842 /**
1843 * crypto_hash_setkey() - set key for message digest
1844 * @hash: cipher handle
1845 * @key: buffer holding the key
1846 * @keylen: length of the key in bytes
1847 *
1848 * The caller provided key is set for the message digest cipher. The cipher
1849 * handle must point to a keyed hash in order for this function to succeed.
1850 *
1851 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1852 */
1853 static inline int crypto_hash_setkey(struct crypto_hash *hash,
1854 const u8 *key, unsigned int keylen)
1855 {
1856 return crypto_hash_crt(hash)->setkey(hash, key, keylen);
1857 }
1858
1859 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1860 {
1861 return (struct crypto_comp *)tfm;
1862 }
1863
1864 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1865 {
1866 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1867 CRYPTO_ALG_TYPE_MASK);
1868 return __crypto_comp_cast(tfm);
1869 }
1870
1871 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1872 u32 type, u32 mask)
1873 {
1874 type &= ~CRYPTO_ALG_TYPE_MASK;
1875 type |= CRYPTO_ALG_TYPE_COMPRESS;
1876 mask |= CRYPTO_ALG_TYPE_MASK;
1877
1878 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1879 }
1880
1881 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1882 {
1883 return &tfm->base;
1884 }
1885
1886 static inline void crypto_free_comp(struct crypto_comp *tfm)
1887 {
1888 crypto_free_tfm(crypto_comp_tfm(tfm));
1889 }
1890
1891 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1892 {
1893 type &= ~CRYPTO_ALG_TYPE_MASK;
1894 type |= CRYPTO_ALG_TYPE_COMPRESS;
1895 mask |= CRYPTO_ALG_TYPE_MASK;
1896
1897 return crypto_has_alg(alg_name, type, mask);
1898 }
1899
1900 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1901 {
1902 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1903 }
1904
1905 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1906 {
1907 return &crypto_comp_tfm(tfm)->crt_compress;
1908 }
1909
1910 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1911 const u8 *src, unsigned int slen,
1912 u8 *dst, unsigned int *dlen)
1913 {
1914 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1915 src, slen, dst, dlen);
1916 }
1917
1918 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1919 const u8 *src, unsigned int slen,
1920 u8 *dst, unsigned int *dlen)
1921 {
1922 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1923 src, slen, dst, dlen);
1924 }
1925
1926 #endif /* _LINUX_CRYPTO_H */
1927