]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/edac.h
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[mirror_ubuntu-artful-kernel.git] / include / linux / edac.h
1 /*
2 * Generic EDAC defs
3 *
4 * Author: Dave Jiang <djiang@mvista.com>
5 *
6 * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
7 * the terms of the GNU General Public License version 2. This program
8 * is licensed "as is" without any warranty of any kind, whether express
9 * or implied.
10 *
11 */
12 #ifndef _LINUX_EDAC_H_
13 #define _LINUX_EDAC_H_
14
15 #include <linux/atomic.h>
16 #include <linux/device.h>
17 #include <linux/completion.h>
18 #include <linux/workqueue.h>
19 #include <linux/debugfs.h>
20
21 #define EDAC_DEVICE_NAME_LEN 31
22
23 struct device;
24
25 #define EDAC_OPSTATE_INVAL -1
26 #define EDAC_OPSTATE_POLL 0
27 #define EDAC_OPSTATE_NMI 1
28 #define EDAC_OPSTATE_INT 2
29
30 extern int edac_op_state;
31 extern int edac_err_assert;
32 extern atomic_t edac_handlers;
33
34 extern int edac_handler_set(void);
35 extern void edac_atomic_assert_error(void);
36 extern struct bus_type *edac_get_sysfs_subsys(void);
37
38 enum {
39 EDAC_REPORTING_ENABLED,
40 EDAC_REPORTING_DISABLED,
41 EDAC_REPORTING_FORCE
42 };
43
44 extern int edac_report_status;
45 #ifdef CONFIG_EDAC
46 static inline int get_edac_report_status(void)
47 {
48 return edac_report_status;
49 }
50
51 static inline void set_edac_report_status(int new)
52 {
53 edac_report_status = new;
54 }
55 #else
56 static inline int get_edac_report_status(void)
57 {
58 return EDAC_REPORTING_DISABLED;
59 }
60
61 static inline void set_edac_report_status(int new)
62 {
63 }
64 #endif
65
66 static inline void opstate_init(void)
67 {
68 switch (edac_op_state) {
69 case EDAC_OPSTATE_POLL:
70 case EDAC_OPSTATE_NMI:
71 break;
72 default:
73 edac_op_state = EDAC_OPSTATE_POLL;
74 }
75 return;
76 }
77
78 /* Max length of a DIMM label*/
79 #define EDAC_MC_LABEL_LEN 31
80
81 /* Maximum size of the location string */
82 #define LOCATION_SIZE 256
83
84 /* Defines the maximum number of labels that can be reported */
85 #define EDAC_MAX_LABELS 8
86
87 /* String used to join two or more labels */
88 #define OTHER_LABEL " or "
89
90 /**
91 * enum dev_type - describe the type of memory DRAM chips used at the stick
92 * @DEV_UNKNOWN: Can't be determined, or MC doesn't support detect it
93 * @DEV_X1: 1 bit for data
94 * @DEV_X2: 2 bits for data
95 * @DEV_X4: 4 bits for data
96 * @DEV_X8: 8 bits for data
97 * @DEV_X16: 16 bits for data
98 * @DEV_X32: 32 bits for data
99 * @DEV_X64: 64 bits for data
100 *
101 * Typical values are x4 and x8.
102 */
103 enum dev_type {
104 DEV_UNKNOWN = 0,
105 DEV_X1,
106 DEV_X2,
107 DEV_X4,
108 DEV_X8,
109 DEV_X16,
110 DEV_X32, /* Do these parts exist? */
111 DEV_X64 /* Do these parts exist? */
112 };
113
114 #define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
115 #define DEV_FLAG_X1 BIT(DEV_X1)
116 #define DEV_FLAG_X2 BIT(DEV_X2)
117 #define DEV_FLAG_X4 BIT(DEV_X4)
118 #define DEV_FLAG_X8 BIT(DEV_X8)
119 #define DEV_FLAG_X16 BIT(DEV_X16)
120 #define DEV_FLAG_X32 BIT(DEV_X32)
121 #define DEV_FLAG_X64 BIT(DEV_X64)
122
123 /**
124 * enum hw_event_mc_err_type - type of the detected error
125 *
126 * @HW_EVENT_ERR_CORRECTED: Corrected Error - Indicates that an ECC
127 * corrected error was detected
128 * @HW_EVENT_ERR_UNCORRECTED: Uncorrected Error - Indicates an error that
129 * can't be corrected by ECC, but it is not
130 * fatal (maybe it is on an unused memory area,
131 * or the memory controller could recover from
132 * it for example, by re-trying the operation).
133 * @HW_EVENT_ERR_DEFERRED: Deferred Error - Indicates an uncorrectable
134 * error whose handling is not urgent. This could
135 * be due to hardware data poisoning where the
136 * system can continue operation until the poisoned
137 * data is consumed. Preemptive measures may also
138 * be taken, e.g. offlining pages, etc.
139 * @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not
140 * be recovered.
141 * @HW_EVENT_ERR_INFO: Informational - The CPER spec defines a forth
142 * type of error: informational logs.
143 */
144 enum hw_event_mc_err_type {
145 HW_EVENT_ERR_CORRECTED,
146 HW_EVENT_ERR_UNCORRECTED,
147 HW_EVENT_ERR_DEFERRED,
148 HW_EVENT_ERR_FATAL,
149 HW_EVENT_ERR_INFO,
150 };
151
152 static inline char *mc_event_error_type(const unsigned int err_type)
153 {
154 switch (err_type) {
155 case HW_EVENT_ERR_CORRECTED:
156 return "Corrected";
157 case HW_EVENT_ERR_UNCORRECTED:
158 return "Uncorrected";
159 case HW_EVENT_ERR_DEFERRED:
160 return "Deferred";
161 case HW_EVENT_ERR_FATAL:
162 return "Fatal";
163 default:
164 case HW_EVENT_ERR_INFO:
165 return "Info";
166 }
167 }
168
169 /**
170 * enum mem_type - memory types. For a more detailed reference, please see
171 * http://en.wikipedia.org/wiki/DRAM
172 *
173 * @MEM_EMPTY: Empty csrow
174 * @MEM_RESERVED: Reserved csrow type
175 * @MEM_UNKNOWN: Unknown csrow type
176 * @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995.
177 * @MEM_EDO: EDO - Extended data out, used on systems up to 1998.
178 * @MEM_BEDO: BEDO - Burst Extended data out, an EDO variant.
179 * @MEM_SDR: SDR - Single data rate SDRAM
180 * http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
181 * They use 3 pins for chip select: Pins 0 and 2 are
182 * for rank 0; pins 1 and 3 are for rank 1, if the memory
183 * is dual-rank.
184 * @MEM_RDR: Registered SDR SDRAM
185 * @MEM_DDR: Double data rate SDRAM
186 * http://en.wikipedia.org/wiki/DDR_SDRAM
187 * @MEM_RDDR: Registered Double data rate SDRAM
188 * This is a variant of the DDR memories.
189 * A registered memory has a buffer inside it, hiding
190 * part of the memory details to the memory controller.
191 * @MEM_RMBS: Rambus DRAM, used on a few Pentium III/IV controllers.
192 * @MEM_DDR2: DDR2 RAM, as described at JEDEC JESD79-2F.
193 * Those memories are labeled as "PC2-" instead of "PC" to
194 * differentiate from DDR.
195 * @MEM_FB_DDR2: Fully-Buffered DDR2, as described at JEDEC Std No. 205
196 * and JESD206.
197 * Those memories are accessed per DIMM slot, and not by
198 * a chip select signal.
199 * @MEM_RDDR2: Registered DDR2 RAM
200 * This is a variant of the DDR2 memories.
201 * @MEM_XDR: Rambus XDR
202 * It is an evolution of the original RAMBUS memories,
203 * created to compete with DDR2. Weren't used on any
204 * x86 arch, but cell_edac PPC memory controller uses it.
205 * @MEM_DDR3: DDR3 RAM
206 * @MEM_RDDR3: Registered DDR3 RAM
207 * This is a variant of the DDR3 memories.
208 * @MEM_LRDDR3: Load-Reduced DDR3 memory.
209 * @MEM_DDR4: Unbuffered DDR4 RAM
210 * @MEM_RDDR4: Registered DDR4 RAM
211 * This is a variant of the DDR4 memories.
212 * @MEM_LRDDR4: Load-Reduced DDR4 memory.
213 */
214 enum mem_type {
215 MEM_EMPTY = 0,
216 MEM_RESERVED,
217 MEM_UNKNOWN,
218 MEM_FPM,
219 MEM_EDO,
220 MEM_BEDO,
221 MEM_SDR,
222 MEM_RDR,
223 MEM_DDR,
224 MEM_RDDR,
225 MEM_RMBS,
226 MEM_DDR2,
227 MEM_FB_DDR2,
228 MEM_RDDR2,
229 MEM_XDR,
230 MEM_DDR3,
231 MEM_RDDR3,
232 MEM_LRDDR3,
233 MEM_DDR4,
234 MEM_RDDR4,
235 MEM_LRDDR4,
236 };
237
238 #define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
239 #define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
240 #define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
241 #define MEM_FLAG_FPM BIT(MEM_FPM)
242 #define MEM_FLAG_EDO BIT(MEM_EDO)
243 #define MEM_FLAG_BEDO BIT(MEM_BEDO)
244 #define MEM_FLAG_SDR BIT(MEM_SDR)
245 #define MEM_FLAG_RDR BIT(MEM_RDR)
246 #define MEM_FLAG_DDR BIT(MEM_DDR)
247 #define MEM_FLAG_RDDR BIT(MEM_RDDR)
248 #define MEM_FLAG_RMBS BIT(MEM_RMBS)
249 #define MEM_FLAG_DDR2 BIT(MEM_DDR2)
250 #define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2)
251 #define MEM_FLAG_RDDR2 BIT(MEM_RDDR2)
252 #define MEM_FLAG_XDR BIT(MEM_XDR)
253 #define MEM_FLAG_DDR3 BIT(MEM_DDR3)
254 #define MEM_FLAG_RDDR3 BIT(MEM_RDDR3)
255 #define MEM_FLAG_DDR4 BIT(MEM_DDR4)
256 #define MEM_FLAG_RDDR4 BIT(MEM_RDDR4)
257 #define MEM_FLAG_LRDDR4 BIT(MEM_LRDDR4)
258
259 /**
260 * enum edac-type - Error Detection and Correction capabilities and mode
261 * @EDAC_UNKNOWN: Unknown if ECC is available
262 * @EDAC_NONE: Doesn't support ECC
263 * @EDAC_RESERVED: Reserved ECC type
264 * @EDAC_PARITY: Detects parity errors
265 * @EDAC_EC: Error Checking - no correction
266 * @EDAC_SECDED: Single bit error correction, Double detection
267 * @EDAC_S2ECD2ED: Chipkill x2 devices - do these exist?
268 * @EDAC_S4ECD4ED: Chipkill x4 devices
269 * @EDAC_S8ECD8ED: Chipkill x8 devices
270 * @EDAC_S16ECD16ED: Chipkill x16 devices
271 */
272 enum edac_type {
273 EDAC_UNKNOWN = 0,
274 EDAC_NONE,
275 EDAC_RESERVED,
276 EDAC_PARITY,
277 EDAC_EC,
278 EDAC_SECDED,
279 EDAC_S2ECD2ED,
280 EDAC_S4ECD4ED,
281 EDAC_S8ECD8ED,
282 EDAC_S16ECD16ED,
283 };
284
285 #define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
286 #define EDAC_FLAG_NONE BIT(EDAC_NONE)
287 #define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
288 #define EDAC_FLAG_EC BIT(EDAC_EC)
289 #define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
290 #define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
291 #define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
292 #define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
293 #define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
294
295 /**
296 * enum scrub_type - scrubbing capabilities
297 * @SCRUB_UNKNOWN: Unknown if scrubber is available
298 * @SCRUB_NONE: No scrubber
299 * @SCRUB_SW_PROG: SW progressive (sequential) scrubbing
300 * @SCRUB_SW_SRC: Software scrub only errors
301 * @SCRUB_SW_PROG_SRC: Progressive software scrub from an error
302 * @SCRUB_SW_TUNABLE: Software scrub frequency is tunable
303 * @SCRUB_HW_PROG: HW progressive (sequential) scrubbing
304 * @SCRUB_HW_SRC: Hardware scrub only errors
305 * @SCRUB_HW_PROG_SRC: Progressive hardware scrub from an error
306 * @SCRUB_HW_TUNABLE: Hardware scrub frequency is tunable
307 */
308 enum scrub_type {
309 SCRUB_UNKNOWN = 0,
310 SCRUB_NONE,
311 SCRUB_SW_PROG,
312 SCRUB_SW_SRC,
313 SCRUB_SW_PROG_SRC,
314 SCRUB_SW_TUNABLE,
315 SCRUB_HW_PROG,
316 SCRUB_HW_SRC,
317 SCRUB_HW_PROG_SRC,
318 SCRUB_HW_TUNABLE
319 };
320
321 #define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
322 #define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC)
323 #define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC)
324 #define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
325 #define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
326 #define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC)
327 #define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC)
328 #define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
329
330 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
331
332 /* EDAC internal operation states */
333 #define OP_ALLOC 0x100
334 #define OP_RUNNING_POLL 0x201
335 #define OP_RUNNING_INTERRUPT 0x202
336 #define OP_RUNNING_POLL_INTR 0x203
337 #define OP_OFFLINE 0x300
338
339 /**
340 * enum edac_mc_layer - memory controller hierarchy layer
341 *
342 * @EDAC_MC_LAYER_BRANCH: memory layer is named "branch"
343 * @EDAC_MC_LAYER_CHANNEL: memory layer is named "channel"
344 * @EDAC_MC_LAYER_SLOT: memory layer is named "slot"
345 * @EDAC_MC_LAYER_CHIP_SELECT: memory layer is named "chip select"
346 * @EDAC_MC_LAYER_ALL_MEM: memory layout is unknown. All memory is mapped
347 * as a single memory area. This is used when
348 * retrieving errors from a firmware driven driver.
349 *
350 * This enum is used by the drivers to tell edac_mc_sysfs what name should
351 * be used when describing a memory stick location.
352 */
353 enum edac_mc_layer_type {
354 EDAC_MC_LAYER_BRANCH,
355 EDAC_MC_LAYER_CHANNEL,
356 EDAC_MC_LAYER_SLOT,
357 EDAC_MC_LAYER_CHIP_SELECT,
358 EDAC_MC_LAYER_ALL_MEM,
359 };
360
361 /**
362 * struct edac_mc_layer - describes the memory controller hierarchy
363 * @type: layer type
364 * @size: number of components per layer. For example,
365 * if the channel layer has two channels, size = 2
366 * @is_virt_csrow: This layer is part of the "csrow" when old API
367 * compatibility mode is enabled. Otherwise, it is
368 * a channel
369 */
370 struct edac_mc_layer {
371 enum edac_mc_layer_type type;
372 unsigned size;
373 bool is_virt_csrow;
374 };
375
376 /*
377 * Maximum number of layers used by the memory controller to uniquely
378 * identify a single memory stick.
379 * NOTE: Changing this constant requires not only to change the constant
380 * below, but also to change the existing code at the core, as there are
381 * some code there that are optimized for 3 layers.
382 */
383 #define EDAC_MAX_LAYERS 3
384
385 /**
386 * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer
387 * array for the element given by [layer0,layer1,layer2]
388 * position
389 *
390 * @layers: a struct edac_mc_layer array, describing how many elements
391 * were allocated for each layer
392 * @nlayers: Number of layers at the @layers array
393 * @layer0: layer0 position
394 * @layer1: layer1 position. Unused if n_layers < 2
395 * @layer2: layer2 position. Unused if n_layers < 3
396 *
397 * For 1 layer, this macro returns "var[layer0] - var";
398 *
399 * For 2 layers, this macro is similar to allocate a bi-dimensional array
400 * and to return "var[layer0][layer1] - var";
401 *
402 * For 3 layers, this macro is similar to allocate a tri-dimensional array
403 * and to return "var[layer0][layer1][layer2] - var".
404 *
405 * A loop could be used here to make it more generic, but, as we only have
406 * 3 layers, this is a little faster.
407 *
408 * By design, layers can never be 0 or more than 3. If that ever happens,
409 * a NULL is returned, causing an OOPS during the memory allocation routine,
410 * with would point to the developer that he's doing something wrong.
411 */
412 #define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({ \
413 int __i; \
414 if ((nlayers) == 1) \
415 __i = layer0; \
416 else if ((nlayers) == 2) \
417 __i = (layer1) + ((layers[1]).size * (layer0)); \
418 else if ((nlayers) == 3) \
419 __i = (layer2) + ((layers[2]).size * ((layer1) + \
420 ((layers[1]).size * (layer0)))); \
421 else \
422 __i = -EINVAL; \
423 __i; \
424 })
425
426 /**
427 * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array
428 * for the element given by [layer0,layer1,layer2] position
429 *
430 * @layers: a struct edac_mc_layer array, describing how many elements
431 * were allocated for each layer
432 * @var: name of the var where we want to get the pointer
433 * (like mci->dimms)
434 * @nlayers: Number of layers at the @layers array
435 * @layer0: layer0 position
436 * @layer1: layer1 position. Unused if n_layers < 2
437 * @layer2: layer2 position. Unused if n_layers < 3
438 *
439 * For 1 layer, this macro returns "var[layer0]";
440 *
441 * For 2 layers, this macro is similar to allocate a bi-dimensional array
442 * and to return "var[layer0][layer1]";
443 *
444 * For 3 layers, this macro is similar to allocate a tri-dimensional array
445 * and to return "var[layer0][layer1][layer2]";
446 */
447 #define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({ \
448 typeof(*var) __p; \
449 int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2); \
450 if (___i < 0) \
451 __p = NULL; \
452 else \
453 __p = (var)[___i]; \
454 __p; \
455 })
456
457 struct dimm_info {
458 struct device dev;
459
460 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
461
462 /* Memory location data */
463 unsigned location[EDAC_MAX_LAYERS];
464
465 struct mem_ctl_info *mci; /* the parent */
466
467 u32 grain; /* granularity of reported error in bytes */
468 enum dev_type dtype; /* memory device type */
469 enum mem_type mtype; /* memory dimm type */
470 enum edac_type edac_mode; /* EDAC mode for this dimm */
471
472 u32 nr_pages; /* number of pages on this dimm */
473
474 unsigned csrow, cschannel; /* Points to the old API data */
475 };
476
477 /**
478 * struct rank_info - contains the information for one DIMM rank
479 *
480 * @chan_idx: channel number where the rank is (typically, 0 or 1)
481 * @ce_count: number of correctable errors for this rank
482 * @csrow: A pointer to the chip select row structure (the parent
483 * structure). The location of the rank is given by
484 * the (csrow->csrow_idx, chan_idx) vector.
485 * @dimm: A pointer to the DIMM structure, where the DIMM label
486 * information is stored.
487 *
488 * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
489 * This is a bad assumption, but it makes this patch easier. Later
490 * patches in this series will fix this issue.
491 */
492 struct rank_info {
493 int chan_idx;
494 struct csrow_info *csrow;
495 struct dimm_info *dimm;
496
497 u32 ce_count; /* Correctable Errors for this csrow */
498 };
499
500 struct csrow_info {
501 struct device dev;
502
503 /* Used only by edac_mc_find_csrow_by_page() */
504 unsigned long first_page; /* first page number in csrow */
505 unsigned long last_page; /* last page number in csrow */
506 unsigned long page_mask; /* used for interleaving -
507 * 0UL for non intlv */
508
509 int csrow_idx; /* the chip-select row */
510
511 u32 ue_count; /* Uncorrectable Errors for this csrow */
512 u32 ce_count; /* Correctable Errors for this csrow */
513
514 struct mem_ctl_info *mci; /* the parent */
515
516 /* channel information for this csrow */
517 u32 nr_channels;
518 struct rank_info **channels;
519 };
520
521 /*
522 * struct errcount_attribute - used to store the several error counts
523 */
524 struct errcount_attribute_data {
525 int n_layers;
526 int pos[EDAC_MAX_LAYERS];
527 int layer0, layer1, layer2;
528 };
529
530 /**
531 * struct edac_raw_error_desc - Raw error report structure
532 * @grain: minimum granularity for an error report, in bytes
533 * @error_count: number of errors of the same type
534 * @top_layer: top layer of the error (layer[0])
535 * @mid_layer: middle layer of the error (layer[1])
536 * @low_layer: low layer of the error (layer[2])
537 * @page_frame_number: page where the error happened
538 * @offset_in_page: page offset
539 * @syndrome: syndrome of the error (or 0 if unknown or if
540 * the syndrome is not applicable)
541 * @msg: error message
542 * @location: location of the error
543 * @label: label of the affected DIMM(s)
544 * @other_detail: other driver-specific detail about the error
545 * @enable_per_layer_report: if false, the error affects all layers
546 * (typically, a memory controller error)
547 */
548 struct edac_raw_error_desc {
549 /*
550 * NOTE: everything before grain won't be cleaned by
551 * edac_raw_error_desc_clean()
552 */
553 char location[LOCATION_SIZE];
554 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
555 long grain;
556
557 /* the vars below and grain will be cleaned on every new error report */
558 u16 error_count;
559 int top_layer;
560 int mid_layer;
561 int low_layer;
562 unsigned long page_frame_number;
563 unsigned long offset_in_page;
564 unsigned long syndrome;
565 const char *msg;
566 const char *other_detail;
567 bool enable_per_layer_report;
568 };
569
570 /* MEMORY controller information structure
571 */
572 struct mem_ctl_info {
573 struct device dev;
574 struct bus_type *bus;
575
576 struct list_head link; /* for global list of mem_ctl_info structs */
577
578 struct module *owner; /* Module owner of this control struct */
579
580 unsigned long mtype_cap; /* memory types supported by mc */
581 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
582 unsigned long edac_cap; /* configuration capabilities - this is
583 * closely related to edac_ctl_cap. The
584 * difference is that the controller may be
585 * capable of s4ecd4ed which would be listed
586 * in edac_ctl_cap, but if channels aren't
587 * capable of s4ecd4ed then the edac_cap would
588 * not have that capability.
589 */
590 unsigned long scrub_cap; /* chipset scrub capabilities */
591 enum scrub_type scrub_mode; /* current scrub mode */
592
593 /* Translates sdram memory scrub rate given in bytes/sec to the
594 internal representation and configures whatever else needs
595 to be configured.
596 */
597 int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
598
599 /* Get the current sdram memory scrub rate from the internal
600 representation and converts it to the closest matching
601 bandwidth in bytes/sec.
602 */
603 int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
604
605
606 /* pointer to edac checking routine */
607 void (*edac_check) (struct mem_ctl_info * mci);
608
609 /*
610 * Remaps memory pages: controller pages to physical pages.
611 * For most MC's, this will be NULL.
612 */
613 /* FIXME - why not send the phys page to begin with? */
614 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
615 unsigned long page);
616 int mc_idx;
617 struct csrow_info **csrows;
618 unsigned nr_csrows, num_cschannel;
619
620 /*
621 * Memory Controller hierarchy
622 *
623 * There are basically two types of memory controller: the ones that
624 * sees memory sticks ("dimms"), and the ones that sees memory ranks.
625 * All old memory controllers enumerate memories per rank, but most
626 * of the recent drivers enumerate memories per DIMM, instead.
627 * When the memory controller is per rank, csbased is true.
628 */
629 unsigned n_layers;
630 struct edac_mc_layer *layers;
631 bool csbased;
632
633 /*
634 * DIMM info. Will eventually remove the entire csrows_info some day
635 */
636 unsigned tot_dimms;
637 struct dimm_info **dimms;
638
639 /*
640 * FIXME - what about controllers on other busses? - IDs must be
641 * unique. dev pointer should be sufficiently unique, but
642 * BUS:SLOT.FUNC numbers may not be unique.
643 */
644 struct device *pdev;
645 const char *mod_name;
646 const char *mod_ver;
647 const char *ctl_name;
648 const char *dev_name;
649 void *pvt_info;
650 unsigned long start_time; /* mci load start time (in jiffies) */
651
652 /*
653 * drivers shouldn't access those fields directly, as the core
654 * already handles that.
655 */
656 u32 ce_noinfo_count, ue_noinfo_count;
657 u32 ue_mc, ce_mc;
658 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
659
660 struct completion complete;
661
662 /* Additional top controller level attributes, but specified
663 * by the low level driver.
664 *
665 * Set by the low level driver to provide attributes at the
666 * controller level.
667 * An array of structures, NULL terminated
668 *
669 * If attributes are desired, then set to array of attributes
670 * If no attributes are desired, leave NULL
671 */
672 const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
673
674 /* work struct for this MC */
675 struct delayed_work work;
676
677 /*
678 * Used to report an error - by being at the global struct
679 * makes the memory allocated by the EDAC core
680 */
681 struct edac_raw_error_desc error_desc;
682
683 /* the internal state of this controller instance */
684 int op_state;
685
686 struct dentry *debugfs;
687 u8 fake_inject_layer[EDAC_MAX_LAYERS];
688 bool fake_inject_ue;
689 u16 fake_inject_count;
690 };
691
692 /*
693 * Maximum number of memory controllers in the coherent fabric.
694 */
695 #define EDAC_MAX_MCS 16
696
697 #endif