]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/dmaengine.h
ACPI: fix acpi_find_child_device() invocation in acpi_preset_companion()
[mirror_ubuntu-bionic-kernel.git] / include / linux / dmaengine.h
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
17 #ifndef LINUX_DMAENGINE_H
18 #define LINUX_DMAENGINE_H
19
20 #include <linux/device.h>
21 #include <linux/err.h>
22 #include <linux/uio.h>
23 #include <linux/bug.h>
24 #include <linux/scatterlist.h>
25 #include <linux/bitmap.h>
26 #include <linux/types.h>
27 #include <asm/page.h>
28
29 /**
30 * typedef dma_cookie_t - an opaque DMA cookie
31 *
32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33 */
34 typedef s32 dma_cookie_t;
35 #define DMA_MIN_COOKIE 1
36
37 static inline int dma_submit_error(dma_cookie_t cookie)
38 {
39 return cookie < 0 ? cookie : 0;
40 }
41
42 /**
43 * enum dma_status - DMA transaction status
44 * @DMA_COMPLETE: transaction completed
45 * @DMA_IN_PROGRESS: transaction not yet processed
46 * @DMA_PAUSED: transaction is paused
47 * @DMA_ERROR: transaction failed
48 */
49 enum dma_status {
50 DMA_COMPLETE,
51 DMA_IN_PROGRESS,
52 DMA_PAUSED,
53 DMA_ERROR,
54 };
55
56 /**
57 * enum dma_transaction_type - DMA transaction types/indexes
58 *
59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
60 * automatically set as dma devices are registered.
61 */
62 enum dma_transaction_type {
63 DMA_MEMCPY,
64 DMA_XOR,
65 DMA_PQ,
66 DMA_XOR_VAL,
67 DMA_PQ_VAL,
68 DMA_MEMSET,
69 DMA_MEMSET_SG,
70 DMA_INTERRUPT,
71 DMA_PRIVATE,
72 DMA_ASYNC_TX,
73 DMA_SLAVE,
74 DMA_CYCLIC,
75 DMA_INTERLEAVE,
76 /* last transaction type for creation of the capabilities mask */
77 DMA_TX_TYPE_END,
78 };
79
80 /**
81 * enum dma_transfer_direction - dma transfer mode and direction indicator
82 * @DMA_MEM_TO_MEM: Async/Memcpy mode
83 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
84 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
85 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
86 */
87 enum dma_transfer_direction {
88 DMA_MEM_TO_MEM,
89 DMA_MEM_TO_DEV,
90 DMA_DEV_TO_MEM,
91 DMA_DEV_TO_DEV,
92 DMA_TRANS_NONE,
93 };
94
95 /**
96 * Interleaved Transfer Request
97 * ----------------------------
98 * A chunk is collection of contiguous bytes to be transfered.
99 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
100 * ICGs may or maynot change between chunks.
101 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
102 * that when repeated an integral number of times, specifies the transfer.
103 * A transfer template is specification of a Frame, the number of times
104 * it is to be repeated and other per-transfer attributes.
105 *
106 * Practically, a client driver would have ready a template for each
107 * type of transfer it is going to need during its lifetime and
108 * set only 'src_start' and 'dst_start' before submitting the requests.
109 *
110 *
111 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
112 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
113 *
114 * == Chunk size
115 * ... ICG
116 */
117
118 /**
119 * struct data_chunk - Element of scatter-gather list that makes a frame.
120 * @size: Number of bytes to read from source.
121 * size_dst := fn(op, size_src), so doesn't mean much for destination.
122 * @icg: Number of bytes to jump after last src/dst address of this
123 * chunk and before first src/dst address for next chunk.
124 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
125 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
126 * @dst_icg: Number of bytes to jump after last dst address of this
127 * chunk and before the first dst address for next chunk.
128 * Ignored if dst_inc is true and dst_sgl is false.
129 * @src_icg: Number of bytes to jump after last src address of this
130 * chunk and before the first src address for next chunk.
131 * Ignored if src_inc is true and src_sgl is false.
132 */
133 struct data_chunk {
134 size_t size;
135 size_t icg;
136 size_t dst_icg;
137 size_t src_icg;
138 };
139
140 /**
141 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
142 * and attributes.
143 * @src_start: Bus address of source for the first chunk.
144 * @dst_start: Bus address of destination for the first chunk.
145 * @dir: Specifies the type of Source and Destination.
146 * @src_inc: If the source address increments after reading from it.
147 * @dst_inc: If the destination address increments after writing to it.
148 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
149 * Otherwise, source is read contiguously (icg ignored).
150 * Ignored if src_inc is false.
151 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
152 * Otherwise, destination is filled contiguously (icg ignored).
153 * Ignored if dst_inc is false.
154 * @numf: Number of frames in this template.
155 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
156 * @sgl: Array of {chunk,icg} pairs that make up a frame.
157 */
158 struct dma_interleaved_template {
159 dma_addr_t src_start;
160 dma_addr_t dst_start;
161 enum dma_transfer_direction dir;
162 bool src_inc;
163 bool dst_inc;
164 bool src_sgl;
165 bool dst_sgl;
166 size_t numf;
167 size_t frame_size;
168 struct data_chunk sgl[0];
169 };
170
171 /**
172 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
173 * control completion, and communicate status.
174 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
175 * this transaction
176 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
177 * acknowledges receipt, i.e. has has a chance to establish any dependency
178 * chains
179 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
180 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
181 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
182 * sources that were the result of a previous operation, in the case of a PQ
183 * operation it continues the calculation with new sources
184 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
185 * on the result of this operation
186 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
187 * cleared or freed
188 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
189 * data and the descriptor should be in different format from normal
190 * data descriptors.
191 */
192 enum dma_ctrl_flags {
193 DMA_PREP_INTERRUPT = (1 << 0),
194 DMA_CTRL_ACK = (1 << 1),
195 DMA_PREP_PQ_DISABLE_P = (1 << 2),
196 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
197 DMA_PREP_CONTINUE = (1 << 4),
198 DMA_PREP_FENCE = (1 << 5),
199 DMA_CTRL_REUSE = (1 << 6),
200 DMA_PREP_CMD = (1 << 7),
201 };
202
203 /**
204 * enum sum_check_bits - bit position of pq_check_flags
205 */
206 enum sum_check_bits {
207 SUM_CHECK_P = 0,
208 SUM_CHECK_Q = 1,
209 };
210
211 /**
212 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
213 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
214 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
215 */
216 enum sum_check_flags {
217 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
218 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
219 };
220
221
222 /**
223 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
224 * See linux/cpumask.h
225 */
226 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
227
228 /**
229 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
230 * @memcpy_count: transaction counter
231 * @bytes_transferred: byte counter
232 */
233
234 struct dma_chan_percpu {
235 /* stats */
236 unsigned long memcpy_count;
237 unsigned long bytes_transferred;
238 };
239
240 /**
241 * struct dma_router - DMA router structure
242 * @dev: pointer to the DMA router device
243 * @route_free: function to be called when the route can be disconnected
244 */
245 struct dma_router {
246 struct device *dev;
247 void (*route_free)(struct device *dev, void *route_data);
248 };
249
250 /**
251 * struct dma_chan - devices supply DMA channels, clients use them
252 * @device: ptr to the dma device who supplies this channel, always !%NULL
253 * @cookie: last cookie value returned to client
254 * @completed_cookie: last completed cookie for this channel
255 * @chan_id: channel ID for sysfs
256 * @dev: class device for sysfs
257 * @device_node: used to add this to the device chan list
258 * @local: per-cpu pointer to a struct dma_chan_percpu
259 * @client_count: how many clients are using this channel
260 * @table_count: number of appearances in the mem-to-mem allocation table
261 * @router: pointer to the DMA router structure
262 * @route_data: channel specific data for the router
263 * @private: private data for certain client-channel associations
264 */
265 struct dma_chan {
266 struct dma_device *device;
267 dma_cookie_t cookie;
268 dma_cookie_t completed_cookie;
269
270 /* sysfs */
271 int chan_id;
272 struct dma_chan_dev *dev;
273
274 struct list_head device_node;
275 struct dma_chan_percpu __percpu *local;
276 int client_count;
277 int table_count;
278
279 /* DMA router */
280 struct dma_router *router;
281 void *route_data;
282
283 void *private;
284 };
285
286 /**
287 * struct dma_chan_dev - relate sysfs device node to backing channel device
288 * @chan: driver channel device
289 * @device: sysfs device
290 * @dev_id: parent dma_device dev_id
291 * @idr_ref: reference count to gate release of dma_device dev_id
292 */
293 struct dma_chan_dev {
294 struct dma_chan *chan;
295 struct device device;
296 int dev_id;
297 atomic_t *idr_ref;
298 };
299
300 /**
301 * enum dma_slave_buswidth - defines bus width of the DMA slave
302 * device, source or target buses
303 */
304 enum dma_slave_buswidth {
305 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
306 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
307 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
308 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
309 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
310 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
311 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
312 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
313 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
314 };
315
316 /**
317 * struct dma_slave_config - dma slave channel runtime config
318 * @direction: whether the data shall go in or out on this slave
319 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
320 * legal values. DEPRECATED, drivers should use the direction argument
321 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
322 * the dir field in the dma_interleaved_template structure.
323 * @src_addr: this is the physical address where DMA slave data
324 * should be read (RX), if the source is memory this argument is
325 * ignored.
326 * @dst_addr: this is the physical address where DMA slave data
327 * should be written (TX), if the source is memory this argument
328 * is ignored.
329 * @src_addr_width: this is the width in bytes of the source (RX)
330 * register where DMA data shall be read. If the source
331 * is memory this may be ignored depending on architecture.
332 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
333 * @dst_addr_width: same as src_addr_width but for destination
334 * target (TX) mutatis mutandis.
335 * @src_maxburst: the maximum number of words (note: words, as in
336 * units of the src_addr_width member, not bytes) that can be sent
337 * in one burst to the device. Typically something like half the
338 * FIFO depth on I/O peripherals so you don't overflow it. This
339 * may or may not be applicable on memory sources.
340 * @dst_maxburst: same as src_maxburst but for destination target
341 * mutatis mutandis.
342 * @src_port_window_size: The length of the register area in words the data need
343 * to be accessed on the device side. It is only used for devices which is using
344 * an area instead of a single register to receive the data. Typically the DMA
345 * loops in this area in order to transfer the data.
346 * @dst_port_window_size: same as src_port_window_size but for the destination
347 * port.
348 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
349 * with 'true' if peripheral should be flow controller. Direction will be
350 * selected at Runtime.
351 * @slave_id: Slave requester id. Only valid for slave channels. The dma
352 * slave peripheral will have unique id as dma requester which need to be
353 * pass as slave config.
354 *
355 * This struct is passed in as configuration data to a DMA engine
356 * in order to set up a certain channel for DMA transport at runtime.
357 * The DMA device/engine has to provide support for an additional
358 * callback in the dma_device structure, device_config and this struct
359 * will then be passed in as an argument to the function.
360 *
361 * The rationale for adding configuration information to this struct is as
362 * follows: if it is likely that more than one DMA slave controllers in
363 * the world will support the configuration option, then make it generic.
364 * If not: if it is fixed so that it be sent in static from the platform
365 * data, then prefer to do that.
366 */
367 struct dma_slave_config {
368 enum dma_transfer_direction direction;
369 phys_addr_t src_addr;
370 phys_addr_t dst_addr;
371 enum dma_slave_buswidth src_addr_width;
372 enum dma_slave_buswidth dst_addr_width;
373 u32 src_maxburst;
374 u32 dst_maxburst;
375 u32 src_port_window_size;
376 u32 dst_port_window_size;
377 bool device_fc;
378 unsigned int slave_id;
379 };
380
381 /**
382 * enum dma_residue_granularity - Granularity of the reported transfer residue
383 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
384 * DMA channel is only able to tell whether a descriptor has been completed or
385 * not, which means residue reporting is not supported by this channel. The
386 * residue field of the dma_tx_state field will always be 0.
387 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
388 * completed segment of the transfer (For cyclic transfers this is after each
389 * period). This is typically implemented by having the hardware generate an
390 * interrupt after each transferred segment and then the drivers updates the
391 * outstanding residue by the size of the segment. Another possibility is if
392 * the hardware supports scatter-gather and the segment descriptor has a field
393 * which gets set after the segment has been completed. The driver then counts
394 * the number of segments without the flag set to compute the residue.
395 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
396 * burst. This is typically only supported if the hardware has a progress
397 * register of some sort (E.g. a register with the current read/write address
398 * or a register with the amount of bursts/beats/bytes that have been
399 * transferred or still need to be transferred).
400 */
401 enum dma_residue_granularity {
402 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
403 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
404 DMA_RESIDUE_GRANULARITY_BURST = 2,
405 };
406
407 /**
408 * struct dma_slave_caps - expose capabilities of a slave channel only
409 * @src_addr_widths: bit mask of src addr widths the channel supports.
410 * Width is specified in bytes, e.g. for a channel supporting
411 * a width of 4 the mask should have BIT(4) set.
412 * @dst_addr_widths: bit mask of dst addr widths the channel supports
413 * @directions: bit mask of slave directions the channel supports.
414 * Since the enum dma_transfer_direction is not defined as bit flag for
415 * each type, the dma controller should set BIT(<TYPE>) and same
416 * should be checked by controller as well
417 * @max_burst: max burst capability per-transfer
418 * @cmd_pause: true, if pause and thereby resume is supported
419 * @cmd_terminate: true, if terminate cmd is supported
420 * @residue_granularity: granularity of the reported transfer residue
421 * @descriptor_reuse: if a descriptor can be reused by client and
422 * resubmitted multiple times
423 */
424 struct dma_slave_caps {
425 u32 src_addr_widths;
426 u32 dst_addr_widths;
427 u32 directions;
428 u32 max_burst;
429 bool cmd_pause;
430 bool cmd_terminate;
431 enum dma_residue_granularity residue_granularity;
432 bool descriptor_reuse;
433 };
434
435 static inline const char *dma_chan_name(struct dma_chan *chan)
436 {
437 return dev_name(&chan->dev->device);
438 }
439
440 void dma_chan_cleanup(struct kref *kref);
441
442 /**
443 * typedef dma_filter_fn - callback filter for dma_request_channel
444 * @chan: channel to be reviewed
445 * @filter_param: opaque parameter passed through dma_request_channel
446 *
447 * When this optional parameter is specified in a call to dma_request_channel a
448 * suitable channel is passed to this routine for further dispositioning before
449 * being returned. Where 'suitable' indicates a non-busy channel that
450 * satisfies the given capability mask. It returns 'true' to indicate that the
451 * channel is suitable.
452 */
453 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
454
455 typedef void (*dma_async_tx_callback)(void *dma_async_param);
456
457 enum dmaengine_tx_result {
458 DMA_TRANS_NOERROR = 0, /* SUCCESS */
459 DMA_TRANS_READ_FAILED, /* Source DMA read failed */
460 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */
461 DMA_TRANS_ABORTED, /* Op never submitted / aborted */
462 };
463
464 struct dmaengine_result {
465 enum dmaengine_tx_result result;
466 u32 residue;
467 };
468
469 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
470 const struct dmaengine_result *result);
471
472 struct dmaengine_unmap_data {
473 u8 map_cnt;
474 u8 to_cnt;
475 u8 from_cnt;
476 u8 bidi_cnt;
477 struct device *dev;
478 struct kref kref;
479 size_t len;
480 dma_addr_t addr[0];
481 };
482
483 /**
484 * struct dma_async_tx_descriptor - async transaction descriptor
485 * ---dma generic offload fields---
486 * @cookie: tracking cookie for this transaction, set to -EBUSY if
487 * this tx is sitting on a dependency list
488 * @flags: flags to augment operation preparation, control completion, and
489 * communicate status
490 * @phys: physical address of the descriptor
491 * @chan: target channel for this operation
492 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
493 * descriptor pending. To be pushed on .issue_pending() call
494 * @callback: routine to call after this operation is complete
495 * @callback_param: general parameter to pass to the callback routine
496 * ---async_tx api specific fields---
497 * @next: at completion submit this descriptor
498 * @parent: pointer to the next level up in the dependency chain
499 * @lock: protect the parent and next pointers
500 */
501 struct dma_async_tx_descriptor {
502 dma_cookie_t cookie;
503 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
504 dma_addr_t phys;
505 struct dma_chan *chan;
506 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
507 int (*desc_free)(struct dma_async_tx_descriptor *tx);
508 dma_async_tx_callback callback;
509 dma_async_tx_callback_result callback_result;
510 void *callback_param;
511 struct dmaengine_unmap_data *unmap;
512 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
513 struct dma_async_tx_descriptor *next;
514 struct dma_async_tx_descriptor *parent;
515 spinlock_t lock;
516 #endif
517 };
518
519 #ifdef CONFIG_DMA_ENGINE
520 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
521 struct dmaengine_unmap_data *unmap)
522 {
523 kref_get(&unmap->kref);
524 tx->unmap = unmap;
525 }
526
527 struct dmaengine_unmap_data *
528 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
529 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
530 #else
531 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
532 struct dmaengine_unmap_data *unmap)
533 {
534 }
535 static inline struct dmaengine_unmap_data *
536 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
537 {
538 return NULL;
539 }
540 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
541 {
542 }
543 #endif
544
545 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
546 {
547 if (tx->unmap) {
548 dmaengine_unmap_put(tx->unmap);
549 tx->unmap = NULL;
550 }
551 }
552
553 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
554 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
555 {
556 }
557 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
558 {
559 }
560 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
561 {
562 BUG();
563 }
564 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
565 {
566 }
567 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
568 {
569 }
570 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
571 {
572 return NULL;
573 }
574 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
575 {
576 return NULL;
577 }
578
579 #else
580 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
581 {
582 spin_lock_bh(&txd->lock);
583 }
584 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
585 {
586 spin_unlock_bh(&txd->lock);
587 }
588 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
589 {
590 txd->next = next;
591 next->parent = txd;
592 }
593 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
594 {
595 txd->parent = NULL;
596 }
597 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
598 {
599 txd->next = NULL;
600 }
601 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
602 {
603 return txd->parent;
604 }
605 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
606 {
607 return txd->next;
608 }
609 #endif
610
611 /**
612 * struct dma_tx_state - filled in to report the status of
613 * a transfer.
614 * @last: last completed DMA cookie
615 * @used: last issued DMA cookie (i.e. the one in progress)
616 * @residue: the remaining number of bytes left to transmit
617 * on the selected transfer for states DMA_IN_PROGRESS and
618 * DMA_PAUSED if this is implemented in the driver, else 0
619 */
620 struct dma_tx_state {
621 dma_cookie_t last;
622 dma_cookie_t used;
623 u32 residue;
624 };
625
626 /**
627 * enum dmaengine_alignment - defines alignment of the DMA async tx
628 * buffers
629 */
630 enum dmaengine_alignment {
631 DMAENGINE_ALIGN_1_BYTE = 0,
632 DMAENGINE_ALIGN_2_BYTES = 1,
633 DMAENGINE_ALIGN_4_BYTES = 2,
634 DMAENGINE_ALIGN_8_BYTES = 3,
635 DMAENGINE_ALIGN_16_BYTES = 4,
636 DMAENGINE_ALIGN_32_BYTES = 5,
637 DMAENGINE_ALIGN_64_BYTES = 6,
638 };
639
640 /**
641 * struct dma_slave_map - associates slave device and it's slave channel with
642 * parameter to be used by a filter function
643 * @devname: name of the device
644 * @slave: slave channel name
645 * @param: opaque parameter to pass to struct dma_filter.fn
646 */
647 struct dma_slave_map {
648 const char *devname;
649 const char *slave;
650 void *param;
651 };
652
653 /**
654 * struct dma_filter - information for slave device/channel to filter_fn/param
655 * mapping
656 * @fn: filter function callback
657 * @mapcnt: number of slave device/channel in the map
658 * @map: array of channel to filter mapping data
659 */
660 struct dma_filter {
661 dma_filter_fn fn;
662 int mapcnt;
663 const struct dma_slave_map *map;
664 };
665
666 /**
667 * struct dma_device - info on the entity supplying DMA services
668 * @chancnt: how many DMA channels are supported
669 * @privatecnt: how many DMA channels are requested by dma_request_channel
670 * @channels: the list of struct dma_chan
671 * @global_node: list_head for global dma_device_list
672 * @filter: information for device/slave to filter function/param mapping
673 * @cap_mask: one or more dma_capability flags
674 * @max_xor: maximum number of xor sources, 0 if no capability
675 * @max_pq: maximum number of PQ sources and PQ-continue capability
676 * @copy_align: alignment shift for memcpy operations
677 * @xor_align: alignment shift for xor operations
678 * @pq_align: alignment shift for pq operations
679 * @fill_align: alignment shift for memset operations
680 * @dev_id: unique device ID
681 * @dev: struct device reference for dma mapping api
682 * @src_addr_widths: bit mask of src addr widths the device supports
683 * Width is specified in bytes, e.g. for a device supporting
684 * a width of 4 the mask should have BIT(4) set.
685 * @dst_addr_widths: bit mask of dst addr widths the device supports
686 * @directions: bit mask of slave directions the device supports.
687 * Since the enum dma_transfer_direction is not defined as bit flag for
688 * each type, the dma controller should set BIT(<TYPE>) and same
689 * should be checked by controller as well
690 * @max_burst: max burst capability per-transfer
691 * @residue_granularity: granularity of the transfer residue reported
692 * by tx_status
693 * @device_alloc_chan_resources: allocate resources and return the
694 * number of allocated descriptors
695 * @device_free_chan_resources: release DMA channel's resources
696 * @device_prep_dma_memcpy: prepares a memcpy operation
697 * @device_prep_dma_xor: prepares a xor operation
698 * @device_prep_dma_xor_val: prepares a xor validation operation
699 * @device_prep_dma_pq: prepares a pq operation
700 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
701 * @device_prep_dma_memset: prepares a memset operation
702 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
703 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
704 * @device_prep_slave_sg: prepares a slave dma operation
705 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
706 * The function takes a buffer of size buf_len. The callback function will
707 * be called after period_len bytes have been transferred.
708 * @device_prep_interleaved_dma: Transfer expression in a generic way.
709 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
710 * @device_config: Pushes a new configuration to a channel, return 0 or an error
711 * code
712 * @device_pause: Pauses any transfer happening on a channel. Returns
713 * 0 or an error code
714 * @device_resume: Resumes any transfer on a channel previously
715 * paused. Returns 0 or an error code
716 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
717 * or an error code
718 * @device_synchronize: Synchronizes the termination of a transfers to the
719 * current context.
720 * @device_tx_status: poll for transaction completion, the optional
721 * txstate parameter can be supplied with a pointer to get a
722 * struct with auxiliary transfer status information, otherwise the call
723 * will just return a simple status code
724 * @device_issue_pending: push pending transactions to hardware
725 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
726 */
727 struct dma_device {
728
729 unsigned int chancnt;
730 unsigned int privatecnt;
731 struct list_head channels;
732 struct list_head global_node;
733 struct dma_filter filter;
734 dma_cap_mask_t cap_mask;
735 unsigned short max_xor;
736 unsigned short max_pq;
737 enum dmaengine_alignment copy_align;
738 enum dmaengine_alignment xor_align;
739 enum dmaengine_alignment pq_align;
740 enum dmaengine_alignment fill_align;
741 #define DMA_HAS_PQ_CONTINUE (1 << 15)
742
743 int dev_id;
744 struct device *dev;
745
746 u32 src_addr_widths;
747 u32 dst_addr_widths;
748 u32 directions;
749 u32 max_burst;
750 bool descriptor_reuse;
751 enum dma_residue_granularity residue_granularity;
752
753 int (*device_alloc_chan_resources)(struct dma_chan *chan);
754 void (*device_free_chan_resources)(struct dma_chan *chan);
755
756 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
757 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
758 size_t len, unsigned long flags);
759 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
760 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
761 unsigned int src_cnt, size_t len, unsigned long flags);
762 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
763 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
764 size_t len, enum sum_check_flags *result, unsigned long flags);
765 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
766 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
767 unsigned int src_cnt, const unsigned char *scf,
768 size_t len, unsigned long flags);
769 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
770 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
771 unsigned int src_cnt, const unsigned char *scf, size_t len,
772 enum sum_check_flags *pqres, unsigned long flags);
773 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
774 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
775 unsigned long flags);
776 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
777 struct dma_chan *chan, struct scatterlist *sg,
778 unsigned int nents, int value, unsigned long flags);
779 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
780 struct dma_chan *chan, unsigned long flags);
781
782 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
783 struct dma_chan *chan, struct scatterlist *sgl,
784 unsigned int sg_len, enum dma_transfer_direction direction,
785 unsigned long flags, void *context);
786 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
787 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
788 size_t period_len, enum dma_transfer_direction direction,
789 unsigned long flags);
790 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
791 struct dma_chan *chan, struct dma_interleaved_template *xt,
792 unsigned long flags);
793 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
794 struct dma_chan *chan, dma_addr_t dst, u64 data,
795 unsigned long flags);
796
797 int (*device_config)(struct dma_chan *chan,
798 struct dma_slave_config *config);
799 int (*device_pause)(struct dma_chan *chan);
800 int (*device_resume)(struct dma_chan *chan);
801 int (*device_terminate_all)(struct dma_chan *chan);
802 void (*device_synchronize)(struct dma_chan *chan);
803
804 enum dma_status (*device_tx_status)(struct dma_chan *chan,
805 dma_cookie_t cookie,
806 struct dma_tx_state *txstate);
807 void (*device_issue_pending)(struct dma_chan *chan);
808 };
809
810 static inline int dmaengine_slave_config(struct dma_chan *chan,
811 struct dma_slave_config *config)
812 {
813 if (chan->device->device_config)
814 return chan->device->device_config(chan, config);
815
816 return -ENOSYS;
817 }
818
819 static inline bool is_slave_direction(enum dma_transfer_direction direction)
820 {
821 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
822 }
823
824 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
825 struct dma_chan *chan, dma_addr_t buf, size_t len,
826 enum dma_transfer_direction dir, unsigned long flags)
827 {
828 struct scatterlist sg;
829 sg_init_table(&sg, 1);
830 sg_dma_address(&sg) = buf;
831 sg_dma_len(&sg) = len;
832
833 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
834 return NULL;
835
836 return chan->device->device_prep_slave_sg(chan, &sg, 1,
837 dir, flags, NULL);
838 }
839
840 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
841 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
842 enum dma_transfer_direction dir, unsigned long flags)
843 {
844 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
845 return NULL;
846
847 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
848 dir, flags, NULL);
849 }
850
851 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
852 struct rio_dma_ext;
853 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
854 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
855 enum dma_transfer_direction dir, unsigned long flags,
856 struct rio_dma_ext *rio_ext)
857 {
858 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
859 return NULL;
860
861 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
862 dir, flags, rio_ext);
863 }
864 #endif
865
866 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
867 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
868 size_t period_len, enum dma_transfer_direction dir,
869 unsigned long flags)
870 {
871 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
872 return NULL;
873
874 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
875 period_len, dir, flags);
876 }
877
878 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
879 struct dma_chan *chan, struct dma_interleaved_template *xt,
880 unsigned long flags)
881 {
882 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
883 return NULL;
884
885 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
886 }
887
888 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
889 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
890 unsigned long flags)
891 {
892 if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
893 return NULL;
894
895 return chan->device->device_prep_dma_memset(chan, dest, value,
896 len, flags);
897 }
898
899 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
900 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
901 size_t len, unsigned long flags)
902 {
903 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
904 return NULL;
905
906 return chan->device->device_prep_dma_memcpy(chan, dest, src,
907 len, flags);
908 }
909
910 /**
911 * dmaengine_terminate_all() - Terminate all active DMA transfers
912 * @chan: The channel for which to terminate the transfers
913 *
914 * This function is DEPRECATED use either dmaengine_terminate_sync() or
915 * dmaengine_terminate_async() instead.
916 */
917 static inline int dmaengine_terminate_all(struct dma_chan *chan)
918 {
919 if (chan->device->device_terminate_all)
920 return chan->device->device_terminate_all(chan);
921
922 return -ENOSYS;
923 }
924
925 /**
926 * dmaengine_terminate_async() - Terminate all active DMA transfers
927 * @chan: The channel for which to terminate the transfers
928 *
929 * Calling this function will terminate all active and pending descriptors
930 * that have previously been submitted to the channel. It is not guaranteed
931 * though that the transfer for the active descriptor has stopped when the
932 * function returns. Furthermore it is possible the complete callback of a
933 * submitted transfer is still running when this function returns.
934 *
935 * dmaengine_synchronize() needs to be called before it is safe to free
936 * any memory that is accessed by previously submitted descriptors or before
937 * freeing any resources accessed from within the completion callback of any
938 * perviously submitted descriptors.
939 *
940 * This function can be called from atomic context as well as from within a
941 * complete callback of a descriptor submitted on the same channel.
942 *
943 * If none of the two conditions above apply consider using
944 * dmaengine_terminate_sync() instead.
945 */
946 static inline int dmaengine_terminate_async(struct dma_chan *chan)
947 {
948 if (chan->device->device_terminate_all)
949 return chan->device->device_terminate_all(chan);
950
951 return -EINVAL;
952 }
953
954 /**
955 * dmaengine_synchronize() - Synchronize DMA channel termination
956 * @chan: The channel to synchronize
957 *
958 * Synchronizes to the DMA channel termination to the current context. When this
959 * function returns it is guaranteed that all transfers for previously issued
960 * descriptors have stopped and and it is safe to free the memory assoicated
961 * with them. Furthermore it is guaranteed that all complete callback functions
962 * for a previously submitted descriptor have finished running and it is safe to
963 * free resources accessed from within the complete callbacks.
964 *
965 * The behavior of this function is undefined if dma_async_issue_pending() has
966 * been called between dmaengine_terminate_async() and this function.
967 *
968 * This function must only be called from non-atomic context and must not be
969 * called from within a complete callback of a descriptor submitted on the same
970 * channel.
971 */
972 static inline void dmaengine_synchronize(struct dma_chan *chan)
973 {
974 might_sleep();
975
976 if (chan->device->device_synchronize)
977 chan->device->device_synchronize(chan);
978 }
979
980 /**
981 * dmaengine_terminate_sync() - Terminate all active DMA transfers
982 * @chan: The channel for which to terminate the transfers
983 *
984 * Calling this function will terminate all active and pending transfers
985 * that have previously been submitted to the channel. It is similar to
986 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
987 * stopped and that all complete callbacks have finished running when the
988 * function returns.
989 *
990 * This function must only be called from non-atomic context and must not be
991 * called from within a complete callback of a descriptor submitted on the same
992 * channel.
993 */
994 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
995 {
996 int ret;
997
998 ret = dmaengine_terminate_async(chan);
999 if (ret)
1000 return ret;
1001
1002 dmaengine_synchronize(chan);
1003
1004 return 0;
1005 }
1006
1007 static inline int dmaengine_pause(struct dma_chan *chan)
1008 {
1009 if (chan->device->device_pause)
1010 return chan->device->device_pause(chan);
1011
1012 return -ENOSYS;
1013 }
1014
1015 static inline int dmaengine_resume(struct dma_chan *chan)
1016 {
1017 if (chan->device->device_resume)
1018 return chan->device->device_resume(chan);
1019
1020 return -ENOSYS;
1021 }
1022
1023 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1024 dma_cookie_t cookie, struct dma_tx_state *state)
1025 {
1026 return chan->device->device_tx_status(chan, cookie, state);
1027 }
1028
1029 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1030 {
1031 return desc->tx_submit(desc);
1032 }
1033
1034 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1035 size_t off1, size_t off2, size_t len)
1036 {
1037 size_t mask;
1038
1039 if (!align)
1040 return true;
1041 mask = (1 << align) - 1;
1042 if (mask & (off1 | off2 | len))
1043 return false;
1044 return true;
1045 }
1046
1047 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1048 size_t off2, size_t len)
1049 {
1050 return dmaengine_check_align(dev->copy_align, off1, off2, len);
1051 }
1052
1053 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1054 size_t off2, size_t len)
1055 {
1056 return dmaengine_check_align(dev->xor_align, off1, off2, len);
1057 }
1058
1059 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1060 size_t off2, size_t len)
1061 {
1062 return dmaengine_check_align(dev->pq_align, off1, off2, len);
1063 }
1064
1065 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1066 size_t off2, size_t len)
1067 {
1068 return dmaengine_check_align(dev->fill_align, off1, off2, len);
1069 }
1070
1071 static inline void
1072 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1073 {
1074 dma->max_pq = maxpq;
1075 if (has_pq_continue)
1076 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1077 }
1078
1079 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1080 {
1081 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1082 }
1083
1084 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1085 {
1086 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1087
1088 return (flags & mask) == mask;
1089 }
1090
1091 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1092 {
1093 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1094 }
1095
1096 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1097 {
1098 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1099 }
1100
1101 /* dma_maxpq - reduce maxpq in the face of continued operations
1102 * @dma - dma device with PQ capability
1103 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1104 *
1105 * When an engine does not support native continuation we need 3 extra
1106 * source slots to reuse P and Q with the following coefficients:
1107 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1108 * 2/ {01} * Q : use Q to continue Q' calculation
1109 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1110 *
1111 * In the case where P is disabled we only need 1 extra source:
1112 * 1/ {01} * Q : use Q to continue Q' calculation
1113 */
1114 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1115 {
1116 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1117 return dma_dev_to_maxpq(dma);
1118 else if (dmaf_p_disabled_continue(flags))
1119 return dma_dev_to_maxpq(dma) - 1;
1120 else if (dmaf_continue(flags))
1121 return dma_dev_to_maxpq(dma) - 3;
1122 BUG();
1123 }
1124
1125 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1126 size_t dir_icg)
1127 {
1128 if (inc) {
1129 if (dir_icg)
1130 return dir_icg;
1131 else if (sgl)
1132 return icg;
1133 }
1134
1135 return 0;
1136 }
1137
1138 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1139 struct data_chunk *chunk)
1140 {
1141 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1142 chunk->icg, chunk->dst_icg);
1143 }
1144
1145 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1146 struct data_chunk *chunk)
1147 {
1148 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1149 chunk->icg, chunk->src_icg);
1150 }
1151
1152 /* --- public DMA engine API --- */
1153
1154 #ifdef CONFIG_DMA_ENGINE
1155 void dmaengine_get(void);
1156 void dmaengine_put(void);
1157 #else
1158 static inline void dmaengine_get(void)
1159 {
1160 }
1161 static inline void dmaengine_put(void)
1162 {
1163 }
1164 #endif
1165
1166 #ifdef CONFIG_ASYNC_TX_DMA
1167 #define async_dmaengine_get() dmaengine_get()
1168 #define async_dmaengine_put() dmaengine_put()
1169 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1170 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1171 #else
1172 #define async_dma_find_channel(type) dma_find_channel(type)
1173 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1174 #else
1175 static inline void async_dmaengine_get(void)
1176 {
1177 }
1178 static inline void async_dmaengine_put(void)
1179 {
1180 }
1181 static inline struct dma_chan *
1182 async_dma_find_channel(enum dma_transaction_type type)
1183 {
1184 return NULL;
1185 }
1186 #endif /* CONFIG_ASYNC_TX_DMA */
1187 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1188 struct dma_chan *chan);
1189
1190 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1191 {
1192 tx->flags |= DMA_CTRL_ACK;
1193 }
1194
1195 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1196 {
1197 tx->flags &= ~DMA_CTRL_ACK;
1198 }
1199
1200 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1201 {
1202 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1203 }
1204
1205 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1206 static inline void
1207 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1208 {
1209 set_bit(tx_type, dstp->bits);
1210 }
1211
1212 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1213 static inline void
1214 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1215 {
1216 clear_bit(tx_type, dstp->bits);
1217 }
1218
1219 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1220 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1221 {
1222 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1223 }
1224
1225 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1226 static inline int
1227 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1228 {
1229 return test_bit(tx_type, srcp->bits);
1230 }
1231
1232 #define for_each_dma_cap_mask(cap, mask) \
1233 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1234
1235 /**
1236 * dma_async_issue_pending - flush pending transactions to HW
1237 * @chan: target DMA channel
1238 *
1239 * This allows drivers to push copies to HW in batches,
1240 * reducing MMIO writes where possible.
1241 */
1242 static inline void dma_async_issue_pending(struct dma_chan *chan)
1243 {
1244 chan->device->device_issue_pending(chan);
1245 }
1246
1247 /**
1248 * dma_async_is_tx_complete - poll for transaction completion
1249 * @chan: DMA channel
1250 * @cookie: transaction identifier to check status of
1251 * @last: returns last completed cookie, can be NULL
1252 * @used: returns last issued cookie, can be NULL
1253 *
1254 * If @last and @used are passed in, upon return they reflect the driver
1255 * internal state and can be used with dma_async_is_complete() to check
1256 * the status of multiple cookies without re-checking hardware state.
1257 */
1258 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1259 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1260 {
1261 struct dma_tx_state state;
1262 enum dma_status status;
1263
1264 status = chan->device->device_tx_status(chan, cookie, &state);
1265 if (last)
1266 *last = state.last;
1267 if (used)
1268 *used = state.used;
1269 return status;
1270 }
1271
1272 /**
1273 * dma_async_is_complete - test a cookie against chan state
1274 * @cookie: transaction identifier to test status of
1275 * @last_complete: last know completed transaction
1276 * @last_used: last cookie value handed out
1277 *
1278 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1279 * the test logic is separated for lightweight testing of multiple cookies
1280 */
1281 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1282 dma_cookie_t last_complete, dma_cookie_t last_used)
1283 {
1284 if (last_complete <= last_used) {
1285 if ((cookie <= last_complete) || (cookie > last_used))
1286 return DMA_COMPLETE;
1287 } else {
1288 if ((cookie <= last_complete) && (cookie > last_used))
1289 return DMA_COMPLETE;
1290 }
1291 return DMA_IN_PROGRESS;
1292 }
1293
1294 static inline void
1295 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1296 {
1297 if (st) {
1298 st->last = last;
1299 st->used = used;
1300 st->residue = residue;
1301 }
1302 }
1303
1304 #ifdef CONFIG_DMA_ENGINE
1305 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1306 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1307 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1308 void dma_issue_pending_all(void);
1309 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1310 dma_filter_fn fn, void *fn_param);
1311 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1312
1313 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1314 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1315
1316 void dma_release_channel(struct dma_chan *chan);
1317 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1318 #else
1319 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1320 {
1321 return NULL;
1322 }
1323 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1324 {
1325 return DMA_COMPLETE;
1326 }
1327 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1328 {
1329 return DMA_COMPLETE;
1330 }
1331 static inline void dma_issue_pending_all(void)
1332 {
1333 }
1334 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1335 dma_filter_fn fn, void *fn_param)
1336 {
1337 return NULL;
1338 }
1339 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1340 const char *name)
1341 {
1342 return NULL;
1343 }
1344 static inline struct dma_chan *dma_request_chan(struct device *dev,
1345 const char *name)
1346 {
1347 return ERR_PTR(-ENODEV);
1348 }
1349 static inline struct dma_chan *dma_request_chan_by_mask(
1350 const dma_cap_mask_t *mask)
1351 {
1352 return ERR_PTR(-ENODEV);
1353 }
1354 static inline void dma_release_channel(struct dma_chan *chan)
1355 {
1356 }
1357 static inline int dma_get_slave_caps(struct dma_chan *chan,
1358 struct dma_slave_caps *caps)
1359 {
1360 return -ENXIO;
1361 }
1362 #endif
1363
1364 #define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1365
1366 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1367 {
1368 struct dma_slave_caps caps;
1369
1370 dma_get_slave_caps(tx->chan, &caps);
1371
1372 if (caps.descriptor_reuse) {
1373 tx->flags |= DMA_CTRL_REUSE;
1374 return 0;
1375 } else {
1376 return -EPERM;
1377 }
1378 }
1379
1380 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1381 {
1382 tx->flags &= ~DMA_CTRL_REUSE;
1383 }
1384
1385 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1386 {
1387 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1388 }
1389
1390 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1391 {
1392 /* this is supported for reusable desc, so check that */
1393 if (dmaengine_desc_test_reuse(desc))
1394 return desc->desc_free(desc);
1395 else
1396 return -EPERM;
1397 }
1398
1399 /* --- DMA device --- */
1400
1401 int dma_async_device_register(struct dma_device *device);
1402 void dma_async_device_unregister(struct dma_device *device);
1403 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1404 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1405 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1406 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1407 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1408 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1409
1410 static inline struct dma_chan
1411 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1412 dma_filter_fn fn, void *fn_param,
1413 struct device *dev, const char *name)
1414 {
1415 struct dma_chan *chan;
1416
1417 chan = dma_request_slave_channel(dev, name);
1418 if (chan)
1419 return chan;
1420
1421 if (!fn || !fn_param)
1422 return NULL;
1423
1424 return __dma_request_channel(mask, fn, fn_param);
1425 }
1426 #endif /* DMAENGINE_H */