]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/dmaengine.h
Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / include / linux / dmaengine.h
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
17 #ifndef LINUX_DMAENGINE_H
18 #define LINUX_DMAENGINE_H
19
20 #include <linux/device.h>
21 #include <linux/err.h>
22 #include <linux/uio.h>
23 #include <linux/bug.h>
24 #include <linux/scatterlist.h>
25 #include <linux/bitmap.h>
26 #include <linux/types.h>
27 #include <asm/page.h>
28
29 /**
30 * typedef dma_cookie_t - an opaque DMA cookie
31 *
32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33 */
34 typedef s32 dma_cookie_t;
35 #define DMA_MIN_COOKIE 1
36
37 static inline int dma_submit_error(dma_cookie_t cookie)
38 {
39 return cookie < 0 ? cookie : 0;
40 }
41
42 /**
43 * enum dma_status - DMA transaction status
44 * @DMA_COMPLETE: transaction completed
45 * @DMA_IN_PROGRESS: transaction not yet processed
46 * @DMA_PAUSED: transaction is paused
47 * @DMA_ERROR: transaction failed
48 */
49 enum dma_status {
50 DMA_COMPLETE,
51 DMA_IN_PROGRESS,
52 DMA_PAUSED,
53 DMA_ERROR,
54 };
55
56 /**
57 * enum dma_transaction_type - DMA transaction types/indexes
58 *
59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
60 * automatically set as dma devices are registered.
61 */
62 enum dma_transaction_type {
63 DMA_MEMCPY,
64 DMA_XOR,
65 DMA_PQ,
66 DMA_XOR_VAL,
67 DMA_PQ_VAL,
68 DMA_MEMSET,
69 DMA_MEMSET_SG,
70 DMA_INTERRUPT,
71 DMA_PRIVATE,
72 DMA_ASYNC_TX,
73 DMA_SLAVE,
74 DMA_CYCLIC,
75 DMA_INTERLEAVE,
76 /* last transaction type for creation of the capabilities mask */
77 DMA_TX_TYPE_END,
78 };
79
80 /**
81 * enum dma_transfer_direction - dma transfer mode and direction indicator
82 * @DMA_MEM_TO_MEM: Async/Memcpy mode
83 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
84 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
85 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
86 */
87 enum dma_transfer_direction {
88 DMA_MEM_TO_MEM,
89 DMA_MEM_TO_DEV,
90 DMA_DEV_TO_MEM,
91 DMA_DEV_TO_DEV,
92 DMA_TRANS_NONE,
93 };
94
95 /**
96 * Interleaved Transfer Request
97 * ----------------------------
98 * A chunk is collection of contiguous bytes to be transfered.
99 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
100 * ICGs may or maynot change between chunks.
101 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
102 * that when repeated an integral number of times, specifies the transfer.
103 * A transfer template is specification of a Frame, the number of times
104 * it is to be repeated and other per-transfer attributes.
105 *
106 * Practically, a client driver would have ready a template for each
107 * type of transfer it is going to need during its lifetime and
108 * set only 'src_start' and 'dst_start' before submitting the requests.
109 *
110 *
111 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
112 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
113 *
114 * == Chunk size
115 * ... ICG
116 */
117
118 /**
119 * struct data_chunk - Element of scatter-gather list that makes a frame.
120 * @size: Number of bytes to read from source.
121 * size_dst := fn(op, size_src), so doesn't mean much for destination.
122 * @icg: Number of bytes to jump after last src/dst address of this
123 * chunk and before first src/dst address for next chunk.
124 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
125 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
126 * @dst_icg: Number of bytes to jump after last dst address of this
127 * chunk and before the first dst address for next chunk.
128 * Ignored if dst_inc is true and dst_sgl is false.
129 * @src_icg: Number of bytes to jump after last src address of this
130 * chunk and before the first src address for next chunk.
131 * Ignored if src_inc is true and src_sgl is false.
132 */
133 struct data_chunk {
134 size_t size;
135 size_t icg;
136 size_t dst_icg;
137 size_t src_icg;
138 };
139
140 /**
141 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
142 * and attributes.
143 * @src_start: Bus address of source for the first chunk.
144 * @dst_start: Bus address of destination for the first chunk.
145 * @dir: Specifies the type of Source and Destination.
146 * @src_inc: If the source address increments after reading from it.
147 * @dst_inc: If the destination address increments after writing to it.
148 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
149 * Otherwise, source is read contiguously (icg ignored).
150 * Ignored if src_inc is false.
151 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
152 * Otherwise, destination is filled contiguously (icg ignored).
153 * Ignored if dst_inc is false.
154 * @numf: Number of frames in this template.
155 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
156 * @sgl: Array of {chunk,icg} pairs that make up a frame.
157 */
158 struct dma_interleaved_template {
159 dma_addr_t src_start;
160 dma_addr_t dst_start;
161 enum dma_transfer_direction dir;
162 bool src_inc;
163 bool dst_inc;
164 bool src_sgl;
165 bool dst_sgl;
166 size_t numf;
167 size_t frame_size;
168 struct data_chunk sgl[0];
169 };
170
171 /**
172 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
173 * control completion, and communicate status.
174 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
175 * this transaction
176 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
177 * acknowledges receipt, i.e. has has a chance to establish any dependency
178 * chains
179 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
180 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
181 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
182 * sources that were the result of a previous operation, in the case of a PQ
183 * operation it continues the calculation with new sources
184 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
185 * on the result of this operation
186 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
187 * cleared or freed
188 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
189 * data and the descriptor should be in different format from normal
190 * data descriptors.
191 */
192 enum dma_ctrl_flags {
193 DMA_PREP_INTERRUPT = (1 << 0),
194 DMA_CTRL_ACK = (1 << 1),
195 DMA_PREP_PQ_DISABLE_P = (1 << 2),
196 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
197 DMA_PREP_CONTINUE = (1 << 4),
198 DMA_PREP_FENCE = (1 << 5),
199 DMA_CTRL_REUSE = (1 << 6),
200 DMA_PREP_CMD = (1 << 7),
201 };
202
203 /**
204 * enum sum_check_bits - bit position of pq_check_flags
205 */
206 enum sum_check_bits {
207 SUM_CHECK_P = 0,
208 SUM_CHECK_Q = 1,
209 };
210
211 /**
212 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
213 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
214 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
215 */
216 enum sum_check_flags {
217 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
218 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
219 };
220
221
222 /**
223 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
224 * See linux/cpumask.h
225 */
226 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
227
228 /**
229 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
230 * @memcpy_count: transaction counter
231 * @bytes_transferred: byte counter
232 */
233
234 struct dma_chan_percpu {
235 /* stats */
236 unsigned long memcpy_count;
237 unsigned long bytes_transferred;
238 };
239
240 /**
241 * struct dma_router - DMA router structure
242 * @dev: pointer to the DMA router device
243 * @route_free: function to be called when the route can be disconnected
244 */
245 struct dma_router {
246 struct device *dev;
247 void (*route_free)(struct device *dev, void *route_data);
248 };
249
250 /**
251 * struct dma_chan - devices supply DMA channels, clients use them
252 * @device: ptr to the dma device who supplies this channel, always !%NULL
253 * @cookie: last cookie value returned to client
254 * @completed_cookie: last completed cookie for this channel
255 * @chan_id: channel ID for sysfs
256 * @dev: class device for sysfs
257 * @device_node: used to add this to the device chan list
258 * @local: per-cpu pointer to a struct dma_chan_percpu
259 * @client_count: how many clients are using this channel
260 * @table_count: number of appearances in the mem-to-mem allocation table
261 * @router: pointer to the DMA router structure
262 * @route_data: channel specific data for the router
263 * @private: private data for certain client-channel associations
264 */
265 struct dma_chan {
266 struct dma_device *device;
267 dma_cookie_t cookie;
268 dma_cookie_t completed_cookie;
269
270 /* sysfs */
271 int chan_id;
272 struct dma_chan_dev *dev;
273
274 struct list_head device_node;
275 struct dma_chan_percpu __percpu *local;
276 int client_count;
277 int table_count;
278
279 /* DMA router */
280 struct dma_router *router;
281 void *route_data;
282
283 void *private;
284 };
285
286 /**
287 * struct dma_chan_dev - relate sysfs device node to backing channel device
288 * @chan: driver channel device
289 * @device: sysfs device
290 * @dev_id: parent dma_device dev_id
291 * @idr_ref: reference count to gate release of dma_device dev_id
292 */
293 struct dma_chan_dev {
294 struct dma_chan *chan;
295 struct device device;
296 int dev_id;
297 atomic_t *idr_ref;
298 };
299
300 /**
301 * enum dma_slave_buswidth - defines bus width of the DMA slave
302 * device, source or target buses
303 */
304 enum dma_slave_buswidth {
305 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
306 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
307 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
308 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
309 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
310 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
311 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
312 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
313 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
314 };
315
316 /**
317 * struct dma_slave_config - dma slave channel runtime config
318 * @direction: whether the data shall go in or out on this slave
319 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
320 * legal values. DEPRECATED, drivers should use the direction argument
321 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
322 * the dir field in the dma_interleaved_template structure.
323 * @src_addr: this is the physical address where DMA slave data
324 * should be read (RX), if the source is memory this argument is
325 * ignored.
326 * @dst_addr: this is the physical address where DMA slave data
327 * should be written (TX), if the source is memory this argument
328 * is ignored.
329 * @src_addr_width: this is the width in bytes of the source (RX)
330 * register where DMA data shall be read. If the source
331 * is memory this may be ignored depending on architecture.
332 * Legal values: 1, 2, 4, 8.
333 * @dst_addr_width: same as src_addr_width but for destination
334 * target (TX) mutatis mutandis.
335 * @src_maxburst: the maximum number of words (note: words, as in
336 * units of the src_addr_width member, not bytes) that can be sent
337 * in one burst to the device. Typically something like half the
338 * FIFO depth on I/O peripherals so you don't overflow it. This
339 * may or may not be applicable on memory sources.
340 * @dst_maxburst: same as src_maxburst but for destination target
341 * mutatis mutandis.
342 * @src_port_window_size: The length of the register area in words the data need
343 * to be accessed on the device side. It is only used for devices which is using
344 * an area instead of a single register to receive the data. Typically the DMA
345 * loops in this area in order to transfer the data.
346 * @dst_port_window_size: same as src_port_window_size but for the destination
347 * port.
348 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
349 * with 'true' if peripheral should be flow controller. Direction will be
350 * selected at Runtime.
351 * @slave_id: Slave requester id. Only valid for slave channels. The dma
352 * slave peripheral will have unique id as dma requester which need to be
353 * pass as slave config.
354 *
355 * This struct is passed in as configuration data to a DMA engine
356 * in order to set up a certain channel for DMA transport at runtime.
357 * The DMA device/engine has to provide support for an additional
358 * callback in the dma_device structure, device_config and this struct
359 * will then be passed in as an argument to the function.
360 *
361 * The rationale for adding configuration information to this struct is as
362 * follows: if it is likely that more than one DMA slave controllers in
363 * the world will support the configuration option, then make it generic.
364 * If not: if it is fixed so that it be sent in static from the platform
365 * data, then prefer to do that.
366 */
367 struct dma_slave_config {
368 enum dma_transfer_direction direction;
369 phys_addr_t src_addr;
370 phys_addr_t dst_addr;
371 enum dma_slave_buswidth src_addr_width;
372 enum dma_slave_buswidth dst_addr_width;
373 u32 src_maxburst;
374 u32 dst_maxburst;
375 u32 src_port_window_size;
376 u32 dst_port_window_size;
377 bool device_fc;
378 unsigned int slave_id;
379 };
380
381 /**
382 * enum dma_residue_granularity - Granularity of the reported transfer residue
383 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
384 * DMA channel is only able to tell whether a descriptor has been completed or
385 * not, which means residue reporting is not supported by this channel. The
386 * residue field of the dma_tx_state field will always be 0.
387 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
388 * completed segment of the transfer (For cyclic transfers this is after each
389 * period). This is typically implemented by having the hardware generate an
390 * interrupt after each transferred segment and then the drivers updates the
391 * outstanding residue by the size of the segment. Another possibility is if
392 * the hardware supports scatter-gather and the segment descriptor has a field
393 * which gets set after the segment has been completed. The driver then counts
394 * the number of segments without the flag set to compute the residue.
395 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
396 * burst. This is typically only supported if the hardware has a progress
397 * register of some sort (E.g. a register with the current read/write address
398 * or a register with the amount of bursts/beats/bytes that have been
399 * transferred or still need to be transferred).
400 */
401 enum dma_residue_granularity {
402 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
403 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
404 DMA_RESIDUE_GRANULARITY_BURST = 2,
405 };
406
407 /* struct dma_slave_caps - expose capabilities of a slave channel only
408 *
409 * @src_addr_widths: bit mask of src addr widths the channel supports
410 * @dst_addr_widths: bit mask of dstn addr widths the channel supports
411 * @directions: bit mask of slave direction the channel supported
412 * since the enum dma_transfer_direction is not defined as bits for each
413 * type of direction, the dma controller should fill (1 << <TYPE>) and same
414 * should be checked by controller as well
415 * @max_burst: max burst capability per-transfer
416 * @cmd_pause: true, if pause and thereby resume is supported
417 * @cmd_terminate: true, if terminate cmd is supported
418 * @residue_granularity: granularity of the reported transfer residue
419 * @descriptor_reuse: if a descriptor can be reused by client and
420 * resubmitted multiple times
421 */
422 struct dma_slave_caps {
423 u32 src_addr_widths;
424 u32 dst_addr_widths;
425 u32 directions;
426 u32 max_burst;
427 bool cmd_pause;
428 bool cmd_terminate;
429 enum dma_residue_granularity residue_granularity;
430 bool descriptor_reuse;
431 };
432
433 static inline const char *dma_chan_name(struct dma_chan *chan)
434 {
435 return dev_name(&chan->dev->device);
436 }
437
438 void dma_chan_cleanup(struct kref *kref);
439
440 /**
441 * typedef dma_filter_fn - callback filter for dma_request_channel
442 * @chan: channel to be reviewed
443 * @filter_param: opaque parameter passed through dma_request_channel
444 *
445 * When this optional parameter is specified in a call to dma_request_channel a
446 * suitable channel is passed to this routine for further dispositioning before
447 * being returned. Where 'suitable' indicates a non-busy channel that
448 * satisfies the given capability mask. It returns 'true' to indicate that the
449 * channel is suitable.
450 */
451 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
452
453 typedef void (*dma_async_tx_callback)(void *dma_async_param);
454
455 enum dmaengine_tx_result {
456 DMA_TRANS_NOERROR = 0, /* SUCCESS */
457 DMA_TRANS_READ_FAILED, /* Source DMA read failed */
458 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */
459 DMA_TRANS_ABORTED, /* Op never submitted / aborted */
460 };
461
462 struct dmaengine_result {
463 enum dmaengine_tx_result result;
464 u32 residue;
465 };
466
467 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
468 const struct dmaengine_result *result);
469
470 struct dmaengine_unmap_data {
471 u8 map_cnt;
472 u8 to_cnt;
473 u8 from_cnt;
474 u8 bidi_cnt;
475 struct device *dev;
476 struct kref kref;
477 size_t len;
478 dma_addr_t addr[0];
479 };
480
481 /**
482 * struct dma_async_tx_descriptor - async transaction descriptor
483 * ---dma generic offload fields---
484 * @cookie: tracking cookie for this transaction, set to -EBUSY if
485 * this tx is sitting on a dependency list
486 * @flags: flags to augment operation preparation, control completion, and
487 * communicate status
488 * @phys: physical address of the descriptor
489 * @chan: target channel for this operation
490 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
491 * descriptor pending. To be pushed on .issue_pending() call
492 * @callback: routine to call after this operation is complete
493 * @callback_param: general parameter to pass to the callback routine
494 * ---async_tx api specific fields---
495 * @next: at completion submit this descriptor
496 * @parent: pointer to the next level up in the dependency chain
497 * @lock: protect the parent and next pointers
498 */
499 struct dma_async_tx_descriptor {
500 dma_cookie_t cookie;
501 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
502 dma_addr_t phys;
503 struct dma_chan *chan;
504 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
505 int (*desc_free)(struct dma_async_tx_descriptor *tx);
506 dma_async_tx_callback callback;
507 dma_async_tx_callback_result callback_result;
508 void *callback_param;
509 struct dmaengine_unmap_data *unmap;
510 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
511 struct dma_async_tx_descriptor *next;
512 struct dma_async_tx_descriptor *parent;
513 spinlock_t lock;
514 #endif
515 };
516
517 #ifdef CONFIG_DMA_ENGINE
518 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
519 struct dmaengine_unmap_data *unmap)
520 {
521 kref_get(&unmap->kref);
522 tx->unmap = unmap;
523 }
524
525 struct dmaengine_unmap_data *
526 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
527 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
528 #else
529 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
530 struct dmaengine_unmap_data *unmap)
531 {
532 }
533 static inline struct dmaengine_unmap_data *
534 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
535 {
536 return NULL;
537 }
538 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
539 {
540 }
541 #endif
542
543 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
544 {
545 if (tx->unmap) {
546 dmaengine_unmap_put(tx->unmap);
547 tx->unmap = NULL;
548 }
549 }
550
551 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
552 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
553 {
554 }
555 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
556 {
557 }
558 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
559 {
560 BUG();
561 }
562 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
563 {
564 }
565 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
566 {
567 }
568 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
569 {
570 return NULL;
571 }
572 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
573 {
574 return NULL;
575 }
576
577 #else
578 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
579 {
580 spin_lock_bh(&txd->lock);
581 }
582 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
583 {
584 spin_unlock_bh(&txd->lock);
585 }
586 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
587 {
588 txd->next = next;
589 next->parent = txd;
590 }
591 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
592 {
593 txd->parent = NULL;
594 }
595 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
596 {
597 txd->next = NULL;
598 }
599 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
600 {
601 return txd->parent;
602 }
603 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
604 {
605 return txd->next;
606 }
607 #endif
608
609 /**
610 * struct dma_tx_state - filled in to report the status of
611 * a transfer.
612 * @last: last completed DMA cookie
613 * @used: last issued DMA cookie (i.e. the one in progress)
614 * @residue: the remaining number of bytes left to transmit
615 * on the selected transfer for states DMA_IN_PROGRESS and
616 * DMA_PAUSED if this is implemented in the driver, else 0
617 */
618 struct dma_tx_state {
619 dma_cookie_t last;
620 dma_cookie_t used;
621 u32 residue;
622 };
623
624 /**
625 * enum dmaengine_alignment - defines alignment of the DMA async tx
626 * buffers
627 */
628 enum dmaengine_alignment {
629 DMAENGINE_ALIGN_1_BYTE = 0,
630 DMAENGINE_ALIGN_2_BYTES = 1,
631 DMAENGINE_ALIGN_4_BYTES = 2,
632 DMAENGINE_ALIGN_8_BYTES = 3,
633 DMAENGINE_ALIGN_16_BYTES = 4,
634 DMAENGINE_ALIGN_32_BYTES = 5,
635 DMAENGINE_ALIGN_64_BYTES = 6,
636 };
637
638 /**
639 * struct dma_slave_map - associates slave device and it's slave channel with
640 * parameter to be used by a filter function
641 * @devname: name of the device
642 * @slave: slave channel name
643 * @param: opaque parameter to pass to struct dma_filter.fn
644 */
645 struct dma_slave_map {
646 const char *devname;
647 const char *slave;
648 void *param;
649 };
650
651 /**
652 * struct dma_filter - information for slave device/channel to filter_fn/param
653 * mapping
654 * @fn: filter function callback
655 * @mapcnt: number of slave device/channel in the map
656 * @map: array of channel to filter mapping data
657 */
658 struct dma_filter {
659 dma_filter_fn fn;
660 int mapcnt;
661 const struct dma_slave_map *map;
662 };
663
664 /**
665 * struct dma_device - info on the entity supplying DMA services
666 * @chancnt: how many DMA channels are supported
667 * @privatecnt: how many DMA channels are requested by dma_request_channel
668 * @channels: the list of struct dma_chan
669 * @global_node: list_head for global dma_device_list
670 * @filter: information for device/slave to filter function/param mapping
671 * @cap_mask: one or more dma_capability flags
672 * @max_xor: maximum number of xor sources, 0 if no capability
673 * @max_pq: maximum number of PQ sources and PQ-continue capability
674 * @copy_align: alignment shift for memcpy operations
675 * @xor_align: alignment shift for xor operations
676 * @pq_align: alignment shift for pq operations
677 * @fill_align: alignment shift for memset operations
678 * @dev_id: unique device ID
679 * @dev: struct device reference for dma mapping api
680 * @src_addr_widths: bit mask of src addr widths the device supports
681 * @dst_addr_widths: bit mask of dst addr widths the device supports
682 * @directions: bit mask of slave direction the device supports since
683 * the enum dma_transfer_direction is not defined as bits for
684 * each type of direction, the dma controller should fill (1 <<
685 * <TYPE>) and same should be checked by controller as well
686 * @max_burst: max burst capability per-transfer
687 * @residue_granularity: granularity of the transfer residue reported
688 * by tx_status
689 * @device_alloc_chan_resources: allocate resources and return the
690 * number of allocated descriptors
691 * @device_free_chan_resources: release DMA channel's resources
692 * @device_prep_dma_memcpy: prepares a memcpy operation
693 * @device_prep_dma_xor: prepares a xor operation
694 * @device_prep_dma_xor_val: prepares a xor validation operation
695 * @device_prep_dma_pq: prepares a pq operation
696 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
697 * @device_prep_dma_memset: prepares a memset operation
698 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
699 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
700 * @device_prep_slave_sg: prepares a slave dma operation
701 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
702 * The function takes a buffer of size buf_len. The callback function will
703 * be called after period_len bytes have been transferred.
704 * @device_prep_interleaved_dma: Transfer expression in a generic way.
705 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
706 * @device_config: Pushes a new configuration to a channel, return 0 or an error
707 * code
708 * @device_pause: Pauses any transfer happening on a channel. Returns
709 * 0 or an error code
710 * @device_resume: Resumes any transfer on a channel previously
711 * paused. Returns 0 or an error code
712 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
713 * or an error code
714 * @device_synchronize: Synchronizes the termination of a transfers to the
715 * current context.
716 * @device_tx_status: poll for transaction completion, the optional
717 * txstate parameter can be supplied with a pointer to get a
718 * struct with auxiliary transfer status information, otherwise the call
719 * will just return a simple status code
720 * @device_issue_pending: push pending transactions to hardware
721 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
722 */
723 struct dma_device {
724
725 unsigned int chancnt;
726 unsigned int privatecnt;
727 struct list_head channels;
728 struct list_head global_node;
729 struct dma_filter filter;
730 dma_cap_mask_t cap_mask;
731 unsigned short max_xor;
732 unsigned short max_pq;
733 enum dmaengine_alignment copy_align;
734 enum dmaengine_alignment xor_align;
735 enum dmaengine_alignment pq_align;
736 enum dmaengine_alignment fill_align;
737 #define DMA_HAS_PQ_CONTINUE (1 << 15)
738
739 int dev_id;
740 struct device *dev;
741
742 u32 src_addr_widths;
743 u32 dst_addr_widths;
744 u32 directions;
745 u32 max_burst;
746 bool descriptor_reuse;
747 enum dma_residue_granularity residue_granularity;
748
749 int (*device_alloc_chan_resources)(struct dma_chan *chan);
750 void (*device_free_chan_resources)(struct dma_chan *chan);
751
752 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
753 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
754 size_t len, unsigned long flags);
755 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
756 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
757 unsigned int src_cnt, size_t len, unsigned long flags);
758 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
759 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
760 size_t len, enum sum_check_flags *result, unsigned long flags);
761 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
762 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
763 unsigned int src_cnt, const unsigned char *scf,
764 size_t len, unsigned long flags);
765 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
766 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
767 unsigned int src_cnt, const unsigned char *scf, size_t len,
768 enum sum_check_flags *pqres, unsigned long flags);
769 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
770 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
771 unsigned long flags);
772 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
773 struct dma_chan *chan, struct scatterlist *sg,
774 unsigned int nents, int value, unsigned long flags);
775 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
776 struct dma_chan *chan, unsigned long flags);
777
778 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
779 struct dma_chan *chan, struct scatterlist *sgl,
780 unsigned int sg_len, enum dma_transfer_direction direction,
781 unsigned long flags, void *context);
782 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
783 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
784 size_t period_len, enum dma_transfer_direction direction,
785 unsigned long flags);
786 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
787 struct dma_chan *chan, struct dma_interleaved_template *xt,
788 unsigned long flags);
789 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
790 struct dma_chan *chan, dma_addr_t dst, u64 data,
791 unsigned long flags);
792
793 int (*device_config)(struct dma_chan *chan,
794 struct dma_slave_config *config);
795 int (*device_pause)(struct dma_chan *chan);
796 int (*device_resume)(struct dma_chan *chan);
797 int (*device_terminate_all)(struct dma_chan *chan);
798 void (*device_synchronize)(struct dma_chan *chan);
799
800 enum dma_status (*device_tx_status)(struct dma_chan *chan,
801 dma_cookie_t cookie,
802 struct dma_tx_state *txstate);
803 void (*device_issue_pending)(struct dma_chan *chan);
804 };
805
806 static inline int dmaengine_slave_config(struct dma_chan *chan,
807 struct dma_slave_config *config)
808 {
809 if (chan->device->device_config)
810 return chan->device->device_config(chan, config);
811
812 return -ENOSYS;
813 }
814
815 static inline bool is_slave_direction(enum dma_transfer_direction direction)
816 {
817 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
818 }
819
820 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
821 struct dma_chan *chan, dma_addr_t buf, size_t len,
822 enum dma_transfer_direction dir, unsigned long flags)
823 {
824 struct scatterlist sg;
825 sg_init_table(&sg, 1);
826 sg_dma_address(&sg) = buf;
827 sg_dma_len(&sg) = len;
828
829 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
830 return NULL;
831
832 return chan->device->device_prep_slave_sg(chan, &sg, 1,
833 dir, flags, NULL);
834 }
835
836 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
837 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
838 enum dma_transfer_direction dir, unsigned long flags)
839 {
840 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
841 return NULL;
842
843 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
844 dir, flags, NULL);
845 }
846
847 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
848 struct rio_dma_ext;
849 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
850 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
851 enum dma_transfer_direction dir, unsigned long flags,
852 struct rio_dma_ext *rio_ext)
853 {
854 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
855 return NULL;
856
857 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
858 dir, flags, rio_ext);
859 }
860 #endif
861
862 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
863 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
864 size_t period_len, enum dma_transfer_direction dir,
865 unsigned long flags)
866 {
867 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
868 return NULL;
869
870 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
871 period_len, dir, flags);
872 }
873
874 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
875 struct dma_chan *chan, struct dma_interleaved_template *xt,
876 unsigned long flags)
877 {
878 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
879 return NULL;
880
881 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
882 }
883
884 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
885 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
886 unsigned long flags)
887 {
888 if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
889 return NULL;
890
891 return chan->device->device_prep_dma_memset(chan, dest, value,
892 len, flags);
893 }
894
895 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
896 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
897 size_t len, unsigned long flags)
898 {
899 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
900 return NULL;
901
902 return chan->device->device_prep_dma_memcpy(chan, dest, src,
903 len, flags);
904 }
905
906 /**
907 * dmaengine_terminate_all() - Terminate all active DMA transfers
908 * @chan: The channel for which to terminate the transfers
909 *
910 * This function is DEPRECATED use either dmaengine_terminate_sync() or
911 * dmaengine_terminate_async() instead.
912 */
913 static inline int dmaengine_terminate_all(struct dma_chan *chan)
914 {
915 if (chan->device->device_terminate_all)
916 return chan->device->device_terminate_all(chan);
917
918 return -ENOSYS;
919 }
920
921 /**
922 * dmaengine_terminate_async() - Terminate all active DMA transfers
923 * @chan: The channel for which to terminate the transfers
924 *
925 * Calling this function will terminate all active and pending descriptors
926 * that have previously been submitted to the channel. It is not guaranteed
927 * though that the transfer for the active descriptor has stopped when the
928 * function returns. Furthermore it is possible the complete callback of a
929 * submitted transfer is still running when this function returns.
930 *
931 * dmaengine_synchronize() needs to be called before it is safe to free
932 * any memory that is accessed by previously submitted descriptors or before
933 * freeing any resources accessed from within the completion callback of any
934 * perviously submitted descriptors.
935 *
936 * This function can be called from atomic context as well as from within a
937 * complete callback of a descriptor submitted on the same channel.
938 *
939 * If none of the two conditions above apply consider using
940 * dmaengine_terminate_sync() instead.
941 */
942 static inline int dmaengine_terminate_async(struct dma_chan *chan)
943 {
944 if (chan->device->device_terminate_all)
945 return chan->device->device_terminate_all(chan);
946
947 return -EINVAL;
948 }
949
950 /**
951 * dmaengine_synchronize() - Synchronize DMA channel termination
952 * @chan: The channel to synchronize
953 *
954 * Synchronizes to the DMA channel termination to the current context. When this
955 * function returns it is guaranteed that all transfers for previously issued
956 * descriptors have stopped and and it is safe to free the memory assoicated
957 * with them. Furthermore it is guaranteed that all complete callback functions
958 * for a previously submitted descriptor have finished running and it is safe to
959 * free resources accessed from within the complete callbacks.
960 *
961 * The behavior of this function is undefined if dma_async_issue_pending() has
962 * been called between dmaengine_terminate_async() and this function.
963 *
964 * This function must only be called from non-atomic context and must not be
965 * called from within a complete callback of a descriptor submitted on the same
966 * channel.
967 */
968 static inline void dmaengine_synchronize(struct dma_chan *chan)
969 {
970 might_sleep();
971
972 if (chan->device->device_synchronize)
973 chan->device->device_synchronize(chan);
974 }
975
976 /**
977 * dmaengine_terminate_sync() - Terminate all active DMA transfers
978 * @chan: The channel for which to terminate the transfers
979 *
980 * Calling this function will terminate all active and pending transfers
981 * that have previously been submitted to the channel. It is similar to
982 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
983 * stopped and that all complete callbacks have finished running when the
984 * function returns.
985 *
986 * This function must only be called from non-atomic context and must not be
987 * called from within a complete callback of a descriptor submitted on the same
988 * channel.
989 */
990 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
991 {
992 int ret;
993
994 ret = dmaengine_terminate_async(chan);
995 if (ret)
996 return ret;
997
998 dmaengine_synchronize(chan);
999
1000 return 0;
1001 }
1002
1003 static inline int dmaengine_pause(struct dma_chan *chan)
1004 {
1005 if (chan->device->device_pause)
1006 return chan->device->device_pause(chan);
1007
1008 return -ENOSYS;
1009 }
1010
1011 static inline int dmaengine_resume(struct dma_chan *chan)
1012 {
1013 if (chan->device->device_resume)
1014 return chan->device->device_resume(chan);
1015
1016 return -ENOSYS;
1017 }
1018
1019 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1020 dma_cookie_t cookie, struct dma_tx_state *state)
1021 {
1022 return chan->device->device_tx_status(chan, cookie, state);
1023 }
1024
1025 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1026 {
1027 return desc->tx_submit(desc);
1028 }
1029
1030 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1031 size_t off1, size_t off2, size_t len)
1032 {
1033 size_t mask;
1034
1035 if (!align)
1036 return true;
1037 mask = (1 << align) - 1;
1038 if (mask & (off1 | off2 | len))
1039 return false;
1040 return true;
1041 }
1042
1043 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1044 size_t off2, size_t len)
1045 {
1046 return dmaengine_check_align(dev->copy_align, off1, off2, len);
1047 }
1048
1049 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1050 size_t off2, size_t len)
1051 {
1052 return dmaengine_check_align(dev->xor_align, off1, off2, len);
1053 }
1054
1055 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1056 size_t off2, size_t len)
1057 {
1058 return dmaengine_check_align(dev->pq_align, off1, off2, len);
1059 }
1060
1061 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1062 size_t off2, size_t len)
1063 {
1064 return dmaengine_check_align(dev->fill_align, off1, off2, len);
1065 }
1066
1067 static inline void
1068 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1069 {
1070 dma->max_pq = maxpq;
1071 if (has_pq_continue)
1072 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1073 }
1074
1075 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1076 {
1077 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1078 }
1079
1080 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1081 {
1082 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1083
1084 return (flags & mask) == mask;
1085 }
1086
1087 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1088 {
1089 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1090 }
1091
1092 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1093 {
1094 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1095 }
1096
1097 /* dma_maxpq - reduce maxpq in the face of continued operations
1098 * @dma - dma device with PQ capability
1099 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1100 *
1101 * When an engine does not support native continuation we need 3 extra
1102 * source slots to reuse P and Q with the following coefficients:
1103 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1104 * 2/ {01} * Q : use Q to continue Q' calculation
1105 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1106 *
1107 * In the case where P is disabled we only need 1 extra source:
1108 * 1/ {01} * Q : use Q to continue Q' calculation
1109 */
1110 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1111 {
1112 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1113 return dma_dev_to_maxpq(dma);
1114 else if (dmaf_p_disabled_continue(flags))
1115 return dma_dev_to_maxpq(dma) - 1;
1116 else if (dmaf_continue(flags))
1117 return dma_dev_to_maxpq(dma) - 3;
1118 BUG();
1119 }
1120
1121 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1122 size_t dir_icg)
1123 {
1124 if (inc) {
1125 if (dir_icg)
1126 return dir_icg;
1127 else if (sgl)
1128 return icg;
1129 }
1130
1131 return 0;
1132 }
1133
1134 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1135 struct data_chunk *chunk)
1136 {
1137 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1138 chunk->icg, chunk->dst_icg);
1139 }
1140
1141 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1142 struct data_chunk *chunk)
1143 {
1144 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1145 chunk->icg, chunk->src_icg);
1146 }
1147
1148 /* --- public DMA engine API --- */
1149
1150 #ifdef CONFIG_DMA_ENGINE
1151 void dmaengine_get(void);
1152 void dmaengine_put(void);
1153 #else
1154 static inline void dmaengine_get(void)
1155 {
1156 }
1157 static inline void dmaengine_put(void)
1158 {
1159 }
1160 #endif
1161
1162 #ifdef CONFIG_ASYNC_TX_DMA
1163 #define async_dmaengine_get() dmaengine_get()
1164 #define async_dmaengine_put() dmaengine_put()
1165 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1166 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1167 #else
1168 #define async_dma_find_channel(type) dma_find_channel(type)
1169 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1170 #else
1171 static inline void async_dmaengine_get(void)
1172 {
1173 }
1174 static inline void async_dmaengine_put(void)
1175 {
1176 }
1177 static inline struct dma_chan *
1178 async_dma_find_channel(enum dma_transaction_type type)
1179 {
1180 return NULL;
1181 }
1182 #endif /* CONFIG_ASYNC_TX_DMA */
1183 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1184 struct dma_chan *chan);
1185
1186 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1187 {
1188 tx->flags |= DMA_CTRL_ACK;
1189 }
1190
1191 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1192 {
1193 tx->flags &= ~DMA_CTRL_ACK;
1194 }
1195
1196 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1197 {
1198 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1199 }
1200
1201 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1202 static inline void
1203 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1204 {
1205 set_bit(tx_type, dstp->bits);
1206 }
1207
1208 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1209 static inline void
1210 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1211 {
1212 clear_bit(tx_type, dstp->bits);
1213 }
1214
1215 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1216 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1217 {
1218 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1219 }
1220
1221 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1222 static inline int
1223 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1224 {
1225 return test_bit(tx_type, srcp->bits);
1226 }
1227
1228 #define for_each_dma_cap_mask(cap, mask) \
1229 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1230
1231 /**
1232 * dma_async_issue_pending - flush pending transactions to HW
1233 * @chan: target DMA channel
1234 *
1235 * This allows drivers to push copies to HW in batches,
1236 * reducing MMIO writes where possible.
1237 */
1238 static inline void dma_async_issue_pending(struct dma_chan *chan)
1239 {
1240 chan->device->device_issue_pending(chan);
1241 }
1242
1243 /**
1244 * dma_async_is_tx_complete - poll for transaction completion
1245 * @chan: DMA channel
1246 * @cookie: transaction identifier to check status of
1247 * @last: returns last completed cookie, can be NULL
1248 * @used: returns last issued cookie, can be NULL
1249 *
1250 * If @last and @used are passed in, upon return they reflect the driver
1251 * internal state and can be used with dma_async_is_complete() to check
1252 * the status of multiple cookies without re-checking hardware state.
1253 */
1254 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1255 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1256 {
1257 struct dma_tx_state state;
1258 enum dma_status status;
1259
1260 status = chan->device->device_tx_status(chan, cookie, &state);
1261 if (last)
1262 *last = state.last;
1263 if (used)
1264 *used = state.used;
1265 return status;
1266 }
1267
1268 /**
1269 * dma_async_is_complete - test a cookie against chan state
1270 * @cookie: transaction identifier to test status of
1271 * @last_complete: last know completed transaction
1272 * @last_used: last cookie value handed out
1273 *
1274 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1275 * the test logic is separated for lightweight testing of multiple cookies
1276 */
1277 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1278 dma_cookie_t last_complete, dma_cookie_t last_used)
1279 {
1280 if (last_complete <= last_used) {
1281 if ((cookie <= last_complete) || (cookie > last_used))
1282 return DMA_COMPLETE;
1283 } else {
1284 if ((cookie <= last_complete) && (cookie > last_used))
1285 return DMA_COMPLETE;
1286 }
1287 return DMA_IN_PROGRESS;
1288 }
1289
1290 static inline void
1291 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1292 {
1293 if (st) {
1294 st->last = last;
1295 st->used = used;
1296 st->residue = residue;
1297 }
1298 }
1299
1300 #ifdef CONFIG_DMA_ENGINE
1301 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1302 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1303 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1304 void dma_issue_pending_all(void);
1305 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1306 dma_filter_fn fn, void *fn_param);
1307 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1308
1309 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1310 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1311
1312 void dma_release_channel(struct dma_chan *chan);
1313 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1314 #else
1315 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1316 {
1317 return NULL;
1318 }
1319 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1320 {
1321 return DMA_COMPLETE;
1322 }
1323 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1324 {
1325 return DMA_COMPLETE;
1326 }
1327 static inline void dma_issue_pending_all(void)
1328 {
1329 }
1330 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1331 dma_filter_fn fn, void *fn_param)
1332 {
1333 return NULL;
1334 }
1335 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1336 const char *name)
1337 {
1338 return NULL;
1339 }
1340 static inline struct dma_chan *dma_request_chan(struct device *dev,
1341 const char *name)
1342 {
1343 return ERR_PTR(-ENODEV);
1344 }
1345 static inline struct dma_chan *dma_request_chan_by_mask(
1346 const dma_cap_mask_t *mask)
1347 {
1348 return ERR_PTR(-ENODEV);
1349 }
1350 static inline void dma_release_channel(struct dma_chan *chan)
1351 {
1352 }
1353 static inline int dma_get_slave_caps(struct dma_chan *chan,
1354 struct dma_slave_caps *caps)
1355 {
1356 return -ENXIO;
1357 }
1358 #endif
1359
1360 #define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1361
1362 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1363 {
1364 struct dma_slave_caps caps;
1365
1366 dma_get_slave_caps(tx->chan, &caps);
1367
1368 if (caps.descriptor_reuse) {
1369 tx->flags |= DMA_CTRL_REUSE;
1370 return 0;
1371 } else {
1372 return -EPERM;
1373 }
1374 }
1375
1376 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1377 {
1378 tx->flags &= ~DMA_CTRL_REUSE;
1379 }
1380
1381 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1382 {
1383 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1384 }
1385
1386 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1387 {
1388 /* this is supported for reusable desc, so check that */
1389 if (dmaengine_desc_test_reuse(desc))
1390 return desc->desc_free(desc);
1391 else
1392 return -EPERM;
1393 }
1394
1395 /* --- DMA device --- */
1396
1397 int dma_async_device_register(struct dma_device *device);
1398 void dma_async_device_unregister(struct dma_device *device);
1399 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1400 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1401 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1402 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1403 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1404 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1405
1406 static inline struct dma_chan
1407 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1408 dma_filter_fn fn, void *fn_param,
1409 struct device *dev, const char *name)
1410 {
1411 struct dma_chan *chan;
1412
1413 chan = dma_request_slave_channel(dev, name);
1414 if (chan)
1415 return chan;
1416
1417 if (!fn || !fn_param)
1418 return NULL;
1419
1420 return __dma_request_channel(mask, fn, fn_param);
1421 }
1422 #endif /* DMAENGINE_H */