]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/dmaengine.h
dmaengine maintainer update
[mirror_ubuntu-artful-kernel.git] / include / linux / dmaengine.h
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
21 #ifndef LINUX_DMAENGINE_H
22 #define LINUX_DMAENGINE_H
23
24 #include <linux/device.h>
25 #include <linux/err.h>
26 #include <linux/uio.h>
27 #include <linux/bug.h>
28 #include <linux/scatterlist.h>
29 #include <linux/bitmap.h>
30 #include <linux/types.h>
31 #include <asm/page.h>
32
33 /**
34 * typedef dma_cookie_t - an opaque DMA cookie
35 *
36 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
37 */
38 typedef s32 dma_cookie_t;
39 #define DMA_MIN_COOKIE 1
40 #define DMA_MAX_COOKIE INT_MAX
41
42 static inline int dma_submit_error(dma_cookie_t cookie)
43 {
44 return cookie < 0 ? cookie : 0;
45 }
46
47 /**
48 * enum dma_status - DMA transaction status
49 * @DMA_COMPLETE: transaction completed
50 * @DMA_IN_PROGRESS: transaction not yet processed
51 * @DMA_PAUSED: transaction is paused
52 * @DMA_ERROR: transaction failed
53 */
54 enum dma_status {
55 DMA_COMPLETE,
56 DMA_IN_PROGRESS,
57 DMA_PAUSED,
58 DMA_ERROR,
59 };
60
61 /**
62 * enum dma_transaction_type - DMA transaction types/indexes
63 *
64 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
65 * automatically set as dma devices are registered.
66 */
67 enum dma_transaction_type {
68 DMA_MEMCPY,
69 DMA_XOR,
70 DMA_PQ,
71 DMA_XOR_VAL,
72 DMA_PQ_VAL,
73 DMA_INTERRUPT,
74 DMA_SG,
75 DMA_PRIVATE,
76 DMA_ASYNC_TX,
77 DMA_SLAVE,
78 DMA_CYCLIC,
79 DMA_INTERLEAVE,
80 /* last transaction type for creation of the capabilities mask */
81 DMA_TX_TYPE_END,
82 };
83
84 /**
85 * enum dma_transfer_direction - dma transfer mode and direction indicator
86 * @DMA_MEM_TO_MEM: Async/Memcpy mode
87 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
88 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
89 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
90 */
91 enum dma_transfer_direction {
92 DMA_MEM_TO_MEM,
93 DMA_MEM_TO_DEV,
94 DMA_DEV_TO_MEM,
95 DMA_DEV_TO_DEV,
96 DMA_TRANS_NONE,
97 };
98
99 /**
100 * Interleaved Transfer Request
101 * ----------------------------
102 * A chunk is collection of contiguous bytes to be transfered.
103 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
104 * ICGs may or maynot change between chunks.
105 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
106 * that when repeated an integral number of times, specifies the transfer.
107 * A transfer template is specification of a Frame, the number of times
108 * it is to be repeated and other per-transfer attributes.
109 *
110 * Practically, a client driver would have ready a template for each
111 * type of transfer it is going to need during its lifetime and
112 * set only 'src_start' and 'dst_start' before submitting the requests.
113 *
114 *
115 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
116 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
117 *
118 * == Chunk size
119 * ... ICG
120 */
121
122 /**
123 * struct data_chunk - Element of scatter-gather list that makes a frame.
124 * @size: Number of bytes to read from source.
125 * size_dst := fn(op, size_src), so doesn't mean much for destination.
126 * @icg: Number of bytes to jump after last src/dst address of this
127 * chunk and before first src/dst address for next chunk.
128 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
129 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
130 */
131 struct data_chunk {
132 size_t size;
133 size_t icg;
134 };
135
136 /**
137 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
138 * and attributes.
139 * @src_start: Bus address of source for the first chunk.
140 * @dst_start: Bus address of destination for the first chunk.
141 * @dir: Specifies the type of Source and Destination.
142 * @src_inc: If the source address increments after reading from it.
143 * @dst_inc: If the destination address increments after writing to it.
144 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
145 * Otherwise, source is read contiguously (icg ignored).
146 * Ignored if src_inc is false.
147 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
148 * Otherwise, destination is filled contiguously (icg ignored).
149 * Ignored if dst_inc is false.
150 * @numf: Number of frames in this template.
151 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
152 * @sgl: Array of {chunk,icg} pairs that make up a frame.
153 */
154 struct dma_interleaved_template {
155 dma_addr_t src_start;
156 dma_addr_t dst_start;
157 enum dma_transfer_direction dir;
158 bool src_inc;
159 bool dst_inc;
160 bool src_sgl;
161 bool dst_sgl;
162 size_t numf;
163 size_t frame_size;
164 struct data_chunk sgl[0];
165 };
166
167 /**
168 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
169 * control completion, and communicate status.
170 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
171 * this transaction
172 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
173 * acknowledges receipt, i.e. has has a chance to establish any dependency
174 * chains
175 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
176 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
177 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
178 * sources that were the result of a previous operation, in the case of a PQ
179 * operation it continues the calculation with new sources
180 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
181 * on the result of this operation
182 */
183 enum dma_ctrl_flags {
184 DMA_PREP_INTERRUPT = (1 << 0),
185 DMA_CTRL_ACK = (1 << 1),
186 DMA_PREP_PQ_DISABLE_P = (1 << 2),
187 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
188 DMA_PREP_CONTINUE = (1 << 4),
189 DMA_PREP_FENCE = (1 << 5),
190 };
191
192 /**
193 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
194 * on a running channel.
195 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
196 * @DMA_PAUSE: pause ongoing transfers
197 * @DMA_RESUME: resume paused transfer
198 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
199 * that need to runtime reconfigure the slave channels (as opposed to passing
200 * configuration data in statically from the platform). An additional
201 * argument of struct dma_slave_config must be passed in with this
202 * command.
203 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
204 * into external start mode.
205 */
206 enum dma_ctrl_cmd {
207 DMA_TERMINATE_ALL,
208 DMA_PAUSE,
209 DMA_RESUME,
210 DMA_SLAVE_CONFIG,
211 FSLDMA_EXTERNAL_START,
212 };
213
214 /**
215 * enum sum_check_bits - bit position of pq_check_flags
216 */
217 enum sum_check_bits {
218 SUM_CHECK_P = 0,
219 SUM_CHECK_Q = 1,
220 };
221
222 /**
223 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
224 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
225 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
226 */
227 enum sum_check_flags {
228 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
229 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
230 };
231
232
233 /**
234 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
235 * See linux/cpumask.h
236 */
237 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
238
239 /**
240 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
241 * @memcpy_count: transaction counter
242 * @bytes_transferred: byte counter
243 */
244
245 struct dma_chan_percpu {
246 /* stats */
247 unsigned long memcpy_count;
248 unsigned long bytes_transferred;
249 };
250
251 /**
252 * struct dma_chan - devices supply DMA channels, clients use them
253 * @device: ptr to the dma device who supplies this channel, always !%NULL
254 * @cookie: last cookie value returned to client
255 * @completed_cookie: last completed cookie for this channel
256 * @chan_id: channel ID for sysfs
257 * @dev: class device for sysfs
258 * @device_node: used to add this to the device chan list
259 * @local: per-cpu pointer to a struct dma_chan_percpu
260 * @client_count: how many clients are using this channel
261 * @table_count: number of appearances in the mem-to-mem allocation table
262 * @private: private data for certain client-channel associations
263 */
264 struct dma_chan {
265 struct dma_device *device;
266 dma_cookie_t cookie;
267 dma_cookie_t completed_cookie;
268
269 /* sysfs */
270 int chan_id;
271 struct dma_chan_dev *dev;
272
273 struct list_head device_node;
274 struct dma_chan_percpu __percpu *local;
275 int client_count;
276 int table_count;
277 void *private;
278 };
279
280 /**
281 * struct dma_chan_dev - relate sysfs device node to backing channel device
282 * @chan: driver channel device
283 * @device: sysfs device
284 * @dev_id: parent dma_device dev_id
285 * @idr_ref: reference count to gate release of dma_device dev_id
286 */
287 struct dma_chan_dev {
288 struct dma_chan *chan;
289 struct device device;
290 int dev_id;
291 atomic_t *idr_ref;
292 };
293
294 /**
295 * enum dma_slave_buswidth - defines bus with of the DMA slave
296 * device, source or target buses
297 */
298 enum dma_slave_buswidth {
299 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
300 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
301 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
302 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
303 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
304 };
305
306 /**
307 * struct dma_slave_config - dma slave channel runtime config
308 * @direction: whether the data shall go in or out on this slave
309 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
310 * legal values.
311 * @src_addr: this is the physical address where DMA slave data
312 * should be read (RX), if the source is memory this argument is
313 * ignored.
314 * @dst_addr: this is the physical address where DMA slave data
315 * should be written (TX), if the source is memory this argument
316 * is ignored.
317 * @src_addr_width: this is the width in bytes of the source (RX)
318 * register where DMA data shall be read. If the source
319 * is memory this may be ignored depending on architecture.
320 * Legal values: 1, 2, 4, 8.
321 * @dst_addr_width: same as src_addr_width but for destination
322 * target (TX) mutatis mutandis.
323 * @src_maxburst: the maximum number of words (note: words, as in
324 * units of the src_addr_width member, not bytes) that can be sent
325 * in one burst to the device. Typically something like half the
326 * FIFO depth on I/O peripherals so you don't overflow it. This
327 * may or may not be applicable on memory sources.
328 * @dst_maxburst: same as src_maxburst but for destination target
329 * mutatis mutandis.
330 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
331 * with 'true' if peripheral should be flow controller. Direction will be
332 * selected at Runtime.
333 * @slave_id: Slave requester id. Only valid for slave channels. The dma
334 * slave peripheral will have unique id as dma requester which need to be
335 * pass as slave config.
336 *
337 * This struct is passed in as configuration data to a DMA engine
338 * in order to set up a certain channel for DMA transport at runtime.
339 * The DMA device/engine has to provide support for an additional
340 * command in the channel config interface, DMA_SLAVE_CONFIG
341 * and this struct will then be passed in as an argument to the
342 * DMA engine device_control() function.
343 *
344 * The rationale for adding configuration information to this struct
345 * is as follows: if it is likely that most DMA slave controllers in
346 * the world will support the configuration option, then make it
347 * generic. If not: if it is fixed so that it be sent in static from
348 * the platform data, then prefer to do that. Else, if it is neither
349 * fixed at runtime, nor generic enough (such as bus mastership on
350 * some CPU family and whatnot) then create a custom slave config
351 * struct and pass that, then make this config a member of that
352 * struct, if applicable.
353 */
354 struct dma_slave_config {
355 enum dma_transfer_direction direction;
356 dma_addr_t src_addr;
357 dma_addr_t dst_addr;
358 enum dma_slave_buswidth src_addr_width;
359 enum dma_slave_buswidth dst_addr_width;
360 u32 src_maxburst;
361 u32 dst_maxburst;
362 bool device_fc;
363 unsigned int slave_id;
364 };
365
366 /**
367 * enum dma_residue_granularity - Granularity of the reported transfer residue
368 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
369 * DMA channel is only able to tell whether a descriptor has been completed or
370 * not, which means residue reporting is not supported by this channel. The
371 * residue field of the dma_tx_state field will always be 0.
372 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
373 * completed segment of the transfer (For cyclic transfers this is after each
374 * period). This is typically implemented by having the hardware generate an
375 * interrupt after each transferred segment and then the drivers updates the
376 * outstanding residue by the size of the segment. Another possibility is if
377 * the hardware supports scatter-gather and the segment descriptor has a field
378 * which gets set after the segment has been completed. The driver then counts
379 * the number of segments without the flag set to compute the residue.
380 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
381 * burst. This is typically only supported if the hardware has a progress
382 * register of some sort (E.g. a register with the current read/write address
383 * or a register with the amount of bursts/beats/bytes that have been
384 * transferred or still need to be transferred).
385 */
386 enum dma_residue_granularity {
387 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
388 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
389 DMA_RESIDUE_GRANULARITY_BURST = 2,
390 };
391
392 /* struct dma_slave_caps - expose capabilities of a slave channel only
393 *
394 * @src_addr_widths: bit mask of src addr widths the channel supports
395 * @dstn_addr_widths: bit mask of dstn addr widths the channel supports
396 * @directions: bit mask of slave direction the channel supported
397 * since the enum dma_transfer_direction is not defined as bits for each
398 * type of direction, the dma controller should fill (1 << <TYPE>) and same
399 * should be checked by controller as well
400 * @cmd_pause: true, if pause and thereby resume is supported
401 * @cmd_terminate: true, if terminate cmd is supported
402 * @residue_granularity: granularity of the reported transfer residue
403 */
404 struct dma_slave_caps {
405 u32 src_addr_widths;
406 u32 dstn_addr_widths;
407 u32 directions;
408 bool cmd_pause;
409 bool cmd_terminate;
410 enum dma_residue_granularity residue_granularity;
411 };
412
413 static inline const char *dma_chan_name(struct dma_chan *chan)
414 {
415 return dev_name(&chan->dev->device);
416 }
417
418 void dma_chan_cleanup(struct kref *kref);
419
420 /**
421 * typedef dma_filter_fn - callback filter for dma_request_channel
422 * @chan: channel to be reviewed
423 * @filter_param: opaque parameter passed through dma_request_channel
424 *
425 * When this optional parameter is specified in a call to dma_request_channel a
426 * suitable channel is passed to this routine for further dispositioning before
427 * being returned. Where 'suitable' indicates a non-busy channel that
428 * satisfies the given capability mask. It returns 'true' to indicate that the
429 * channel is suitable.
430 */
431 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
432
433 typedef void (*dma_async_tx_callback)(void *dma_async_param);
434
435 struct dmaengine_unmap_data {
436 u8 to_cnt;
437 u8 from_cnt;
438 u8 bidi_cnt;
439 struct device *dev;
440 struct kref kref;
441 size_t len;
442 dma_addr_t addr[0];
443 };
444
445 /**
446 * struct dma_async_tx_descriptor - async transaction descriptor
447 * ---dma generic offload fields---
448 * @cookie: tracking cookie for this transaction, set to -EBUSY if
449 * this tx is sitting on a dependency list
450 * @flags: flags to augment operation preparation, control completion, and
451 * communicate status
452 * @phys: physical address of the descriptor
453 * @chan: target channel for this operation
454 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
455 * @callback: routine to call after this operation is complete
456 * @callback_param: general parameter to pass to the callback routine
457 * ---async_tx api specific fields---
458 * @next: at completion submit this descriptor
459 * @parent: pointer to the next level up in the dependency chain
460 * @lock: protect the parent and next pointers
461 */
462 struct dma_async_tx_descriptor {
463 dma_cookie_t cookie;
464 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
465 dma_addr_t phys;
466 struct dma_chan *chan;
467 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
468 dma_async_tx_callback callback;
469 void *callback_param;
470 struct dmaengine_unmap_data *unmap;
471 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
472 struct dma_async_tx_descriptor *next;
473 struct dma_async_tx_descriptor *parent;
474 spinlock_t lock;
475 #endif
476 };
477
478 #ifdef CONFIG_DMA_ENGINE
479 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
480 struct dmaengine_unmap_data *unmap)
481 {
482 kref_get(&unmap->kref);
483 tx->unmap = unmap;
484 }
485
486 struct dmaengine_unmap_data *
487 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
488 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
489 #else
490 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
491 struct dmaengine_unmap_data *unmap)
492 {
493 }
494 static inline struct dmaengine_unmap_data *
495 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
496 {
497 return NULL;
498 }
499 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
500 {
501 }
502 #endif
503
504 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
505 {
506 if (tx->unmap) {
507 dmaengine_unmap_put(tx->unmap);
508 tx->unmap = NULL;
509 }
510 }
511
512 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
513 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
514 {
515 }
516 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
517 {
518 }
519 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
520 {
521 BUG();
522 }
523 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
524 {
525 }
526 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
527 {
528 }
529 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
530 {
531 return NULL;
532 }
533 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
534 {
535 return NULL;
536 }
537
538 #else
539 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
540 {
541 spin_lock_bh(&txd->lock);
542 }
543 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
544 {
545 spin_unlock_bh(&txd->lock);
546 }
547 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
548 {
549 txd->next = next;
550 next->parent = txd;
551 }
552 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
553 {
554 txd->parent = NULL;
555 }
556 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
557 {
558 txd->next = NULL;
559 }
560 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
561 {
562 return txd->parent;
563 }
564 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
565 {
566 return txd->next;
567 }
568 #endif
569
570 /**
571 * struct dma_tx_state - filled in to report the status of
572 * a transfer.
573 * @last: last completed DMA cookie
574 * @used: last issued DMA cookie (i.e. the one in progress)
575 * @residue: the remaining number of bytes left to transmit
576 * on the selected transfer for states DMA_IN_PROGRESS and
577 * DMA_PAUSED if this is implemented in the driver, else 0
578 */
579 struct dma_tx_state {
580 dma_cookie_t last;
581 dma_cookie_t used;
582 u32 residue;
583 };
584
585 /**
586 * struct dma_device - info on the entity supplying DMA services
587 * @chancnt: how many DMA channels are supported
588 * @privatecnt: how many DMA channels are requested by dma_request_channel
589 * @channels: the list of struct dma_chan
590 * @global_node: list_head for global dma_device_list
591 * @cap_mask: one or more dma_capability flags
592 * @max_xor: maximum number of xor sources, 0 if no capability
593 * @max_pq: maximum number of PQ sources and PQ-continue capability
594 * @copy_align: alignment shift for memcpy operations
595 * @xor_align: alignment shift for xor operations
596 * @pq_align: alignment shift for pq operations
597 * @fill_align: alignment shift for memset operations
598 * @dev_id: unique device ID
599 * @dev: struct device reference for dma mapping api
600 * @device_alloc_chan_resources: allocate resources and return the
601 * number of allocated descriptors
602 * @device_free_chan_resources: release DMA channel's resources
603 * @device_prep_dma_memcpy: prepares a memcpy operation
604 * @device_prep_dma_xor: prepares a xor operation
605 * @device_prep_dma_xor_val: prepares a xor validation operation
606 * @device_prep_dma_pq: prepares a pq operation
607 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
608 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
609 * @device_prep_slave_sg: prepares a slave dma operation
610 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
611 * The function takes a buffer of size buf_len. The callback function will
612 * be called after period_len bytes have been transferred.
613 * @device_prep_interleaved_dma: Transfer expression in a generic way.
614 * @device_control: manipulate all pending operations on a channel, returns
615 * zero or error code
616 * @device_tx_status: poll for transaction completion, the optional
617 * txstate parameter can be supplied with a pointer to get a
618 * struct with auxiliary transfer status information, otherwise the call
619 * will just return a simple status code
620 * @device_issue_pending: push pending transactions to hardware
621 * @device_slave_caps: return the slave channel capabilities
622 */
623 struct dma_device {
624
625 unsigned int chancnt;
626 unsigned int privatecnt;
627 struct list_head channels;
628 struct list_head global_node;
629 dma_cap_mask_t cap_mask;
630 unsigned short max_xor;
631 unsigned short max_pq;
632 u8 copy_align;
633 u8 xor_align;
634 u8 pq_align;
635 u8 fill_align;
636 #define DMA_HAS_PQ_CONTINUE (1 << 15)
637
638 int dev_id;
639 struct device *dev;
640
641 int (*device_alloc_chan_resources)(struct dma_chan *chan);
642 void (*device_free_chan_resources)(struct dma_chan *chan);
643
644 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
645 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
646 size_t len, unsigned long flags);
647 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
648 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
649 unsigned int src_cnt, size_t len, unsigned long flags);
650 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
651 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
652 size_t len, enum sum_check_flags *result, unsigned long flags);
653 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
654 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
655 unsigned int src_cnt, const unsigned char *scf,
656 size_t len, unsigned long flags);
657 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
658 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
659 unsigned int src_cnt, const unsigned char *scf, size_t len,
660 enum sum_check_flags *pqres, unsigned long flags);
661 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
662 struct dma_chan *chan, unsigned long flags);
663 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
664 struct dma_chan *chan,
665 struct scatterlist *dst_sg, unsigned int dst_nents,
666 struct scatterlist *src_sg, unsigned int src_nents,
667 unsigned long flags);
668
669 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
670 struct dma_chan *chan, struct scatterlist *sgl,
671 unsigned int sg_len, enum dma_transfer_direction direction,
672 unsigned long flags, void *context);
673 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
674 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
675 size_t period_len, enum dma_transfer_direction direction,
676 unsigned long flags, void *context);
677 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
678 struct dma_chan *chan, struct dma_interleaved_template *xt,
679 unsigned long flags);
680 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
681 unsigned long arg);
682
683 enum dma_status (*device_tx_status)(struct dma_chan *chan,
684 dma_cookie_t cookie,
685 struct dma_tx_state *txstate);
686 void (*device_issue_pending)(struct dma_chan *chan);
687 int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
688 };
689
690 static inline int dmaengine_device_control(struct dma_chan *chan,
691 enum dma_ctrl_cmd cmd,
692 unsigned long arg)
693 {
694 if (chan->device->device_control)
695 return chan->device->device_control(chan, cmd, arg);
696
697 return -ENOSYS;
698 }
699
700 static inline int dmaengine_slave_config(struct dma_chan *chan,
701 struct dma_slave_config *config)
702 {
703 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
704 (unsigned long)config);
705 }
706
707 static inline bool is_slave_direction(enum dma_transfer_direction direction)
708 {
709 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
710 }
711
712 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
713 struct dma_chan *chan, dma_addr_t buf, size_t len,
714 enum dma_transfer_direction dir, unsigned long flags)
715 {
716 struct scatterlist sg;
717 sg_init_table(&sg, 1);
718 sg_dma_address(&sg) = buf;
719 sg_dma_len(&sg) = len;
720
721 return chan->device->device_prep_slave_sg(chan, &sg, 1,
722 dir, flags, NULL);
723 }
724
725 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
726 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
727 enum dma_transfer_direction dir, unsigned long flags)
728 {
729 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
730 dir, flags, NULL);
731 }
732
733 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
734 struct rio_dma_ext;
735 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
736 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
737 enum dma_transfer_direction dir, unsigned long flags,
738 struct rio_dma_ext *rio_ext)
739 {
740 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
741 dir, flags, rio_ext);
742 }
743 #endif
744
745 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
746 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
747 size_t period_len, enum dma_transfer_direction dir,
748 unsigned long flags)
749 {
750 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
751 period_len, dir, flags, NULL);
752 }
753
754 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
755 struct dma_chan *chan, struct dma_interleaved_template *xt,
756 unsigned long flags)
757 {
758 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
759 }
760
761 static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
762 {
763 if (!chan || !caps)
764 return -EINVAL;
765
766 /* check if the channel supports slave transactions */
767 if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits))
768 return -ENXIO;
769
770 if (chan->device->device_slave_caps)
771 return chan->device->device_slave_caps(chan, caps);
772
773 return -ENXIO;
774 }
775
776 static inline int dmaengine_terminate_all(struct dma_chan *chan)
777 {
778 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
779 }
780
781 static inline int dmaengine_pause(struct dma_chan *chan)
782 {
783 return dmaengine_device_control(chan, DMA_PAUSE, 0);
784 }
785
786 static inline int dmaengine_resume(struct dma_chan *chan)
787 {
788 return dmaengine_device_control(chan, DMA_RESUME, 0);
789 }
790
791 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
792 dma_cookie_t cookie, struct dma_tx_state *state)
793 {
794 return chan->device->device_tx_status(chan, cookie, state);
795 }
796
797 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
798 {
799 return desc->tx_submit(desc);
800 }
801
802 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
803 {
804 size_t mask;
805
806 if (!align)
807 return true;
808 mask = (1 << align) - 1;
809 if (mask & (off1 | off2 | len))
810 return false;
811 return true;
812 }
813
814 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
815 size_t off2, size_t len)
816 {
817 return dmaengine_check_align(dev->copy_align, off1, off2, len);
818 }
819
820 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
821 size_t off2, size_t len)
822 {
823 return dmaengine_check_align(dev->xor_align, off1, off2, len);
824 }
825
826 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
827 size_t off2, size_t len)
828 {
829 return dmaengine_check_align(dev->pq_align, off1, off2, len);
830 }
831
832 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
833 size_t off2, size_t len)
834 {
835 return dmaengine_check_align(dev->fill_align, off1, off2, len);
836 }
837
838 static inline void
839 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
840 {
841 dma->max_pq = maxpq;
842 if (has_pq_continue)
843 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
844 }
845
846 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
847 {
848 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
849 }
850
851 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
852 {
853 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
854
855 return (flags & mask) == mask;
856 }
857
858 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
859 {
860 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
861 }
862
863 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
864 {
865 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
866 }
867
868 /* dma_maxpq - reduce maxpq in the face of continued operations
869 * @dma - dma device with PQ capability
870 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
871 *
872 * When an engine does not support native continuation we need 3 extra
873 * source slots to reuse P and Q with the following coefficients:
874 * 1/ {00} * P : remove P from Q', but use it as a source for P'
875 * 2/ {01} * Q : use Q to continue Q' calculation
876 * 3/ {00} * Q : subtract Q from P' to cancel (2)
877 *
878 * In the case where P is disabled we only need 1 extra source:
879 * 1/ {01} * Q : use Q to continue Q' calculation
880 */
881 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
882 {
883 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
884 return dma_dev_to_maxpq(dma);
885 else if (dmaf_p_disabled_continue(flags))
886 return dma_dev_to_maxpq(dma) - 1;
887 else if (dmaf_continue(flags))
888 return dma_dev_to_maxpq(dma) - 3;
889 BUG();
890 }
891
892 /* --- public DMA engine API --- */
893
894 #ifdef CONFIG_DMA_ENGINE
895 void dmaengine_get(void);
896 void dmaengine_put(void);
897 #else
898 static inline void dmaengine_get(void)
899 {
900 }
901 static inline void dmaengine_put(void)
902 {
903 }
904 #endif
905
906 #ifdef CONFIG_NET_DMA
907 #define net_dmaengine_get() dmaengine_get()
908 #define net_dmaengine_put() dmaengine_put()
909 #else
910 static inline void net_dmaengine_get(void)
911 {
912 }
913 static inline void net_dmaengine_put(void)
914 {
915 }
916 #endif
917
918 #ifdef CONFIG_ASYNC_TX_DMA
919 #define async_dmaengine_get() dmaengine_get()
920 #define async_dmaengine_put() dmaengine_put()
921 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
922 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
923 #else
924 #define async_dma_find_channel(type) dma_find_channel(type)
925 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
926 #else
927 static inline void async_dmaengine_get(void)
928 {
929 }
930 static inline void async_dmaengine_put(void)
931 {
932 }
933 static inline struct dma_chan *
934 async_dma_find_channel(enum dma_transaction_type type)
935 {
936 return NULL;
937 }
938 #endif /* CONFIG_ASYNC_TX_DMA */
939
940 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
941 void *dest, void *src, size_t len);
942 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
943 struct page *page, unsigned int offset, void *kdata, size_t len);
944 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
945 struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
946 unsigned int src_off, size_t len);
947 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
948 struct dma_chan *chan);
949
950 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
951 {
952 tx->flags |= DMA_CTRL_ACK;
953 }
954
955 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
956 {
957 tx->flags &= ~DMA_CTRL_ACK;
958 }
959
960 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
961 {
962 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
963 }
964
965 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
966 static inline void
967 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
968 {
969 set_bit(tx_type, dstp->bits);
970 }
971
972 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
973 static inline void
974 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
975 {
976 clear_bit(tx_type, dstp->bits);
977 }
978
979 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
980 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
981 {
982 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
983 }
984
985 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
986 static inline int
987 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
988 {
989 return test_bit(tx_type, srcp->bits);
990 }
991
992 #define for_each_dma_cap_mask(cap, mask) \
993 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
994
995 /**
996 * dma_async_issue_pending - flush pending transactions to HW
997 * @chan: target DMA channel
998 *
999 * This allows drivers to push copies to HW in batches,
1000 * reducing MMIO writes where possible.
1001 */
1002 static inline void dma_async_issue_pending(struct dma_chan *chan)
1003 {
1004 chan->device->device_issue_pending(chan);
1005 }
1006
1007 /**
1008 * dma_async_is_tx_complete - poll for transaction completion
1009 * @chan: DMA channel
1010 * @cookie: transaction identifier to check status of
1011 * @last: returns last completed cookie, can be NULL
1012 * @used: returns last issued cookie, can be NULL
1013 *
1014 * If @last and @used are passed in, upon return they reflect the driver
1015 * internal state and can be used with dma_async_is_complete() to check
1016 * the status of multiple cookies without re-checking hardware state.
1017 */
1018 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1019 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1020 {
1021 struct dma_tx_state state;
1022 enum dma_status status;
1023
1024 status = chan->device->device_tx_status(chan, cookie, &state);
1025 if (last)
1026 *last = state.last;
1027 if (used)
1028 *used = state.used;
1029 return status;
1030 }
1031
1032 /**
1033 * dma_async_is_complete - test a cookie against chan state
1034 * @cookie: transaction identifier to test status of
1035 * @last_complete: last know completed transaction
1036 * @last_used: last cookie value handed out
1037 *
1038 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1039 * the test logic is separated for lightweight testing of multiple cookies
1040 */
1041 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1042 dma_cookie_t last_complete, dma_cookie_t last_used)
1043 {
1044 if (last_complete <= last_used) {
1045 if ((cookie <= last_complete) || (cookie > last_used))
1046 return DMA_COMPLETE;
1047 } else {
1048 if ((cookie <= last_complete) && (cookie > last_used))
1049 return DMA_COMPLETE;
1050 }
1051 return DMA_IN_PROGRESS;
1052 }
1053
1054 static inline void
1055 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1056 {
1057 if (st) {
1058 st->last = last;
1059 st->used = used;
1060 st->residue = residue;
1061 }
1062 }
1063
1064 #ifdef CONFIG_DMA_ENGINE
1065 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1066 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1067 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1068 void dma_issue_pending_all(void);
1069 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1070 dma_filter_fn fn, void *fn_param);
1071 struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
1072 const char *name);
1073 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1074 void dma_release_channel(struct dma_chan *chan);
1075 #else
1076 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1077 {
1078 return NULL;
1079 }
1080 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1081 {
1082 return DMA_COMPLETE;
1083 }
1084 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1085 {
1086 return DMA_COMPLETE;
1087 }
1088 static inline void dma_issue_pending_all(void)
1089 {
1090 }
1091 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1092 dma_filter_fn fn, void *fn_param)
1093 {
1094 return NULL;
1095 }
1096 static inline struct dma_chan *dma_request_slave_channel_reason(
1097 struct device *dev, const char *name)
1098 {
1099 return ERR_PTR(-ENODEV);
1100 }
1101 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1102 const char *name)
1103 {
1104 return NULL;
1105 }
1106 static inline void dma_release_channel(struct dma_chan *chan)
1107 {
1108 }
1109 #endif
1110
1111 /* --- DMA device --- */
1112
1113 int dma_async_device_register(struct dma_device *device);
1114 void dma_async_device_unregister(struct dma_device *device);
1115 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1116 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1117 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1118 struct dma_chan *net_dma_find_channel(void);
1119 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1120 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1121 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1122
1123 static inline struct dma_chan
1124 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1125 dma_filter_fn fn, void *fn_param,
1126 struct device *dev, char *name)
1127 {
1128 struct dma_chan *chan;
1129
1130 chan = dma_request_slave_channel(dev, name);
1131 if (chan)
1132 return chan;
1133
1134 return __dma_request_channel(mask, fn, fn_param);
1135 }
1136
1137 /* --- Helper iov-locking functions --- */
1138
1139 struct dma_page_list {
1140 char __user *base_address;
1141 int nr_pages;
1142 struct page **pages;
1143 };
1144
1145 struct dma_pinned_list {
1146 int nr_iovecs;
1147 struct dma_page_list page_list[0];
1148 };
1149
1150 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
1151 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
1152
1153 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
1154 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
1155 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
1156 struct dma_pinned_list *pinned_list, struct page *page,
1157 unsigned int offset, size_t len);
1158
1159 #endif /* DMAENGINE_H */