]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/dmaengine.h
Merge branch 'topic/api_caps' into for-linus
[mirror_ubuntu-bionic-kernel.git] / include / linux / dmaengine.h
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
21 #ifndef LINUX_DMAENGINE_H
22 #define LINUX_DMAENGINE_H
23
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/bug.h>
27 #include <linux/scatterlist.h>
28 #include <linux/bitmap.h>
29 #include <linux/types.h>
30 #include <asm/page.h>
31
32 /**
33 * typedef dma_cookie_t - an opaque DMA cookie
34 *
35 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
36 */
37 typedef s32 dma_cookie_t;
38 #define DMA_MIN_COOKIE 1
39 #define DMA_MAX_COOKIE INT_MAX
40
41 #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
42
43 /**
44 * enum dma_status - DMA transaction status
45 * @DMA_SUCCESS: transaction completed successfully
46 * @DMA_IN_PROGRESS: transaction not yet processed
47 * @DMA_PAUSED: transaction is paused
48 * @DMA_ERROR: transaction failed
49 */
50 enum dma_status {
51 DMA_SUCCESS,
52 DMA_IN_PROGRESS,
53 DMA_PAUSED,
54 DMA_ERROR,
55 };
56
57 /**
58 * enum dma_transaction_type - DMA transaction types/indexes
59 *
60 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
61 * automatically set as dma devices are registered.
62 */
63 enum dma_transaction_type {
64 DMA_MEMCPY,
65 DMA_XOR,
66 DMA_PQ,
67 DMA_XOR_VAL,
68 DMA_PQ_VAL,
69 DMA_INTERRUPT,
70 DMA_SG,
71 DMA_PRIVATE,
72 DMA_ASYNC_TX,
73 DMA_SLAVE,
74 DMA_CYCLIC,
75 DMA_INTERLEAVE,
76 /* last transaction type for creation of the capabilities mask */
77 DMA_TX_TYPE_END,
78 };
79
80 /**
81 * enum dma_transfer_direction - dma transfer mode and direction indicator
82 * @DMA_MEM_TO_MEM: Async/Memcpy mode
83 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
84 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
85 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
86 */
87 enum dma_transfer_direction {
88 DMA_MEM_TO_MEM,
89 DMA_MEM_TO_DEV,
90 DMA_DEV_TO_MEM,
91 DMA_DEV_TO_DEV,
92 DMA_TRANS_NONE,
93 };
94
95 /**
96 * Interleaved Transfer Request
97 * ----------------------------
98 * A chunk is collection of contiguous bytes to be transfered.
99 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
100 * ICGs may or maynot change between chunks.
101 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
102 * that when repeated an integral number of times, specifies the transfer.
103 * A transfer template is specification of a Frame, the number of times
104 * it is to be repeated and other per-transfer attributes.
105 *
106 * Practically, a client driver would have ready a template for each
107 * type of transfer it is going to need during its lifetime and
108 * set only 'src_start' and 'dst_start' before submitting the requests.
109 *
110 *
111 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
112 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
113 *
114 * == Chunk size
115 * ... ICG
116 */
117
118 /**
119 * struct data_chunk - Element of scatter-gather list that makes a frame.
120 * @size: Number of bytes to read from source.
121 * size_dst := fn(op, size_src), so doesn't mean much for destination.
122 * @icg: Number of bytes to jump after last src/dst address of this
123 * chunk and before first src/dst address for next chunk.
124 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
125 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
126 */
127 struct data_chunk {
128 size_t size;
129 size_t icg;
130 };
131
132 /**
133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134 * and attributes.
135 * @src_start: Bus address of source for the first chunk.
136 * @dst_start: Bus address of destination for the first chunk.
137 * @dir: Specifies the type of Source and Destination.
138 * @src_inc: If the source address increments after reading from it.
139 * @dst_inc: If the destination address increments after writing to it.
140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141 * Otherwise, source is read contiguously (icg ignored).
142 * Ignored if src_inc is false.
143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144 * Otherwise, destination is filled contiguously (icg ignored).
145 * Ignored if dst_inc is false.
146 * @numf: Number of frames in this template.
147 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148 * @sgl: Array of {chunk,icg} pairs that make up a frame.
149 */
150 struct dma_interleaved_template {
151 dma_addr_t src_start;
152 dma_addr_t dst_start;
153 enum dma_transfer_direction dir;
154 bool src_inc;
155 bool dst_inc;
156 bool src_sgl;
157 bool dst_sgl;
158 size_t numf;
159 size_t frame_size;
160 struct data_chunk sgl[0];
161 };
162
163 /**
164 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
165 * control completion, and communicate status.
166 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
167 * this transaction
168 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
169 * acknowledges receipt, i.e. has has a chance to establish any dependency
170 * chains
171 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
172 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
173 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
174 * (if not set, do the source dma-unmapping as page)
175 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
176 * (if not set, do the destination dma-unmapping as page)
177 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
178 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
179 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
180 * sources that were the result of a previous operation, in the case of a PQ
181 * operation it continues the calculation with new sources
182 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
183 * on the result of this operation
184 */
185 enum dma_ctrl_flags {
186 DMA_PREP_INTERRUPT = (1 << 0),
187 DMA_CTRL_ACK = (1 << 1),
188 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
189 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
190 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
191 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
192 DMA_PREP_PQ_DISABLE_P = (1 << 6),
193 DMA_PREP_PQ_DISABLE_Q = (1 << 7),
194 DMA_PREP_CONTINUE = (1 << 8),
195 DMA_PREP_FENCE = (1 << 9),
196 };
197
198 /**
199 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
200 * on a running channel.
201 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
202 * @DMA_PAUSE: pause ongoing transfers
203 * @DMA_RESUME: resume paused transfer
204 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
205 * that need to runtime reconfigure the slave channels (as opposed to passing
206 * configuration data in statically from the platform). An additional
207 * argument of struct dma_slave_config must be passed in with this
208 * command.
209 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
210 * into external start mode.
211 */
212 enum dma_ctrl_cmd {
213 DMA_TERMINATE_ALL,
214 DMA_PAUSE,
215 DMA_RESUME,
216 DMA_SLAVE_CONFIG,
217 FSLDMA_EXTERNAL_START,
218 };
219
220 /**
221 * enum sum_check_bits - bit position of pq_check_flags
222 */
223 enum sum_check_bits {
224 SUM_CHECK_P = 0,
225 SUM_CHECK_Q = 1,
226 };
227
228 /**
229 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
230 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
231 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
232 */
233 enum sum_check_flags {
234 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
235 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
236 };
237
238
239 /**
240 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
241 * See linux/cpumask.h
242 */
243 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
244
245 /**
246 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
247 * @memcpy_count: transaction counter
248 * @bytes_transferred: byte counter
249 */
250
251 struct dma_chan_percpu {
252 /* stats */
253 unsigned long memcpy_count;
254 unsigned long bytes_transferred;
255 };
256
257 /**
258 * struct dma_chan - devices supply DMA channels, clients use them
259 * @device: ptr to the dma device who supplies this channel, always !%NULL
260 * @cookie: last cookie value returned to client
261 * @completed_cookie: last completed cookie for this channel
262 * @chan_id: channel ID for sysfs
263 * @dev: class device for sysfs
264 * @device_node: used to add this to the device chan list
265 * @local: per-cpu pointer to a struct dma_chan_percpu
266 * @client-count: how many clients are using this channel
267 * @table_count: number of appearances in the mem-to-mem allocation table
268 * @private: private data for certain client-channel associations
269 */
270 struct dma_chan {
271 struct dma_device *device;
272 dma_cookie_t cookie;
273 dma_cookie_t completed_cookie;
274
275 /* sysfs */
276 int chan_id;
277 struct dma_chan_dev *dev;
278
279 struct list_head device_node;
280 struct dma_chan_percpu __percpu *local;
281 int client_count;
282 int table_count;
283 void *private;
284 };
285
286 /**
287 * struct dma_chan_dev - relate sysfs device node to backing channel device
288 * @chan - driver channel device
289 * @device - sysfs device
290 * @dev_id - parent dma_device dev_id
291 * @idr_ref - reference count to gate release of dma_device dev_id
292 */
293 struct dma_chan_dev {
294 struct dma_chan *chan;
295 struct device device;
296 int dev_id;
297 atomic_t *idr_ref;
298 };
299
300 /**
301 * enum dma_slave_buswidth - defines bus with of the DMA slave
302 * device, source or target buses
303 */
304 enum dma_slave_buswidth {
305 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
306 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
307 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
308 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
309 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
310 };
311
312 /**
313 * struct dma_slave_config - dma slave channel runtime config
314 * @direction: whether the data shall go in or out on this slave
315 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
316 * legal values, DMA_BIDIRECTIONAL is not acceptable since we
317 * need to differentiate source and target addresses.
318 * @src_addr: this is the physical address where DMA slave data
319 * should be read (RX), if the source is memory this argument is
320 * ignored.
321 * @dst_addr: this is the physical address where DMA slave data
322 * should be written (TX), if the source is memory this argument
323 * is ignored.
324 * @src_addr_width: this is the width in bytes of the source (RX)
325 * register where DMA data shall be read. If the source
326 * is memory this may be ignored depending on architecture.
327 * Legal values: 1, 2, 4, 8.
328 * @dst_addr_width: same as src_addr_width but for destination
329 * target (TX) mutatis mutandis.
330 * @src_maxburst: the maximum number of words (note: words, as in
331 * units of the src_addr_width member, not bytes) that can be sent
332 * in one burst to the device. Typically something like half the
333 * FIFO depth on I/O peripherals so you don't overflow it. This
334 * may or may not be applicable on memory sources.
335 * @dst_maxburst: same as src_maxburst but for destination target
336 * mutatis mutandis.
337 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
338 * with 'true' if peripheral should be flow controller. Direction will be
339 * selected at Runtime.
340 * @slave_id: Slave requester id. Only valid for slave channels. The dma
341 * slave peripheral will have unique id as dma requester which need to be
342 * pass as slave config.
343 *
344 * This struct is passed in as configuration data to a DMA engine
345 * in order to set up a certain channel for DMA transport at runtime.
346 * The DMA device/engine has to provide support for an additional
347 * command in the channel config interface, DMA_SLAVE_CONFIG
348 * and this struct will then be passed in as an argument to the
349 * DMA engine device_control() function.
350 *
351 * The rationale for adding configuration information to this struct
352 * is as follows: if it is likely that most DMA slave controllers in
353 * the world will support the configuration option, then make it
354 * generic. If not: if it is fixed so that it be sent in static from
355 * the platform data, then prefer to do that. Else, if it is neither
356 * fixed at runtime, nor generic enough (such as bus mastership on
357 * some CPU family and whatnot) then create a custom slave config
358 * struct and pass that, then make this config a member of that
359 * struct, if applicable.
360 */
361 struct dma_slave_config {
362 enum dma_transfer_direction direction;
363 dma_addr_t src_addr;
364 dma_addr_t dst_addr;
365 enum dma_slave_buswidth src_addr_width;
366 enum dma_slave_buswidth dst_addr_width;
367 u32 src_maxburst;
368 u32 dst_maxburst;
369 bool device_fc;
370 unsigned int slave_id;
371 };
372
373 /* struct dma_slave_caps - expose capabilities of a slave channel only
374 *
375 * @src_addr_widths: bit mask of src addr widths the channel supports
376 * @dstn_addr_widths: bit mask of dstn addr widths the channel supports
377 * @directions: bit mask of slave direction the channel supported
378 * since the enum dma_transfer_direction is not defined as bits for each
379 * type of direction, the dma controller should fill (1 << <TYPE>) and same
380 * should be checked by controller as well
381 * @cmd_pause: true, if pause and thereby resume is supported
382 * @cmd_terminate: true, if terminate cmd is supported
383 *
384 * @max_sg_nr: maximum number of SG segments supported
385 * 0 for no maximum
386 * @max_sg_len: maximum length of a SG segment supported
387 * 0 for no maximum
388 */
389 struct dma_slave_caps {
390 u32 src_addr_widths;
391 u32 dstn_addr_widths;
392 u32 directions;
393 bool cmd_pause;
394 bool cmd_terminate;
395
396 u32 max_sg_nr;
397 u32 max_sg_len;
398 };
399
400 static inline const char *dma_chan_name(struct dma_chan *chan)
401 {
402 return dev_name(&chan->dev->device);
403 }
404
405 void dma_chan_cleanup(struct kref *kref);
406
407 /**
408 * typedef dma_filter_fn - callback filter for dma_request_channel
409 * @chan: channel to be reviewed
410 * @filter_param: opaque parameter passed through dma_request_channel
411 *
412 * When this optional parameter is specified in a call to dma_request_channel a
413 * suitable channel is passed to this routine for further dispositioning before
414 * being returned. Where 'suitable' indicates a non-busy channel that
415 * satisfies the given capability mask. It returns 'true' to indicate that the
416 * channel is suitable.
417 */
418 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
419
420 typedef void (*dma_async_tx_callback)(void *dma_async_param);
421 /**
422 * struct dma_async_tx_descriptor - async transaction descriptor
423 * ---dma generic offload fields---
424 * @cookie: tracking cookie for this transaction, set to -EBUSY if
425 * this tx is sitting on a dependency list
426 * @flags: flags to augment operation preparation, control completion, and
427 * communicate status
428 * @phys: physical address of the descriptor
429 * @chan: target channel for this operation
430 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
431 * @callback: routine to call after this operation is complete
432 * @callback_param: general parameter to pass to the callback routine
433 * ---async_tx api specific fields---
434 * @next: at completion submit this descriptor
435 * @parent: pointer to the next level up in the dependency chain
436 * @lock: protect the parent and next pointers
437 */
438 struct dma_async_tx_descriptor {
439 dma_cookie_t cookie;
440 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
441 dma_addr_t phys;
442 struct dma_chan *chan;
443 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
444 dma_async_tx_callback callback;
445 void *callback_param;
446 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
447 struct dma_async_tx_descriptor *next;
448 struct dma_async_tx_descriptor *parent;
449 spinlock_t lock;
450 #endif
451 };
452
453 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
454 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
455 {
456 }
457 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
458 {
459 }
460 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
461 {
462 BUG();
463 }
464 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
465 {
466 }
467 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
468 {
469 }
470 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
471 {
472 return NULL;
473 }
474 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
475 {
476 return NULL;
477 }
478
479 #else
480 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
481 {
482 spin_lock_bh(&txd->lock);
483 }
484 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
485 {
486 spin_unlock_bh(&txd->lock);
487 }
488 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
489 {
490 txd->next = next;
491 next->parent = txd;
492 }
493 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
494 {
495 txd->parent = NULL;
496 }
497 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
498 {
499 txd->next = NULL;
500 }
501 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
502 {
503 return txd->parent;
504 }
505 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
506 {
507 return txd->next;
508 }
509 #endif
510
511 /**
512 * struct dma_tx_state - filled in to report the status of
513 * a transfer.
514 * @last: last completed DMA cookie
515 * @used: last issued DMA cookie (i.e. the one in progress)
516 * @residue: the remaining number of bytes left to transmit
517 * on the selected transfer for states DMA_IN_PROGRESS and
518 * DMA_PAUSED if this is implemented in the driver, else 0
519 */
520 struct dma_tx_state {
521 dma_cookie_t last;
522 dma_cookie_t used;
523 u32 residue;
524 };
525
526 /**
527 * struct dma_device - info on the entity supplying DMA services
528 * @chancnt: how many DMA channels are supported
529 * @privatecnt: how many DMA channels are requested by dma_request_channel
530 * @channels: the list of struct dma_chan
531 * @global_node: list_head for global dma_device_list
532 * @cap_mask: one or more dma_capability flags
533 * @max_xor: maximum number of xor sources, 0 if no capability
534 * @max_pq: maximum number of PQ sources and PQ-continue capability
535 * @copy_align: alignment shift for memcpy operations
536 * @xor_align: alignment shift for xor operations
537 * @pq_align: alignment shift for pq operations
538 * @fill_align: alignment shift for memset operations
539 * @dev_id: unique device ID
540 * @dev: struct device reference for dma mapping api
541 * @device_alloc_chan_resources: allocate resources and return the
542 * number of allocated descriptors
543 * @device_free_chan_resources: release DMA channel's resources
544 * @device_prep_dma_memcpy: prepares a memcpy operation
545 * @device_prep_dma_xor: prepares a xor operation
546 * @device_prep_dma_xor_val: prepares a xor validation operation
547 * @device_prep_dma_pq: prepares a pq operation
548 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
549 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
550 * @device_prep_slave_sg: prepares a slave dma operation
551 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
552 * The function takes a buffer of size buf_len. The callback function will
553 * be called after period_len bytes have been transferred.
554 * @device_prep_interleaved_dma: Transfer expression in a generic way.
555 * @device_control: manipulate all pending operations on a channel, returns
556 * zero or error code
557 * @device_tx_status: poll for transaction completion, the optional
558 * txstate parameter can be supplied with a pointer to get a
559 * struct with auxiliary transfer status information, otherwise the call
560 * will just return a simple status code
561 * @device_issue_pending: push pending transactions to hardware
562 * @device_slave_caps: return the slave channel capabilities
563 */
564 struct dma_device {
565
566 unsigned int chancnt;
567 unsigned int privatecnt;
568 struct list_head channels;
569 struct list_head global_node;
570 dma_cap_mask_t cap_mask;
571 unsigned short max_xor;
572 unsigned short max_pq;
573 u8 copy_align;
574 u8 xor_align;
575 u8 pq_align;
576 u8 fill_align;
577 #define DMA_HAS_PQ_CONTINUE (1 << 15)
578
579 int dev_id;
580 struct device *dev;
581
582 int (*device_alloc_chan_resources)(struct dma_chan *chan);
583 void (*device_free_chan_resources)(struct dma_chan *chan);
584
585 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
586 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
587 size_t len, unsigned long flags);
588 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
589 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
590 unsigned int src_cnt, size_t len, unsigned long flags);
591 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
592 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
593 size_t len, enum sum_check_flags *result, unsigned long flags);
594 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
595 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
596 unsigned int src_cnt, const unsigned char *scf,
597 size_t len, unsigned long flags);
598 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
599 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
600 unsigned int src_cnt, const unsigned char *scf, size_t len,
601 enum sum_check_flags *pqres, unsigned long flags);
602 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
603 struct dma_chan *chan, unsigned long flags);
604 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
605 struct dma_chan *chan,
606 struct scatterlist *dst_sg, unsigned int dst_nents,
607 struct scatterlist *src_sg, unsigned int src_nents,
608 unsigned long flags);
609
610 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
611 struct dma_chan *chan, struct scatterlist *sgl,
612 unsigned int sg_len, enum dma_transfer_direction direction,
613 unsigned long flags, void *context);
614 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
615 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
616 size_t period_len, enum dma_transfer_direction direction,
617 unsigned long flags, void *context);
618 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
619 struct dma_chan *chan, struct dma_interleaved_template *xt,
620 unsigned long flags);
621 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
622 unsigned long arg);
623
624 enum dma_status (*device_tx_status)(struct dma_chan *chan,
625 dma_cookie_t cookie,
626 struct dma_tx_state *txstate);
627 void (*device_issue_pending)(struct dma_chan *chan);
628 int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
629 };
630
631 static inline int dmaengine_device_control(struct dma_chan *chan,
632 enum dma_ctrl_cmd cmd,
633 unsigned long arg)
634 {
635 if (chan->device->device_control)
636 return chan->device->device_control(chan, cmd, arg);
637
638 return -ENOSYS;
639 }
640
641 static inline int dmaengine_slave_config(struct dma_chan *chan,
642 struct dma_slave_config *config)
643 {
644 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
645 (unsigned long)config);
646 }
647
648 static inline bool is_slave_direction(enum dma_transfer_direction direction)
649 {
650 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
651 }
652
653 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
654 struct dma_chan *chan, dma_addr_t buf, size_t len,
655 enum dma_transfer_direction dir, unsigned long flags)
656 {
657 struct scatterlist sg;
658 sg_init_table(&sg, 1);
659 sg_dma_address(&sg) = buf;
660 sg_dma_len(&sg) = len;
661
662 return chan->device->device_prep_slave_sg(chan, &sg, 1,
663 dir, flags, NULL);
664 }
665
666 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
667 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
668 enum dma_transfer_direction dir, unsigned long flags)
669 {
670 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
671 dir, flags, NULL);
672 }
673
674 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
675 struct rio_dma_ext;
676 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
677 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
678 enum dma_transfer_direction dir, unsigned long flags,
679 struct rio_dma_ext *rio_ext)
680 {
681 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
682 dir, flags, rio_ext);
683 }
684 #endif
685
686 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
687 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
688 size_t period_len, enum dma_transfer_direction dir,
689 unsigned long flags)
690 {
691 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
692 period_len, dir, flags, NULL);
693 }
694
695 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
696 struct dma_chan *chan, struct dma_interleaved_template *xt,
697 unsigned long flags)
698 {
699 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
700 }
701
702 static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
703 {
704 if (!chan || !caps)
705 return -EINVAL;
706
707 /* check if the channel supports slave transactions */
708 if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits))
709 return -ENXIO;
710
711 if (chan->device->device_slave_caps)
712 return chan->device->device_slave_caps(chan, caps);
713
714 return -ENXIO;
715 }
716
717 static inline int dmaengine_terminate_all(struct dma_chan *chan)
718 {
719 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
720 }
721
722 static inline int dmaengine_pause(struct dma_chan *chan)
723 {
724 return dmaengine_device_control(chan, DMA_PAUSE, 0);
725 }
726
727 static inline int dmaengine_resume(struct dma_chan *chan)
728 {
729 return dmaengine_device_control(chan, DMA_RESUME, 0);
730 }
731
732 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
733 dma_cookie_t cookie, struct dma_tx_state *state)
734 {
735 return chan->device->device_tx_status(chan, cookie, state);
736 }
737
738 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
739 {
740 return desc->tx_submit(desc);
741 }
742
743 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
744 {
745 size_t mask;
746
747 if (!align)
748 return true;
749 mask = (1 << align) - 1;
750 if (mask & (off1 | off2 | len))
751 return false;
752 return true;
753 }
754
755 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
756 size_t off2, size_t len)
757 {
758 return dmaengine_check_align(dev->copy_align, off1, off2, len);
759 }
760
761 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
762 size_t off2, size_t len)
763 {
764 return dmaengine_check_align(dev->xor_align, off1, off2, len);
765 }
766
767 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
768 size_t off2, size_t len)
769 {
770 return dmaengine_check_align(dev->pq_align, off1, off2, len);
771 }
772
773 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
774 size_t off2, size_t len)
775 {
776 return dmaengine_check_align(dev->fill_align, off1, off2, len);
777 }
778
779 static inline void
780 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
781 {
782 dma->max_pq = maxpq;
783 if (has_pq_continue)
784 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
785 }
786
787 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
788 {
789 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
790 }
791
792 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
793 {
794 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
795
796 return (flags & mask) == mask;
797 }
798
799 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
800 {
801 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
802 }
803
804 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
805 {
806 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
807 }
808
809 /* dma_maxpq - reduce maxpq in the face of continued operations
810 * @dma - dma device with PQ capability
811 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
812 *
813 * When an engine does not support native continuation we need 3 extra
814 * source slots to reuse P and Q with the following coefficients:
815 * 1/ {00} * P : remove P from Q', but use it as a source for P'
816 * 2/ {01} * Q : use Q to continue Q' calculation
817 * 3/ {00} * Q : subtract Q from P' to cancel (2)
818 *
819 * In the case where P is disabled we only need 1 extra source:
820 * 1/ {01} * Q : use Q to continue Q' calculation
821 */
822 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
823 {
824 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
825 return dma_dev_to_maxpq(dma);
826 else if (dmaf_p_disabled_continue(flags))
827 return dma_dev_to_maxpq(dma) - 1;
828 else if (dmaf_continue(flags))
829 return dma_dev_to_maxpq(dma) - 3;
830 BUG();
831 }
832
833 /* --- public DMA engine API --- */
834
835 #ifdef CONFIG_DMA_ENGINE
836 void dmaengine_get(void);
837 void dmaengine_put(void);
838 #else
839 static inline void dmaengine_get(void)
840 {
841 }
842 static inline void dmaengine_put(void)
843 {
844 }
845 #endif
846
847 #ifdef CONFIG_NET_DMA
848 #define net_dmaengine_get() dmaengine_get()
849 #define net_dmaengine_put() dmaengine_put()
850 #else
851 static inline void net_dmaengine_get(void)
852 {
853 }
854 static inline void net_dmaengine_put(void)
855 {
856 }
857 #endif
858
859 #ifdef CONFIG_ASYNC_TX_DMA
860 #define async_dmaengine_get() dmaengine_get()
861 #define async_dmaengine_put() dmaengine_put()
862 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
863 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
864 #else
865 #define async_dma_find_channel(type) dma_find_channel(type)
866 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
867 #else
868 static inline void async_dmaengine_get(void)
869 {
870 }
871 static inline void async_dmaengine_put(void)
872 {
873 }
874 static inline struct dma_chan *
875 async_dma_find_channel(enum dma_transaction_type type)
876 {
877 return NULL;
878 }
879 #endif /* CONFIG_ASYNC_TX_DMA */
880
881 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
882 void *dest, void *src, size_t len);
883 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
884 struct page *page, unsigned int offset, void *kdata, size_t len);
885 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
886 struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
887 unsigned int src_off, size_t len);
888 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
889 struct dma_chan *chan);
890
891 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
892 {
893 tx->flags |= DMA_CTRL_ACK;
894 }
895
896 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
897 {
898 tx->flags &= ~DMA_CTRL_ACK;
899 }
900
901 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
902 {
903 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
904 }
905
906 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
907 static inline void
908 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
909 {
910 set_bit(tx_type, dstp->bits);
911 }
912
913 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
914 static inline void
915 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
916 {
917 clear_bit(tx_type, dstp->bits);
918 }
919
920 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
921 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
922 {
923 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
924 }
925
926 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
927 static inline int
928 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
929 {
930 return test_bit(tx_type, srcp->bits);
931 }
932
933 #define for_each_dma_cap_mask(cap, mask) \
934 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
935
936 /**
937 * dma_async_issue_pending - flush pending transactions to HW
938 * @chan: target DMA channel
939 *
940 * This allows drivers to push copies to HW in batches,
941 * reducing MMIO writes where possible.
942 */
943 static inline void dma_async_issue_pending(struct dma_chan *chan)
944 {
945 chan->device->device_issue_pending(chan);
946 }
947
948 /**
949 * dma_async_is_tx_complete - poll for transaction completion
950 * @chan: DMA channel
951 * @cookie: transaction identifier to check status of
952 * @last: returns last completed cookie, can be NULL
953 * @used: returns last issued cookie, can be NULL
954 *
955 * If @last and @used are passed in, upon return they reflect the driver
956 * internal state and can be used with dma_async_is_complete() to check
957 * the status of multiple cookies without re-checking hardware state.
958 */
959 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
960 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
961 {
962 struct dma_tx_state state;
963 enum dma_status status;
964
965 status = chan->device->device_tx_status(chan, cookie, &state);
966 if (last)
967 *last = state.last;
968 if (used)
969 *used = state.used;
970 return status;
971 }
972
973 /**
974 * dma_async_is_complete - test a cookie against chan state
975 * @cookie: transaction identifier to test status of
976 * @last_complete: last know completed transaction
977 * @last_used: last cookie value handed out
978 *
979 * dma_async_is_complete() is used in dma_async_is_tx_complete()
980 * the test logic is separated for lightweight testing of multiple cookies
981 */
982 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
983 dma_cookie_t last_complete, dma_cookie_t last_used)
984 {
985 if (last_complete <= last_used) {
986 if ((cookie <= last_complete) || (cookie > last_used))
987 return DMA_SUCCESS;
988 } else {
989 if ((cookie <= last_complete) && (cookie > last_used))
990 return DMA_SUCCESS;
991 }
992 return DMA_IN_PROGRESS;
993 }
994
995 static inline void
996 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
997 {
998 if (st) {
999 st->last = last;
1000 st->used = used;
1001 st->residue = residue;
1002 }
1003 }
1004
1005 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1006 #ifdef CONFIG_DMA_ENGINE
1007 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1008 void dma_issue_pending_all(void);
1009 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1010 dma_filter_fn fn, void *fn_param);
1011 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1012 void dma_release_channel(struct dma_chan *chan);
1013 #else
1014 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1015 {
1016 return DMA_SUCCESS;
1017 }
1018 static inline void dma_issue_pending_all(void)
1019 {
1020 }
1021 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1022 dma_filter_fn fn, void *fn_param)
1023 {
1024 return NULL;
1025 }
1026 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1027 const char *name)
1028 {
1029 return NULL;
1030 }
1031 static inline void dma_release_channel(struct dma_chan *chan)
1032 {
1033 }
1034 #endif
1035
1036 /* --- DMA device --- */
1037
1038 int dma_async_device_register(struct dma_device *device);
1039 void dma_async_device_unregister(struct dma_device *device);
1040 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1041 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1042 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1043 struct dma_chan *net_dma_find_channel(void);
1044 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1045 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1046 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1047
1048 static inline struct dma_chan
1049 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1050 dma_filter_fn fn, void *fn_param,
1051 struct device *dev, char *name)
1052 {
1053 struct dma_chan *chan;
1054
1055 chan = dma_request_slave_channel(dev, name);
1056 if (chan)
1057 return chan;
1058
1059 return __dma_request_channel(mask, fn, fn_param);
1060 }
1061
1062 /* --- Helper iov-locking functions --- */
1063
1064 struct dma_page_list {
1065 char __user *base_address;
1066 int nr_pages;
1067 struct page **pages;
1068 };
1069
1070 struct dma_pinned_list {
1071 int nr_iovecs;
1072 struct dma_page_list page_list[0];
1073 };
1074
1075 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
1076 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
1077
1078 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
1079 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
1080 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
1081 struct dma_pinned_list *pinned_list, struct page *page,
1082 unsigned int offset, size_t len);
1083
1084 #endif /* DMAENGINE_H */