]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/dmaengine.h
Revert "tracing: Include module.h in define_trace.h"
[mirror_ubuntu-artful-kernel.git] / include / linux / dmaengine.h
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
21 #ifndef DMAENGINE_H
22 #define DMAENGINE_H
23
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/dma-direction.h>
27 #include <linux/bitmap.h>
28 #include <asm/page.h>
29
30 struct scatterlist;
31
32 /**
33 * typedef dma_cookie_t - an opaque DMA cookie
34 *
35 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
36 */
37 typedef s32 dma_cookie_t;
38 #define DMA_MIN_COOKIE 1
39 #define DMA_MAX_COOKIE INT_MAX
40
41 #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
42
43 /**
44 * enum dma_status - DMA transaction status
45 * @DMA_SUCCESS: transaction completed successfully
46 * @DMA_IN_PROGRESS: transaction not yet processed
47 * @DMA_PAUSED: transaction is paused
48 * @DMA_ERROR: transaction failed
49 */
50 enum dma_status {
51 DMA_SUCCESS,
52 DMA_IN_PROGRESS,
53 DMA_PAUSED,
54 DMA_ERROR,
55 };
56
57 /**
58 * enum dma_transaction_type - DMA transaction types/indexes
59 *
60 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
61 * automatically set as dma devices are registered.
62 */
63 enum dma_transaction_type {
64 DMA_MEMCPY,
65 DMA_XOR,
66 DMA_PQ,
67 DMA_XOR_VAL,
68 DMA_PQ_VAL,
69 DMA_MEMSET,
70 DMA_INTERRUPT,
71 DMA_SG,
72 DMA_PRIVATE,
73 DMA_ASYNC_TX,
74 DMA_SLAVE,
75 DMA_CYCLIC,
76 };
77
78 /* last transaction type for creation of the capabilities mask */
79 #define DMA_TX_TYPE_END (DMA_CYCLIC + 1)
80
81
82 /**
83 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
84 * control completion, and communicate status.
85 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
86 * this transaction
87 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
88 * acknowledges receipt, i.e. has has a chance to establish any dependency
89 * chains
90 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
91 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
92 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
93 * (if not set, do the source dma-unmapping as page)
94 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
95 * (if not set, do the destination dma-unmapping as page)
96 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
97 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
98 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
99 * sources that were the result of a previous operation, in the case of a PQ
100 * operation it continues the calculation with new sources
101 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
102 * on the result of this operation
103 */
104 enum dma_ctrl_flags {
105 DMA_PREP_INTERRUPT = (1 << 0),
106 DMA_CTRL_ACK = (1 << 1),
107 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
108 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
109 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
110 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
111 DMA_PREP_PQ_DISABLE_P = (1 << 6),
112 DMA_PREP_PQ_DISABLE_Q = (1 << 7),
113 DMA_PREP_CONTINUE = (1 << 8),
114 DMA_PREP_FENCE = (1 << 9),
115 };
116
117 /**
118 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
119 * on a running channel.
120 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
121 * @DMA_PAUSE: pause ongoing transfers
122 * @DMA_RESUME: resume paused transfer
123 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
124 * that need to runtime reconfigure the slave channels (as opposed to passing
125 * configuration data in statically from the platform). An additional
126 * argument of struct dma_slave_config must be passed in with this
127 * command.
128 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
129 * into external start mode.
130 */
131 enum dma_ctrl_cmd {
132 DMA_TERMINATE_ALL,
133 DMA_PAUSE,
134 DMA_RESUME,
135 DMA_SLAVE_CONFIG,
136 FSLDMA_EXTERNAL_START,
137 };
138
139 /**
140 * enum sum_check_bits - bit position of pq_check_flags
141 */
142 enum sum_check_bits {
143 SUM_CHECK_P = 0,
144 SUM_CHECK_Q = 1,
145 };
146
147 /**
148 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
149 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
150 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
151 */
152 enum sum_check_flags {
153 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
154 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
155 };
156
157
158 /**
159 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
160 * See linux/cpumask.h
161 */
162 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
163
164 /**
165 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
166 * @memcpy_count: transaction counter
167 * @bytes_transferred: byte counter
168 */
169
170 struct dma_chan_percpu {
171 /* stats */
172 unsigned long memcpy_count;
173 unsigned long bytes_transferred;
174 };
175
176 /**
177 * struct dma_chan - devices supply DMA channels, clients use them
178 * @device: ptr to the dma device who supplies this channel, always !%NULL
179 * @cookie: last cookie value returned to client
180 * @chan_id: channel ID for sysfs
181 * @dev: class device for sysfs
182 * @device_node: used to add this to the device chan list
183 * @local: per-cpu pointer to a struct dma_chan_percpu
184 * @client-count: how many clients are using this channel
185 * @table_count: number of appearances in the mem-to-mem allocation table
186 * @private: private data for certain client-channel associations
187 */
188 struct dma_chan {
189 struct dma_device *device;
190 dma_cookie_t cookie;
191
192 /* sysfs */
193 int chan_id;
194 struct dma_chan_dev *dev;
195
196 struct list_head device_node;
197 struct dma_chan_percpu __percpu *local;
198 int client_count;
199 int table_count;
200 void *private;
201 };
202
203 /**
204 * struct dma_chan_dev - relate sysfs device node to backing channel device
205 * @chan - driver channel device
206 * @device - sysfs device
207 * @dev_id - parent dma_device dev_id
208 * @idr_ref - reference count to gate release of dma_device dev_id
209 */
210 struct dma_chan_dev {
211 struct dma_chan *chan;
212 struct device device;
213 int dev_id;
214 atomic_t *idr_ref;
215 };
216
217 /**
218 * enum dma_slave_buswidth - defines bus with of the DMA slave
219 * device, source or target buses
220 */
221 enum dma_slave_buswidth {
222 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
223 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
224 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
225 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
226 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
227 };
228
229 /**
230 * struct dma_slave_config - dma slave channel runtime config
231 * @direction: whether the data shall go in or out on this slave
232 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
233 * legal values, DMA_BIDIRECTIONAL is not acceptable since we
234 * need to differentiate source and target addresses.
235 * @src_addr: this is the physical address where DMA slave data
236 * should be read (RX), if the source is memory this argument is
237 * ignored.
238 * @dst_addr: this is the physical address where DMA slave data
239 * should be written (TX), if the source is memory this argument
240 * is ignored.
241 * @src_addr_width: this is the width in bytes of the source (RX)
242 * register where DMA data shall be read. If the source
243 * is memory this may be ignored depending on architecture.
244 * Legal values: 1, 2, 4, 8.
245 * @dst_addr_width: same as src_addr_width but for destination
246 * target (TX) mutatis mutandis.
247 * @src_maxburst: the maximum number of words (note: words, as in
248 * units of the src_addr_width member, not bytes) that can be sent
249 * in one burst to the device. Typically something like half the
250 * FIFO depth on I/O peripherals so you don't overflow it. This
251 * may or may not be applicable on memory sources.
252 * @dst_maxburst: same as src_maxburst but for destination target
253 * mutatis mutandis.
254 *
255 * This struct is passed in as configuration data to a DMA engine
256 * in order to set up a certain channel for DMA transport at runtime.
257 * The DMA device/engine has to provide support for an additional
258 * command in the channel config interface, DMA_SLAVE_CONFIG
259 * and this struct will then be passed in as an argument to the
260 * DMA engine device_control() function.
261 *
262 * The rationale for adding configuration information to this struct
263 * is as follows: if it is likely that most DMA slave controllers in
264 * the world will support the configuration option, then make it
265 * generic. If not: if it is fixed so that it be sent in static from
266 * the platform data, then prefer to do that. Else, if it is neither
267 * fixed at runtime, nor generic enough (such as bus mastership on
268 * some CPU family and whatnot) then create a custom slave config
269 * struct and pass that, then make this config a member of that
270 * struct, if applicable.
271 */
272 struct dma_slave_config {
273 enum dma_data_direction direction;
274 dma_addr_t src_addr;
275 dma_addr_t dst_addr;
276 enum dma_slave_buswidth src_addr_width;
277 enum dma_slave_buswidth dst_addr_width;
278 u32 src_maxburst;
279 u32 dst_maxburst;
280 };
281
282 static inline const char *dma_chan_name(struct dma_chan *chan)
283 {
284 return dev_name(&chan->dev->device);
285 }
286
287 void dma_chan_cleanup(struct kref *kref);
288
289 /**
290 * typedef dma_filter_fn - callback filter for dma_request_channel
291 * @chan: channel to be reviewed
292 * @filter_param: opaque parameter passed through dma_request_channel
293 *
294 * When this optional parameter is specified in a call to dma_request_channel a
295 * suitable channel is passed to this routine for further dispositioning before
296 * being returned. Where 'suitable' indicates a non-busy channel that
297 * satisfies the given capability mask. It returns 'true' to indicate that the
298 * channel is suitable.
299 */
300 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
301
302 typedef void (*dma_async_tx_callback)(void *dma_async_param);
303 /**
304 * struct dma_async_tx_descriptor - async transaction descriptor
305 * ---dma generic offload fields---
306 * @cookie: tracking cookie for this transaction, set to -EBUSY if
307 * this tx is sitting on a dependency list
308 * @flags: flags to augment operation preparation, control completion, and
309 * communicate status
310 * @phys: physical address of the descriptor
311 * @chan: target channel for this operation
312 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
313 * @callback: routine to call after this operation is complete
314 * @callback_param: general parameter to pass to the callback routine
315 * ---async_tx api specific fields---
316 * @next: at completion submit this descriptor
317 * @parent: pointer to the next level up in the dependency chain
318 * @lock: protect the parent and next pointers
319 */
320 struct dma_async_tx_descriptor {
321 dma_cookie_t cookie;
322 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
323 dma_addr_t phys;
324 struct dma_chan *chan;
325 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
326 dma_async_tx_callback callback;
327 void *callback_param;
328 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
329 struct dma_async_tx_descriptor *next;
330 struct dma_async_tx_descriptor *parent;
331 spinlock_t lock;
332 #endif
333 };
334
335 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
336 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
337 {
338 }
339 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
340 {
341 }
342 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
343 {
344 BUG();
345 }
346 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
347 {
348 }
349 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
350 {
351 }
352 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
353 {
354 return NULL;
355 }
356 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
357 {
358 return NULL;
359 }
360
361 #else
362 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
363 {
364 spin_lock_bh(&txd->lock);
365 }
366 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
367 {
368 spin_unlock_bh(&txd->lock);
369 }
370 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
371 {
372 txd->next = next;
373 next->parent = txd;
374 }
375 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
376 {
377 txd->parent = NULL;
378 }
379 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
380 {
381 txd->next = NULL;
382 }
383 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
384 {
385 return txd->parent;
386 }
387 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
388 {
389 return txd->next;
390 }
391 #endif
392
393 /**
394 * struct dma_tx_state - filled in to report the status of
395 * a transfer.
396 * @last: last completed DMA cookie
397 * @used: last issued DMA cookie (i.e. the one in progress)
398 * @residue: the remaining number of bytes left to transmit
399 * on the selected transfer for states DMA_IN_PROGRESS and
400 * DMA_PAUSED if this is implemented in the driver, else 0
401 */
402 struct dma_tx_state {
403 dma_cookie_t last;
404 dma_cookie_t used;
405 u32 residue;
406 };
407
408 /**
409 * struct dma_device - info on the entity supplying DMA services
410 * @chancnt: how many DMA channels are supported
411 * @privatecnt: how many DMA channels are requested by dma_request_channel
412 * @channels: the list of struct dma_chan
413 * @global_node: list_head for global dma_device_list
414 * @cap_mask: one or more dma_capability flags
415 * @max_xor: maximum number of xor sources, 0 if no capability
416 * @max_pq: maximum number of PQ sources and PQ-continue capability
417 * @copy_align: alignment shift for memcpy operations
418 * @xor_align: alignment shift for xor operations
419 * @pq_align: alignment shift for pq operations
420 * @fill_align: alignment shift for memset operations
421 * @dev_id: unique device ID
422 * @dev: struct device reference for dma mapping api
423 * @device_alloc_chan_resources: allocate resources and return the
424 * number of allocated descriptors
425 * @device_free_chan_resources: release DMA channel's resources
426 * @device_prep_dma_memcpy: prepares a memcpy operation
427 * @device_prep_dma_xor: prepares a xor operation
428 * @device_prep_dma_xor_val: prepares a xor validation operation
429 * @device_prep_dma_pq: prepares a pq operation
430 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
431 * @device_prep_dma_memset: prepares a memset operation
432 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
433 * @device_prep_slave_sg: prepares a slave dma operation
434 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
435 * The function takes a buffer of size buf_len. The callback function will
436 * be called after period_len bytes have been transferred.
437 * @device_control: manipulate all pending operations on a channel, returns
438 * zero or error code
439 * @device_tx_status: poll for transaction completion, the optional
440 * txstate parameter can be supplied with a pointer to get a
441 * struct with auxiliary transfer status information, otherwise the call
442 * will just return a simple status code
443 * @device_issue_pending: push pending transactions to hardware
444 */
445 struct dma_device {
446
447 unsigned int chancnt;
448 unsigned int privatecnt;
449 struct list_head channels;
450 struct list_head global_node;
451 dma_cap_mask_t cap_mask;
452 unsigned short max_xor;
453 unsigned short max_pq;
454 u8 copy_align;
455 u8 xor_align;
456 u8 pq_align;
457 u8 fill_align;
458 #define DMA_HAS_PQ_CONTINUE (1 << 15)
459
460 int dev_id;
461 struct device *dev;
462
463 int (*device_alloc_chan_resources)(struct dma_chan *chan);
464 void (*device_free_chan_resources)(struct dma_chan *chan);
465
466 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
467 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
468 size_t len, unsigned long flags);
469 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
470 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
471 unsigned int src_cnt, size_t len, unsigned long flags);
472 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
473 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
474 size_t len, enum sum_check_flags *result, unsigned long flags);
475 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
476 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
477 unsigned int src_cnt, const unsigned char *scf,
478 size_t len, unsigned long flags);
479 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
480 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
481 unsigned int src_cnt, const unsigned char *scf, size_t len,
482 enum sum_check_flags *pqres, unsigned long flags);
483 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
484 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
485 unsigned long flags);
486 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
487 struct dma_chan *chan, unsigned long flags);
488 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
489 struct dma_chan *chan,
490 struct scatterlist *dst_sg, unsigned int dst_nents,
491 struct scatterlist *src_sg, unsigned int src_nents,
492 unsigned long flags);
493
494 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
495 struct dma_chan *chan, struct scatterlist *sgl,
496 unsigned int sg_len, enum dma_data_direction direction,
497 unsigned long flags);
498 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
499 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
500 size_t period_len, enum dma_data_direction direction);
501 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
502 unsigned long arg);
503
504 enum dma_status (*device_tx_status)(struct dma_chan *chan,
505 dma_cookie_t cookie,
506 struct dma_tx_state *txstate);
507 void (*device_issue_pending)(struct dma_chan *chan);
508 };
509
510 static inline int dmaengine_device_control(struct dma_chan *chan,
511 enum dma_ctrl_cmd cmd,
512 unsigned long arg)
513 {
514 return chan->device->device_control(chan, cmd, arg);
515 }
516
517 static inline int dmaengine_slave_config(struct dma_chan *chan,
518 struct dma_slave_config *config)
519 {
520 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
521 (unsigned long)config);
522 }
523
524 static inline int dmaengine_terminate_all(struct dma_chan *chan)
525 {
526 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
527 }
528
529 static inline int dmaengine_pause(struct dma_chan *chan)
530 {
531 return dmaengine_device_control(chan, DMA_PAUSE, 0);
532 }
533
534 static inline int dmaengine_resume(struct dma_chan *chan)
535 {
536 return dmaengine_device_control(chan, DMA_RESUME, 0);
537 }
538
539 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
540 {
541 return desc->tx_submit(desc);
542 }
543
544 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
545 {
546 size_t mask;
547
548 if (!align)
549 return true;
550 mask = (1 << align) - 1;
551 if (mask & (off1 | off2 | len))
552 return false;
553 return true;
554 }
555
556 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
557 size_t off2, size_t len)
558 {
559 return dmaengine_check_align(dev->copy_align, off1, off2, len);
560 }
561
562 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
563 size_t off2, size_t len)
564 {
565 return dmaengine_check_align(dev->xor_align, off1, off2, len);
566 }
567
568 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
569 size_t off2, size_t len)
570 {
571 return dmaengine_check_align(dev->pq_align, off1, off2, len);
572 }
573
574 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
575 size_t off2, size_t len)
576 {
577 return dmaengine_check_align(dev->fill_align, off1, off2, len);
578 }
579
580 static inline void
581 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
582 {
583 dma->max_pq = maxpq;
584 if (has_pq_continue)
585 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
586 }
587
588 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
589 {
590 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
591 }
592
593 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
594 {
595 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
596
597 return (flags & mask) == mask;
598 }
599
600 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
601 {
602 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
603 }
604
605 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
606 {
607 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
608 }
609
610 /* dma_maxpq - reduce maxpq in the face of continued operations
611 * @dma - dma device with PQ capability
612 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
613 *
614 * When an engine does not support native continuation we need 3 extra
615 * source slots to reuse P and Q with the following coefficients:
616 * 1/ {00} * P : remove P from Q', but use it as a source for P'
617 * 2/ {01} * Q : use Q to continue Q' calculation
618 * 3/ {00} * Q : subtract Q from P' to cancel (2)
619 *
620 * In the case where P is disabled we only need 1 extra source:
621 * 1/ {01} * Q : use Q to continue Q' calculation
622 */
623 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
624 {
625 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
626 return dma_dev_to_maxpq(dma);
627 else if (dmaf_p_disabled_continue(flags))
628 return dma_dev_to_maxpq(dma) - 1;
629 else if (dmaf_continue(flags))
630 return dma_dev_to_maxpq(dma) - 3;
631 BUG();
632 }
633
634 /* --- public DMA engine API --- */
635
636 #ifdef CONFIG_DMA_ENGINE
637 void dmaengine_get(void);
638 void dmaengine_put(void);
639 #else
640 static inline void dmaengine_get(void)
641 {
642 }
643 static inline void dmaengine_put(void)
644 {
645 }
646 #endif
647
648 #ifdef CONFIG_NET_DMA
649 #define net_dmaengine_get() dmaengine_get()
650 #define net_dmaengine_put() dmaengine_put()
651 #else
652 static inline void net_dmaengine_get(void)
653 {
654 }
655 static inline void net_dmaengine_put(void)
656 {
657 }
658 #endif
659
660 #ifdef CONFIG_ASYNC_TX_DMA
661 #define async_dmaengine_get() dmaengine_get()
662 #define async_dmaengine_put() dmaengine_put()
663 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
664 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
665 #else
666 #define async_dma_find_channel(type) dma_find_channel(type)
667 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
668 #else
669 static inline void async_dmaengine_get(void)
670 {
671 }
672 static inline void async_dmaengine_put(void)
673 {
674 }
675 static inline struct dma_chan *
676 async_dma_find_channel(enum dma_transaction_type type)
677 {
678 return NULL;
679 }
680 #endif /* CONFIG_ASYNC_TX_DMA */
681
682 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
683 void *dest, void *src, size_t len);
684 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
685 struct page *page, unsigned int offset, void *kdata, size_t len);
686 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
687 struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
688 unsigned int src_off, size_t len);
689 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
690 struct dma_chan *chan);
691
692 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
693 {
694 tx->flags |= DMA_CTRL_ACK;
695 }
696
697 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
698 {
699 tx->flags &= ~DMA_CTRL_ACK;
700 }
701
702 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
703 {
704 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
705 }
706
707 #define first_dma_cap(mask) __first_dma_cap(&(mask))
708 static inline int __first_dma_cap(const dma_cap_mask_t *srcp)
709 {
710 return min_t(int, DMA_TX_TYPE_END,
711 find_first_bit(srcp->bits, DMA_TX_TYPE_END));
712 }
713
714 #define next_dma_cap(n, mask) __next_dma_cap((n), &(mask))
715 static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp)
716 {
717 return min_t(int, DMA_TX_TYPE_END,
718 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1));
719 }
720
721 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
722 static inline void
723 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
724 {
725 set_bit(tx_type, dstp->bits);
726 }
727
728 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
729 static inline void
730 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
731 {
732 clear_bit(tx_type, dstp->bits);
733 }
734
735 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
736 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
737 {
738 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
739 }
740
741 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
742 static inline int
743 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
744 {
745 return test_bit(tx_type, srcp->bits);
746 }
747
748 #define for_each_dma_cap_mask(cap, mask) \
749 for ((cap) = first_dma_cap(mask); \
750 (cap) < DMA_TX_TYPE_END; \
751 (cap) = next_dma_cap((cap), (mask)))
752
753 /**
754 * dma_async_issue_pending - flush pending transactions to HW
755 * @chan: target DMA channel
756 *
757 * This allows drivers to push copies to HW in batches,
758 * reducing MMIO writes where possible.
759 */
760 static inline void dma_async_issue_pending(struct dma_chan *chan)
761 {
762 chan->device->device_issue_pending(chan);
763 }
764
765 #define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
766
767 /**
768 * dma_async_is_tx_complete - poll for transaction completion
769 * @chan: DMA channel
770 * @cookie: transaction identifier to check status of
771 * @last: returns last completed cookie, can be NULL
772 * @used: returns last issued cookie, can be NULL
773 *
774 * If @last and @used are passed in, upon return they reflect the driver
775 * internal state and can be used with dma_async_is_complete() to check
776 * the status of multiple cookies without re-checking hardware state.
777 */
778 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
779 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
780 {
781 struct dma_tx_state state;
782 enum dma_status status;
783
784 status = chan->device->device_tx_status(chan, cookie, &state);
785 if (last)
786 *last = state.last;
787 if (used)
788 *used = state.used;
789 return status;
790 }
791
792 #define dma_async_memcpy_complete(chan, cookie, last, used)\
793 dma_async_is_tx_complete(chan, cookie, last, used)
794
795 /**
796 * dma_async_is_complete - test a cookie against chan state
797 * @cookie: transaction identifier to test status of
798 * @last_complete: last know completed transaction
799 * @last_used: last cookie value handed out
800 *
801 * dma_async_is_complete() is used in dma_async_memcpy_complete()
802 * the test logic is separated for lightweight testing of multiple cookies
803 */
804 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
805 dma_cookie_t last_complete, dma_cookie_t last_used)
806 {
807 if (last_complete <= last_used) {
808 if ((cookie <= last_complete) || (cookie > last_used))
809 return DMA_SUCCESS;
810 } else {
811 if ((cookie <= last_complete) && (cookie > last_used))
812 return DMA_SUCCESS;
813 }
814 return DMA_IN_PROGRESS;
815 }
816
817 static inline void
818 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
819 {
820 if (st) {
821 st->last = last;
822 st->used = used;
823 st->residue = residue;
824 }
825 }
826
827 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
828 #ifdef CONFIG_DMA_ENGINE
829 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
830 void dma_issue_pending_all(void);
831 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
832 void dma_release_channel(struct dma_chan *chan);
833 #else
834 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
835 {
836 return DMA_SUCCESS;
837 }
838 static inline void dma_issue_pending_all(void)
839 {
840 }
841 static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask,
842 dma_filter_fn fn, void *fn_param)
843 {
844 return NULL;
845 }
846 static inline void dma_release_channel(struct dma_chan *chan)
847 {
848 }
849 #endif
850
851 /* --- DMA device --- */
852
853 int dma_async_device_register(struct dma_device *device);
854 void dma_async_device_unregister(struct dma_device *device);
855 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
856 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
857 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
858
859 /* --- Helper iov-locking functions --- */
860
861 struct dma_page_list {
862 char __user *base_address;
863 int nr_pages;
864 struct page **pages;
865 };
866
867 struct dma_pinned_list {
868 int nr_iovecs;
869 struct dma_page_list page_list[0];
870 };
871
872 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
873 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
874
875 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
876 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
877 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
878 struct dma_pinned_list *pinned_list, struct page *page,
879 unsigned int offset, size_t len);
880
881 #endif /* DMAENGINE_H */