]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/dmaengine.h
Merge tag 'writeback-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg...
[mirror_ubuntu-bionic-kernel.git] / include / linux / dmaengine.h
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
21 #ifndef LINUX_DMAENGINE_H
22 #define LINUX_DMAENGINE_H
23
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/bug.h>
27 #include <linux/scatterlist.h>
28 #include <linux/bitmap.h>
29 #include <linux/types.h>
30 #include <asm/page.h>
31
32 /**
33 * typedef dma_cookie_t - an opaque DMA cookie
34 *
35 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
36 */
37 typedef s32 dma_cookie_t;
38 #define DMA_MIN_COOKIE 1
39 #define DMA_MAX_COOKIE INT_MAX
40
41 static inline int dma_submit_error(dma_cookie_t cookie)
42 {
43 return cookie < 0 ? cookie : 0;
44 }
45
46 /**
47 * enum dma_status - DMA transaction status
48 * @DMA_SUCCESS: transaction completed successfully
49 * @DMA_IN_PROGRESS: transaction not yet processed
50 * @DMA_PAUSED: transaction is paused
51 * @DMA_ERROR: transaction failed
52 */
53 enum dma_status {
54 DMA_SUCCESS,
55 DMA_IN_PROGRESS,
56 DMA_PAUSED,
57 DMA_ERROR,
58 };
59
60 /**
61 * enum dma_transaction_type - DMA transaction types/indexes
62 *
63 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
64 * automatically set as dma devices are registered.
65 */
66 enum dma_transaction_type {
67 DMA_MEMCPY,
68 DMA_XOR,
69 DMA_PQ,
70 DMA_XOR_VAL,
71 DMA_PQ_VAL,
72 DMA_INTERRUPT,
73 DMA_SG,
74 DMA_PRIVATE,
75 DMA_ASYNC_TX,
76 DMA_SLAVE,
77 DMA_CYCLIC,
78 DMA_INTERLEAVE,
79 /* last transaction type for creation of the capabilities mask */
80 DMA_TX_TYPE_END,
81 };
82
83 /**
84 * enum dma_transfer_direction - dma transfer mode and direction indicator
85 * @DMA_MEM_TO_MEM: Async/Memcpy mode
86 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
87 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
88 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
89 */
90 enum dma_transfer_direction {
91 DMA_MEM_TO_MEM,
92 DMA_MEM_TO_DEV,
93 DMA_DEV_TO_MEM,
94 DMA_DEV_TO_DEV,
95 DMA_TRANS_NONE,
96 };
97
98 /**
99 * Interleaved Transfer Request
100 * ----------------------------
101 * A chunk is collection of contiguous bytes to be transfered.
102 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
103 * ICGs may or maynot change between chunks.
104 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
105 * that when repeated an integral number of times, specifies the transfer.
106 * A transfer template is specification of a Frame, the number of times
107 * it is to be repeated and other per-transfer attributes.
108 *
109 * Practically, a client driver would have ready a template for each
110 * type of transfer it is going to need during its lifetime and
111 * set only 'src_start' and 'dst_start' before submitting the requests.
112 *
113 *
114 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
115 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
116 *
117 * == Chunk size
118 * ... ICG
119 */
120
121 /**
122 * struct data_chunk - Element of scatter-gather list that makes a frame.
123 * @size: Number of bytes to read from source.
124 * size_dst := fn(op, size_src), so doesn't mean much for destination.
125 * @icg: Number of bytes to jump after last src/dst address of this
126 * chunk and before first src/dst address for next chunk.
127 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
128 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
129 */
130 struct data_chunk {
131 size_t size;
132 size_t icg;
133 };
134
135 /**
136 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
137 * and attributes.
138 * @src_start: Bus address of source for the first chunk.
139 * @dst_start: Bus address of destination for the first chunk.
140 * @dir: Specifies the type of Source and Destination.
141 * @src_inc: If the source address increments after reading from it.
142 * @dst_inc: If the destination address increments after writing to it.
143 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
144 * Otherwise, source is read contiguously (icg ignored).
145 * Ignored if src_inc is false.
146 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
147 * Otherwise, destination is filled contiguously (icg ignored).
148 * Ignored if dst_inc is false.
149 * @numf: Number of frames in this template.
150 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
151 * @sgl: Array of {chunk,icg} pairs that make up a frame.
152 */
153 struct dma_interleaved_template {
154 dma_addr_t src_start;
155 dma_addr_t dst_start;
156 enum dma_transfer_direction dir;
157 bool src_inc;
158 bool dst_inc;
159 bool src_sgl;
160 bool dst_sgl;
161 size_t numf;
162 size_t frame_size;
163 struct data_chunk sgl[0];
164 };
165
166 /**
167 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
168 * control completion, and communicate status.
169 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
170 * this transaction
171 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
172 * acknowledges receipt, i.e. has has a chance to establish any dependency
173 * chains
174 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
175 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
176 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
177 * (if not set, do the source dma-unmapping as page)
178 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
179 * (if not set, do the destination dma-unmapping as page)
180 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
181 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
182 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
183 * sources that were the result of a previous operation, in the case of a PQ
184 * operation it continues the calculation with new sources
185 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
186 * on the result of this operation
187 */
188 enum dma_ctrl_flags {
189 DMA_PREP_INTERRUPT = (1 << 0),
190 DMA_CTRL_ACK = (1 << 1),
191 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
192 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
193 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
194 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
195 DMA_PREP_PQ_DISABLE_P = (1 << 6),
196 DMA_PREP_PQ_DISABLE_Q = (1 << 7),
197 DMA_PREP_CONTINUE = (1 << 8),
198 DMA_PREP_FENCE = (1 << 9),
199 };
200
201 /**
202 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
203 * on a running channel.
204 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
205 * @DMA_PAUSE: pause ongoing transfers
206 * @DMA_RESUME: resume paused transfer
207 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
208 * that need to runtime reconfigure the slave channels (as opposed to passing
209 * configuration data in statically from the platform). An additional
210 * argument of struct dma_slave_config must be passed in with this
211 * command.
212 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
213 * into external start mode.
214 */
215 enum dma_ctrl_cmd {
216 DMA_TERMINATE_ALL,
217 DMA_PAUSE,
218 DMA_RESUME,
219 DMA_SLAVE_CONFIG,
220 FSLDMA_EXTERNAL_START,
221 };
222
223 /**
224 * enum sum_check_bits - bit position of pq_check_flags
225 */
226 enum sum_check_bits {
227 SUM_CHECK_P = 0,
228 SUM_CHECK_Q = 1,
229 };
230
231 /**
232 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
233 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
234 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
235 */
236 enum sum_check_flags {
237 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
238 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
239 };
240
241
242 /**
243 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
244 * See linux/cpumask.h
245 */
246 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
247
248 /**
249 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
250 * @memcpy_count: transaction counter
251 * @bytes_transferred: byte counter
252 */
253
254 struct dma_chan_percpu {
255 /* stats */
256 unsigned long memcpy_count;
257 unsigned long bytes_transferred;
258 };
259
260 /**
261 * struct dma_chan - devices supply DMA channels, clients use them
262 * @device: ptr to the dma device who supplies this channel, always !%NULL
263 * @cookie: last cookie value returned to client
264 * @completed_cookie: last completed cookie for this channel
265 * @chan_id: channel ID for sysfs
266 * @dev: class device for sysfs
267 * @device_node: used to add this to the device chan list
268 * @local: per-cpu pointer to a struct dma_chan_percpu
269 * @client-count: how many clients are using this channel
270 * @table_count: number of appearances in the mem-to-mem allocation table
271 * @private: private data for certain client-channel associations
272 */
273 struct dma_chan {
274 struct dma_device *device;
275 dma_cookie_t cookie;
276 dma_cookie_t completed_cookie;
277
278 /* sysfs */
279 int chan_id;
280 struct dma_chan_dev *dev;
281
282 struct list_head device_node;
283 struct dma_chan_percpu __percpu *local;
284 int client_count;
285 int table_count;
286 void *private;
287 };
288
289 /**
290 * struct dma_chan_dev - relate sysfs device node to backing channel device
291 * @chan - driver channel device
292 * @device - sysfs device
293 * @dev_id - parent dma_device dev_id
294 * @idr_ref - reference count to gate release of dma_device dev_id
295 */
296 struct dma_chan_dev {
297 struct dma_chan *chan;
298 struct device device;
299 int dev_id;
300 atomic_t *idr_ref;
301 };
302
303 /**
304 * enum dma_slave_buswidth - defines bus with of the DMA slave
305 * device, source or target buses
306 */
307 enum dma_slave_buswidth {
308 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
309 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
310 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
311 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
312 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
313 };
314
315 /**
316 * struct dma_slave_config - dma slave channel runtime config
317 * @direction: whether the data shall go in or out on this slave
318 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
319 * legal values, DMA_BIDIRECTIONAL is not acceptable since we
320 * need to differentiate source and target addresses.
321 * @src_addr: this is the physical address where DMA slave data
322 * should be read (RX), if the source is memory this argument is
323 * ignored.
324 * @dst_addr: this is the physical address where DMA slave data
325 * should be written (TX), if the source is memory this argument
326 * is ignored.
327 * @src_addr_width: this is the width in bytes of the source (RX)
328 * register where DMA data shall be read. If the source
329 * is memory this may be ignored depending on architecture.
330 * Legal values: 1, 2, 4, 8.
331 * @dst_addr_width: same as src_addr_width but for destination
332 * target (TX) mutatis mutandis.
333 * @src_maxburst: the maximum number of words (note: words, as in
334 * units of the src_addr_width member, not bytes) that can be sent
335 * in one burst to the device. Typically something like half the
336 * FIFO depth on I/O peripherals so you don't overflow it. This
337 * may or may not be applicable on memory sources.
338 * @dst_maxburst: same as src_maxburst but for destination target
339 * mutatis mutandis.
340 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
341 * with 'true' if peripheral should be flow controller. Direction will be
342 * selected at Runtime.
343 * @slave_id: Slave requester id. Only valid for slave channels. The dma
344 * slave peripheral will have unique id as dma requester which need to be
345 * pass as slave config.
346 *
347 * This struct is passed in as configuration data to a DMA engine
348 * in order to set up a certain channel for DMA transport at runtime.
349 * The DMA device/engine has to provide support for an additional
350 * command in the channel config interface, DMA_SLAVE_CONFIG
351 * and this struct will then be passed in as an argument to the
352 * DMA engine device_control() function.
353 *
354 * The rationale for adding configuration information to this struct
355 * is as follows: if it is likely that most DMA slave controllers in
356 * the world will support the configuration option, then make it
357 * generic. If not: if it is fixed so that it be sent in static from
358 * the platform data, then prefer to do that. Else, if it is neither
359 * fixed at runtime, nor generic enough (such as bus mastership on
360 * some CPU family and whatnot) then create a custom slave config
361 * struct and pass that, then make this config a member of that
362 * struct, if applicable.
363 */
364 struct dma_slave_config {
365 enum dma_transfer_direction direction;
366 dma_addr_t src_addr;
367 dma_addr_t dst_addr;
368 enum dma_slave_buswidth src_addr_width;
369 enum dma_slave_buswidth dst_addr_width;
370 u32 src_maxburst;
371 u32 dst_maxburst;
372 bool device_fc;
373 unsigned int slave_id;
374 };
375
376 /* struct dma_slave_caps - expose capabilities of a slave channel only
377 *
378 * @src_addr_widths: bit mask of src addr widths the channel supports
379 * @dstn_addr_widths: bit mask of dstn addr widths the channel supports
380 * @directions: bit mask of slave direction the channel supported
381 * since the enum dma_transfer_direction is not defined as bits for each
382 * type of direction, the dma controller should fill (1 << <TYPE>) and same
383 * should be checked by controller as well
384 * @cmd_pause: true, if pause and thereby resume is supported
385 * @cmd_terminate: true, if terminate cmd is supported
386 */
387 struct dma_slave_caps {
388 u32 src_addr_widths;
389 u32 dstn_addr_widths;
390 u32 directions;
391 bool cmd_pause;
392 bool cmd_terminate;
393 };
394
395 static inline const char *dma_chan_name(struct dma_chan *chan)
396 {
397 return dev_name(&chan->dev->device);
398 }
399
400 void dma_chan_cleanup(struct kref *kref);
401
402 /**
403 * typedef dma_filter_fn - callback filter for dma_request_channel
404 * @chan: channel to be reviewed
405 * @filter_param: opaque parameter passed through dma_request_channel
406 *
407 * When this optional parameter is specified in a call to dma_request_channel a
408 * suitable channel is passed to this routine for further dispositioning before
409 * being returned. Where 'suitable' indicates a non-busy channel that
410 * satisfies the given capability mask. It returns 'true' to indicate that the
411 * channel is suitable.
412 */
413 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
414
415 typedef void (*dma_async_tx_callback)(void *dma_async_param);
416 /**
417 * struct dma_async_tx_descriptor - async transaction descriptor
418 * ---dma generic offload fields---
419 * @cookie: tracking cookie for this transaction, set to -EBUSY if
420 * this tx is sitting on a dependency list
421 * @flags: flags to augment operation preparation, control completion, and
422 * communicate status
423 * @phys: physical address of the descriptor
424 * @chan: target channel for this operation
425 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
426 * @callback: routine to call after this operation is complete
427 * @callback_param: general parameter to pass to the callback routine
428 * ---async_tx api specific fields---
429 * @next: at completion submit this descriptor
430 * @parent: pointer to the next level up in the dependency chain
431 * @lock: protect the parent and next pointers
432 */
433 struct dma_async_tx_descriptor {
434 dma_cookie_t cookie;
435 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
436 dma_addr_t phys;
437 struct dma_chan *chan;
438 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
439 dma_async_tx_callback callback;
440 void *callback_param;
441 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
442 struct dma_async_tx_descriptor *next;
443 struct dma_async_tx_descriptor *parent;
444 spinlock_t lock;
445 #endif
446 };
447
448 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
449 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
450 {
451 }
452 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
453 {
454 }
455 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
456 {
457 BUG();
458 }
459 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
460 {
461 }
462 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
463 {
464 }
465 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
466 {
467 return NULL;
468 }
469 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
470 {
471 return NULL;
472 }
473
474 #else
475 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
476 {
477 spin_lock_bh(&txd->lock);
478 }
479 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
480 {
481 spin_unlock_bh(&txd->lock);
482 }
483 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
484 {
485 txd->next = next;
486 next->parent = txd;
487 }
488 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
489 {
490 txd->parent = NULL;
491 }
492 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
493 {
494 txd->next = NULL;
495 }
496 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
497 {
498 return txd->parent;
499 }
500 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
501 {
502 return txd->next;
503 }
504 #endif
505
506 /**
507 * struct dma_tx_state - filled in to report the status of
508 * a transfer.
509 * @last: last completed DMA cookie
510 * @used: last issued DMA cookie (i.e. the one in progress)
511 * @residue: the remaining number of bytes left to transmit
512 * on the selected transfer for states DMA_IN_PROGRESS and
513 * DMA_PAUSED if this is implemented in the driver, else 0
514 */
515 struct dma_tx_state {
516 dma_cookie_t last;
517 dma_cookie_t used;
518 u32 residue;
519 };
520
521 /**
522 * struct dma_device - info on the entity supplying DMA services
523 * @chancnt: how many DMA channels are supported
524 * @privatecnt: how many DMA channels are requested by dma_request_channel
525 * @channels: the list of struct dma_chan
526 * @global_node: list_head for global dma_device_list
527 * @cap_mask: one or more dma_capability flags
528 * @max_xor: maximum number of xor sources, 0 if no capability
529 * @max_pq: maximum number of PQ sources and PQ-continue capability
530 * @copy_align: alignment shift for memcpy operations
531 * @xor_align: alignment shift for xor operations
532 * @pq_align: alignment shift for pq operations
533 * @fill_align: alignment shift for memset operations
534 * @dev_id: unique device ID
535 * @dev: struct device reference for dma mapping api
536 * @device_alloc_chan_resources: allocate resources and return the
537 * number of allocated descriptors
538 * @device_free_chan_resources: release DMA channel's resources
539 * @device_prep_dma_memcpy: prepares a memcpy operation
540 * @device_prep_dma_xor: prepares a xor operation
541 * @device_prep_dma_xor_val: prepares a xor validation operation
542 * @device_prep_dma_pq: prepares a pq operation
543 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
544 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
545 * @device_prep_slave_sg: prepares a slave dma operation
546 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
547 * The function takes a buffer of size buf_len. The callback function will
548 * be called after period_len bytes have been transferred.
549 * @device_prep_interleaved_dma: Transfer expression in a generic way.
550 * @device_control: manipulate all pending operations on a channel, returns
551 * zero or error code
552 * @device_tx_status: poll for transaction completion, the optional
553 * txstate parameter can be supplied with a pointer to get a
554 * struct with auxiliary transfer status information, otherwise the call
555 * will just return a simple status code
556 * @device_issue_pending: push pending transactions to hardware
557 * @device_slave_caps: return the slave channel capabilities
558 */
559 struct dma_device {
560
561 unsigned int chancnt;
562 unsigned int privatecnt;
563 struct list_head channels;
564 struct list_head global_node;
565 dma_cap_mask_t cap_mask;
566 unsigned short max_xor;
567 unsigned short max_pq;
568 u8 copy_align;
569 u8 xor_align;
570 u8 pq_align;
571 u8 fill_align;
572 #define DMA_HAS_PQ_CONTINUE (1 << 15)
573
574 int dev_id;
575 struct device *dev;
576
577 int (*device_alloc_chan_resources)(struct dma_chan *chan);
578 void (*device_free_chan_resources)(struct dma_chan *chan);
579
580 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
581 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
582 size_t len, unsigned long flags);
583 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
584 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
585 unsigned int src_cnt, size_t len, unsigned long flags);
586 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
587 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
588 size_t len, enum sum_check_flags *result, unsigned long flags);
589 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
590 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
591 unsigned int src_cnt, const unsigned char *scf,
592 size_t len, unsigned long flags);
593 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
594 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
595 unsigned int src_cnt, const unsigned char *scf, size_t len,
596 enum sum_check_flags *pqres, unsigned long flags);
597 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
598 struct dma_chan *chan, unsigned long flags);
599 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
600 struct dma_chan *chan,
601 struct scatterlist *dst_sg, unsigned int dst_nents,
602 struct scatterlist *src_sg, unsigned int src_nents,
603 unsigned long flags);
604
605 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
606 struct dma_chan *chan, struct scatterlist *sgl,
607 unsigned int sg_len, enum dma_transfer_direction direction,
608 unsigned long flags, void *context);
609 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
610 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
611 size_t period_len, enum dma_transfer_direction direction,
612 unsigned long flags, void *context);
613 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
614 struct dma_chan *chan, struct dma_interleaved_template *xt,
615 unsigned long flags);
616 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
617 unsigned long arg);
618
619 enum dma_status (*device_tx_status)(struct dma_chan *chan,
620 dma_cookie_t cookie,
621 struct dma_tx_state *txstate);
622 void (*device_issue_pending)(struct dma_chan *chan);
623 int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
624 };
625
626 static inline int dmaengine_device_control(struct dma_chan *chan,
627 enum dma_ctrl_cmd cmd,
628 unsigned long arg)
629 {
630 if (chan->device->device_control)
631 return chan->device->device_control(chan, cmd, arg);
632
633 return -ENOSYS;
634 }
635
636 static inline int dmaengine_slave_config(struct dma_chan *chan,
637 struct dma_slave_config *config)
638 {
639 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
640 (unsigned long)config);
641 }
642
643 static inline bool is_slave_direction(enum dma_transfer_direction direction)
644 {
645 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
646 }
647
648 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
649 struct dma_chan *chan, dma_addr_t buf, size_t len,
650 enum dma_transfer_direction dir, unsigned long flags)
651 {
652 struct scatterlist sg;
653 sg_init_table(&sg, 1);
654 sg_dma_address(&sg) = buf;
655 sg_dma_len(&sg) = len;
656
657 return chan->device->device_prep_slave_sg(chan, &sg, 1,
658 dir, flags, NULL);
659 }
660
661 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
662 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
663 enum dma_transfer_direction dir, unsigned long flags)
664 {
665 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
666 dir, flags, NULL);
667 }
668
669 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
670 struct rio_dma_ext;
671 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
672 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
673 enum dma_transfer_direction dir, unsigned long flags,
674 struct rio_dma_ext *rio_ext)
675 {
676 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
677 dir, flags, rio_ext);
678 }
679 #endif
680
681 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
682 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
683 size_t period_len, enum dma_transfer_direction dir,
684 unsigned long flags)
685 {
686 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
687 period_len, dir, flags, NULL);
688 }
689
690 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
691 struct dma_chan *chan, struct dma_interleaved_template *xt,
692 unsigned long flags)
693 {
694 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
695 }
696
697 static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
698 {
699 if (!chan || !caps)
700 return -EINVAL;
701
702 /* check if the channel supports slave transactions */
703 if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits))
704 return -ENXIO;
705
706 if (chan->device->device_slave_caps)
707 return chan->device->device_slave_caps(chan, caps);
708
709 return -ENXIO;
710 }
711
712 static inline int dmaengine_terminate_all(struct dma_chan *chan)
713 {
714 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
715 }
716
717 static inline int dmaengine_pause(struct dma_chan *chan)
718 {
719 return dmaengine_device_control(chan, DMA_PAUSE, 0);
720 }
721
722 static inline int dmaengine_resume(struct dma_chan *chan)
723 {
724 return dmaengine_device_control(chan, DMA_RESUME, 0);
725 }
726
727 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
728 dma_cookie_t cookie, struct dma_tx_state *state)
729 {
730 return chan->device->device_tx_status(chan, cookie, state);
731 }
732
733 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
734 {
735 return desc->tx_submit(desc);
736 }
737
738 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
739 {
740 size_t mask;
741
742 if (!align)
743 return true;
744 mask = (1 << align) - 1;
745 if (mask & (off1 | off2 | len))
746 return false;
747 return true;
748 }
749
750 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
751 size_t off2, size_t len)
752 {
753 return dmaengine_check_align(dev->copy_align, off1, off2, len);
754 }
755
756 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
757 size_t off2, size_t len)
758 {
759 return dmaengine_check_align(dev->xor_align, off1, off2, len);
760 }
761
762 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
763 size_t off2, size_t len)
764 {
765 return dmaengine_check_align(dev->pq_align, off1, off2, len);
766 }
767
768 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
769 size_t off2, size_t len)
770 {
771 return dmaengine_check_align(dev->fill_align, off1, off2, len);
772 }
773
774 static inline void
775 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
776 {
777 dma->max_pq = maxpq;
778 if (has_pq_continue)
779 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
780 }
781
782 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
783 {
784 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
785 }
786
787 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
788 {
789 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
790
791 return (flags & mask) == mask;
792 }
793
794 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
795 {
796 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
797 }
798
799 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
800 {
801 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
802 }
803
804 /* dma_maxpq - reduce maxpq in the face of continued operations
805 * @dma - dma device with PQ capability
806 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
807 *
808 * When an engine does not support native continuation we need 3 extra
809 * source slots to reuse P and Q with the following coefficients:
810 * 1/ {00} * P : remove P from Q', but use it as a source for P'
811 * 2/ {01} * Q : use Q to continue Q' calculation
812 * 3/ {00} * Q : subtract Q from P' to cancel (2)
813 *
814 * In the case where P is disabled we only need 1 extra source:
815 * 1/ {01} * Q : use Q to continue Q' calculation
816 */
817 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
818 {
819 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
820 return dma_dev_to_maxpq(dma);
821 else if (dmaf_p_disabled_continue(flags))
822 return dma_dev_to_maxpq(dma) - 1;
823 else if (dmaf_continue(flags))
824 return dma_dev_to_maxpq(dma) - 3;
825 BUG();
826 }
827
828 /* --- public DMA engine API --- */
829
830 #ifdef CONFIG_DMA_ENGINE
831 void dmaengine_get(void);
832 void dmaengine_put(void);
833 #else
834 static inline void dmaengine_get(void)
835 {
836 }
837 static inline void dmaengine_put(void)
838 {
839 }
840 #endif
841
842 #ifdef CONFIG_NET_DMA
843 #define net_dmaengine_get() dmaengine_get()
844 #define net_dmaengine_put() dmaengine_put()
845 #else
846 static inline void net_dmaengine_get(void)
847 {
848 }
849 static inline void net_dmaengine_put(void)
850 {
851 }
852 #endif
853
854 #ifdef CONFIG_ASYNC_TX_DMA
855 #define async_dmaengine_get() dmaengine_get()
856 #define async_dmaengine_put() dmaengine_put()
857 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
858 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
859 #else
860 #define async_dma_find_channel(type) dma_find_channel(type)
861 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
862 #else
863 static inline void async_dmaengine_get(void)
864 {
865 }
866 static inline void async_dmaengine_put(void)
867 {
868 }
869 static inline struct dma_chan *
870 async_dma_find_channel(enum dma_transaction_type type)
871 {
872 return NULL;
873 }
874 #endif /* CONFIG_ASYNC_TX_DMA */
875
876 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
877 void *dest, void *src, size_t len);
878 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
879 struct page *page, unsigned int offset, void *kdata, size_t len);
880 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
881 struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
882 unsigned int src_off, size_t len);
883 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
884 struct dma_chan *chan);
885
886 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
887 {
888 tx->flags |= DMA_CTRL_ACK;
889 }
890
891 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
892 {
893 tx->flags &= ~DMA_CTRL_ACK;
894 }
895
896 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
897 {
898 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
899 }
900
901 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
902 static inline void
903 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
904 {
905 set_bit(tx_type, dstp->bits);
906 }
907
908 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
909 static inline void
910 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
911 {
912 clear_bit(tx_type, dstp->bits);
913 }
914
915 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
916 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
917 {
918 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
919 }
920
921 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
922 static inline int
923 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
924 {
925 return test_bit(tx_type, srcp->bits);
926 }
927
928 #define for_each_dma_cap_mask(cap, mask) \
929 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
930
931 /**
932 * dma_async_issue_pending - flush pending transactions to HW
933 * @chan: target DMA channel
934 *
935 * This allows drivers to push copies to HW in batches,
936 * reducing MMIO writes where possible.
937 */
938 static inline void dma_async_issue_pending(struct dma_chan *chan)
939 {
940 chan->device->device_issue_pending(chan);
941 }
942
943 /**
944 * dma_async_is_tx_complete - poll for transaction completion
945 * @chan: DMA channel
946 * @cookie: transaction identifier to check status of
947 * @last: returns last completed cookie, can be NULL
948 * @used: returns last issued cookie, can be NULL
949 *
950 * If @last and @used are passed in, upon return they reflect the driver
951 * internal state and can be used with dma_async_is_complete() to check
952 * the status of multiple cookies without re-checking hardware state.
953 */
954 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
955 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
956 {
957 struct dma_tx_state state;
958 enum dma_status status;
959
960 status = chan->device->device_tx_status(chan, cookie, &state);
961 if (last)
962 *last = state.last;
963 if (used)
964 *used = state.used;
965 return status;
966 }
967
968 /**
969 * dma_async_is_complete - test a cookie against chan state
970 * @cookie: transaction identifier to test status of
971 * @last_complete: last know completed transaction
972 * @last_used: last cookie value handed out
973 *
974 * dma_async_is_complete() is used in dma_async_is_tx_complete()
975 * the test logic is separated for lightweight testing of multiple cookies
976 */
977 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
978 dma_cookie_t last_complete, dma_cookie_t last_used)
979 {
980 if (last_complete <= last_used) {
981 if ((cookie <= last_complete) || (cookie > last_used))
982 return DMA_SUCCESS;
983 } else {
984 if ((cookie <= last_complete) && (cookie > last_used))
985 return DMA_SUCCESS;
986 }
987 return DMA_IN_PROGRESS;
988 }
989
990 static inline void
991 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
992 {
993 if (st) {
994 st->last = last;
995 st->used = used;
996 st->residue = residue;
997 }
998 }
999
1000 #ifdef CONFIG_DMA_ENGINE
1001 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1002 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1003 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1004 void dma_issue_pending_all(void);
1005 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1006 dma_filter_fn fn, void *fn_param);
1007 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1008 void dma_release_channel(struct dma_chan *chan);
1009 #else
1010 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1011 {
1012 return NULL;
1013 }
1014 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1015 {
1016 return DMA_SUCCESS;
1017 }
1018 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1019 {
1020 return DMA_SUCCESS;
1021 }
1022 static inline void dma_issue_pending_all(void)
1023 {
1024 }
1025 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1026 dma_filter_fn fn, void *fn_param)
1027 {
1028 return NULL;
1029 }
1030 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1031 const char *name)
1032 {
1033 return NULL;
1034 }
1035 static inline void dma_release_channel(struct dma_chan *chan)
1036 {
1037 }
1038 #endif
1039
1040 /* --- DMA device --- */
1041
1042 int dma_async_device_register(struct dma_device *device);
1043 void dma_async_device_unregister(struct dma_device *device);
1044 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1045 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1046 struct dma_chan *net_dma_find_channel(void);
1047 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1048 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1049 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1050
1051 static inline struct dma_chan
1052 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1053 dma_filter_fn fn, void *fn_param,
1054 struct device *dev, char *name)
1055 {
1056 struct dma_chan *chan;
1057
1058 chan = dma_request_slave_channel(dev, name);
1059 if (chan)
1060 return chan;
1061
1062 return __dma_request_channel(mask, fn, fn_param);
1063 }
1064
1065 /* --- Helper iov-locking functions --- */
1066
1067 struct dma_page_list {
1068 char __user *base_address;
1069 int nr_pages;
1070 struct page **pages;
1071 };
1072
1073 struct dma_pinned_list {
1074 int nr_iovecs;
1075 struct dma_page_list page_list[0];
1076 };
1077
1078 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
1079 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
1080
1081 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
1082 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
1083 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
1084 struct dma_pinned_list *pinned_list, struct page *page,
1085 unsigned int offset, size_t len);
1086
1087 #endif /* DMAENGINE_H */