]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - include/linux/edac.h
Merge tag 'powerpc-5.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-kernels.git] / include / linux / edac.h
1 /*
2 * Generic EDAC defs
3 *
4 * Author: Dave Jiang <djiang@mvista.com>
5 *
6 * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
7 * the terms of the GNU General Public License version 2. This program
8 * is licensed "as is" without any warranty of any kind, whether express
9 * or implied.
10 *
11 */
12 #ifndef _LINUX_EDAC_H_
13 #define _LINUX_EDAC_H_
14
15 #include <linux/atomic.h>
16 #include <linux/device.h>
17 #include <linux/completion.h>
18 #include <linux/workqueue.h>
19 #include <linux/debugfs.h>
20 #include <linux/numa.h>
21
22 #define EDAC_DEVICE_NAME_LEN 31
23
24 struct device;
25
26 #define EDAC_OPSTATE_INVAL -1
27 #define EDAC_OPSTATE_POLL 0
28 #define EDAC_OPSTATE_NMI 1
29 #define EDAC_OPSTATE_INT 2
30
31 extern int edac_op_state;
32
33 struct bus_type *edac_get_sysfs_subsys(void);
34
35 static inline void opstate_init(void)
36 {
37 switch (edac_op_state) {
38 case EDAC_OPSTATE_POLL:
39 case EDAC_OPSTATE_NMI:
40 break;
41 default:
42 edac_op_state = EDAC_OPSTATE_POLL;
43 }
44 return;
45 }
46
47 /* Max length of a DIMM label*/
48 #define EDAC_MC_LABEL_LEN 31
49
50 /* Maximum size of the location string */
51 #define LOCATION_SIZE 256
52
53 /* Defines the maximum number of labels that can be reported */
54 #define EDAC_MAX_LABELS 8
55
56 /* String used to join two or more labels */
57 #define OTHER_LABEL " or "
58
59 /**
60 * enum dev_type - describe the type of memory DRAM chips used at the stick
61 * @DEV_UNKNOWN: Can't be determined, or MC doesn't support detect it
62 * @DEV_X1: 1 bit for data
63 * @DEV_X2: 2 bits for data
64 * @DEV_X4: 4 bits for data
65 * @DEV_X8: 8 bits for data
66 * @DEV_X16: 16 bits for data
67 * @DEV_X32: 32 bits for data
68 * @DEV_X64: 64 bits for data
69 *
70 * Typical values are x4 and x8.
71 */
72 enum dev_type {
73 DEV_UNKNOWN = 0,
74 DEV_X1,
75 DEV_X2,
76 DEV_X4,
77 DEV_X8,
78 DEV_X16,
79 DEV_X32, /* Do these parts exist? */
80 DEV_X64 /* Do these parts exist? */
81 };
82
83 #define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
84 #define DEV_FLAG_X1 BIT(DEV_X1)
85 #define DEV_FLAG_X2 BIT(DEV_X2)
86 #define DEV_FLAG_X4 BIT(DEV_X4)
87 #define DEV_FLAG_X8 BIT(DEV_X8)
88 #define DEV_FLAG_X16 BIT(DEV_X16)
89 #define DEV_FLAG_X32 BIT(DEV_X32)
90 #define DEV_FLAG_X64 BIT(DEV_X64)
91
92 /**
93 * enum hw_event_mc_err_type - type of the detected error
94 *
95 * @HW_EVENT_ERR_CORRECTED: Corrected Error - Indicates that an ECC
96 * corrected error was detected
97 * @HW_EVENT_ERR_UNCORRECTED: Uncorrected Error - Indicates an error that
98 * can't be corrected by ECC, but it is not
99 * fatal (maybe it is on an unused memory area,
100 * or the memory controller could recover from
101 * it for example, by re-trying the operation).
102 * @HW_EVENT_ERR_DEFERRED: Deferred Error - Indicates an uncorrectable
103 * error whose handling is not urgent. This could
104 * be due to hardware data poisoning where the
105 * system can continue operation until the poisoned
106 * data is consumed. Preemptive measures may also
107 * be taken, e.g. offlining pages, etc.
108 * @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not
109 * be recovered.
110 * @HW_EVENT_ERR_INFO: Informational - The CPER spec defines a forth
111 * type of error: informational logs.
112 */
113 enum hw_event_mc_err_type {
114 HW_EVENT_ERR_CORRECTED,
115 HW_EVENT_ERR_UNCORRECTED,
116 HW_EVENT_ERR_DEFERRED,
117 HW_EVENT_ERR_FATAL,
118 HW_EVENT_ERR_INFO,
119 };
120
121 static inline char *mc_event_error_type(const unsigned int err_type)
122 {
123 switch (err_type) {
124 case HW_EVENT_ERR_CORRECTED:
125 return "Corrected";
126 case HW_EVENT_ERR_UNCORRECTED:
127 return "Uncorrected";
128 case HW_EVENT_ERR_DEFERRED:
129 return "Deferred";
130 case HW_EVENT_ERR_FATAL:
131 return "Fatal";
132 default:
133 case HW_EVENT_ERR_INFO:
134 return "Info";
135 }
136 }
137
138 /**
139 * enum mem_type - memory types. For a more detailed reference, please see
140 * http://en.wikipedia.org/wiki/DRAM
141 *
142 * @MEM_EMPTY: Empty csrow
143 * @MEM_RESERVED: Reserved csrow type
144 * @MEM_UNKNOWN: Unknown csrow type
145 * @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995.
146 * @MEM_EDO: EDO - Extended data out, used on systems up to 1998.
147 * @MEM_BEDO: BEDO - Burst Extended data out, an EDO variant.
148 * @MEM_SDR: SDR - Single data rate SDRAM
149 * http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
150 * They use 3 pins for chip select: Pins 0 and 2 are
151 * for rank 0; pins 1 and 3 are for rank 1, if the memory
152 * is dual-rank.
153 * @MEM_RDR: Registered SDR SDRAM
154 * @MEM_DDR: Double data rate SDRAM
155 * http://en.wikipedia.org/wiki/DDR_SDRAM
156 * @MEM_RDDR: Registered Double data rate SDRAM
157 * This is a variant of the DDR memories.
158 * A registered memory has a buffer inside it, hiding
159 * part of the memory details to the memory controller.
160 * @MEM_RMBS: Rambus DRAM, used on a few Pentium III/IV controllers.
161 * @MEM_DDR2: DDR2 RAM, as described at JEDEC JESD79-2F.
162 * Those memories are labeled as "PC2-" instead of "PC" to
163 * differentiate from DDR.
164 * @MEM_FB_DDR2: Fully-Buffered DDR2, as described at JEDEC Std No. 205
165 * and JESD206.
166 * Those memories are accessed per DIMM slot, and not by
167 * a chip select signal.
168 * @MEM_RDDR2: Registered DDR2 RAM
169 * This is a variant of the DDR2 memories.
170 * @MEM_XDR: Rambus XDR
171 * It is an evolution of the original RAMBUS memories,
172 * created to compete with DDR2. Weren't used on any
173 * x86 arch, but cell_edac PPC memory controller uses it.
174 * @MEM_DDR3: DDR3 RAM
175 * @MEM_RDDR3: Registered DDR3 RAM
176 * This is a variant of the DDR3 memories.
177 * @MEM_LRDDR3: Load-Reduced DDR3 memory.
178 * @MEM_LPDDR3: Low-Power DDR3 memory.
179 * @MEM_DDR4: Unbuffered DDR4 RAM
180 * @MEM_RDDR4: Registered DDR4 RAM
181 * This is a variant of the DDR4 memories.
182 * @MEM_LRDDR4: Load-Reduced DDR4 memory.
183 * @MEM_LPDDR4: Low-Power DDR4 memory.
184 * @MEM_DDR5: Unbuffered DDR5 RAM
185 * @MEM_NVDIMM: Non-volatile RAM
186 * @MEM_WIO2: Wide I/O 2.
187 */
188 enum mem_type {
189 MEM_EMPTY = 0,
190 MEM_RESERVED,
191 MEM_UNKNOWN,
192 MEM_FPM,
193 MEM_EDO,
194 MEM_BEDO,
195 MEM_SDR,
196 MEM_RDR,
197 MEM_DDR,
198 MEM_RDDR,
199 MEM_RMBS,
200 MEM_DDR2,
201 MEM_FB_DDR2,
202 MEM_RDDR2,
203 MEM_XDR,
204 MEM_DDR3,
205 MEM_RDDR3,
206 MEM_LRDDR3,
207 MEM_LPDDR3,
208 MEM_DDR4,
209 MEM_RDDR4,
210 MEM_LRDDR4,
211 MEM_LPDDR4,
212 MEM_DDR5,
213 MEM_NVDIMM,
214 MEM_WIO2,
215 };
216
217 #define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
218 #define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
219 #define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
220 #define MEM_FLAG_FPM BIT(MEM_FPM)
221 #define MEM_FLAG_EDO BIT(MEM_EDO)
222 #define MEM_FLAG_BEDO BIT(MEM_BEDO)
223 #define MEM_FLAG_SDR BIT(MEM_SDR)
224 #define MEM_FLAG_RDR BIT(MEM_RDR)
225 #define MEM_FLAG_DDR BIT(MEM_DDR)
226 #define MEM_FLAG_RDDR BIT(MEM_RDDR)
227 #define MEM_FLAG_RMBS BIT(MEM_RMBS)
228 #define MEM_FLAG_DDR2 BIT(MEM_DDR2)
229 #define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2)
230 #define MEM_FLAG_RDDR2 BIT(MEM_RDDR2)
231 #define MEM_FLAG_XDR BIT(MEM_XDR)
232 #define MEM_FLAG_DDR3 BIT(MEM_DDR3)
233 #define MEM_FLAG_RDDR3 BIT(MEM_RDDR3)
234 #define MEM_FLAG_LPDDR3 BIT(MEM_LPDDR3)
235 #define MEM_FLAG_DDR4 BIT(MEM_DDR4)
236 #define MEM_FLAG_RDDR4 BIT(MEM_RDDR4)
237 #define MEM_FLAG_LRDDR4 BIT(MEM_LRDDR4)
238 #define MEM_FLAG_LPDDR4 BIT(MEM_LPDDR4)
239 #define MEM_FLAG_DDR5 BIT(MEM_DDR5)
240 #define MEM_FLAG_NVDIMM BIT(MEM_NVDIMM)
241 #define MEM_FLAG_WIO2 BIT(MEM_WIO2)
242
243 /**
244 * enum edac_type - Error Detection and Correction capabilities and mode
245 * @EDAC_UNKNOWN: Unknown if ECC is available
246 * @EDAC_NONE: Doesn't support ECC
247 * @EDAC_RESERVED: Reserved ECC type
248 * @EDAC_PARITY: Detects parity errors
249 * @EDAC_EC: Error Checking - no correction
250 * @EDAC_SECDED: Single bit error correction, Double detection
251 * @EDAC_S2ECD2ED: Chipkill x2 devices - do these exist?
252 * @EDAC_S4ECD4ED: Chipkill x4 devices
253 * @EDAC_S8ECD8ED: Chipkill x8 devices
254 * @EDAC_S16ECD16ED: Chipkill x16 devices
255 */
256 enum edac_type {
257 EDAC_UNKNOWN = 0,
258 EDAC_NONE,
259 EDAC_RESERVED,
260 EDAC_PARITY,
261 EDAC_EC,
262 EDAC_SECDED,
263 EDAC_S2ECD2ED,
264 EDAC_S4ECD4ED,
265 EDAC_S8ECD8ED,
266 EDAC_S16ECD16ED,
267 };
268
269 #define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
270 #define EDAC_FLAG_NONE BIT(EDAC_NONE)
271 #define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
272 #define EDAC_FLAG_EC BIT(EDAC_EC)
273 #define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
274 #define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
275 #define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
276 #define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
277 #define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
278
279 /**
280 * enum scrub_type - scrubbing capabilities
281 * @SCRUB_UNKNOWN: Unknown if scrubber is available
282 * @SCRUB_NONE: No scrubber
283 * @SCRUB_SW_PROG: SW progressive (sequential) scrubbing
284 * @SCRUB_SW_SRC: Software scrub only errors
285 * @SCRUB_SW_PROG_SRC: Progressive software scrub from an error
286 * @SCRUB_SW_TUNABLE: Software scrub frequency is tunable
287 * @SCRUB_HW_PROG: HW progressive (sequential) scrubbing
288 * @SCRUB_HW_SRC: Hardware scrub only errors
289 * @SCRUB_HW_PROG_SRC: Progressive hardware scrub from an error
290 * @SCRUB_HW_TUNABLE: Hardware scrub frequency is tunable
291 */
292 enum scrub_type {
293 SCRUB_UNKNOWN = 0,
294 SCRUB_NONE,
295 SCRUB_SW_PROG,
296 SCRUB_SW_SRC,
297 SCRUB_SW_PROG_SRC,
298 SCRUB_SW_TUNABLE,
299 SCRUB_HW_PROG,
300 SCRUB_HW_SRC,
301 SCRUB_HW_PROG_SRC,
302 SCRUB_HW_TUNABLE
303 };
304
305 #define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
306 #define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC)
307 #define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC)
308 #define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
309 #define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
310 #define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC)
311 #define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC)
312 #define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
313
314 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
315
316 /* EDAC internal operation states */
317 #define OP_ALLOC 0x100
318 #define OP_RUNNING_POLL 0x201
319 #define OP_RUNNING_INTERRUPT 0x202
320 #define OP_RUNNING_POLL_INTR 0x203
321 #define OP_OFFLINE 0x300
322
323 /**
324 * enum edac_mc_layer_type - memory controller hierarchy layer
325 *
326 * @EDAC_MC_LAYER_BRANCH: memory layer is named "branch"
327 * @EDAC_MC_LAYER_CHANNEL: memory layer is named "channel"
328 * @EDAC_MC_LAYER_SLOT: memory layer is named "slot"
329 * @EDAC_MC_LAYER_CHIP_SELECT: memory layer is named "chip select"
330 * @EDAC_MC_LAYER_ALL_MEM: memory layout is unknown. All memory is mapped
331 * as a single memory area. This is used when
332 * retrieving errors from a firmware driven driver.
333 *
334 * This enum is used by the drivers to tell edac_mc_sysfs what name should
335 * be used when describing a memory stick location.
336 */
337 enum edac_mc_layer_type {
338 EDAC_MC_LAYER_BRANCH,
339 EDAC_MC_LAYER_CHANNEL,
340 EDAC_MC_LAYER_SLOT,
341 EDAC_MC_LAYER_CHIP_SELECT,
342 EDAC_MC_LAYER_ALL_MEM,
343 };
344
345 /**
346 * struct edac_mc_layer - describes the memory controller hierarchy
347 * @type: layer type
348 * @size: number of components per layer. For example,
349 * if the channel layer has two channels, size = 2
350 * @is_virt_csrow: This layer is part of the "csrow" when old API
351 * compatibility mode is enabled. Otherwise, it is
352 * a channel
353 */
354 struct edac_mc_layer {
355 enum edac_mc_layer_type type;
356 unsigned size;
357 bool is_virt_csrow;
358 };
359
360 /*
361 * Maximum number of layers used by the memory controller to uniquely
362 * identify a single memory stick.
363 * NOTE: Changing this constant requires not only to change the constant
364 * below, but also to change the existing code at the core, as there are
365 * some code there that are optimized for 3 layers.
366 */
367 #define EDAC_MAX_LAYERS 3
368
369 struct dimm_info {
370 struct device dev;
371
372 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
373
374 /* Memory location data */
375 unsigned int location[EDAC_MAX_LAYERS];
376
377 struct mem_ctl_info *mci; /* the parent */
378 unsigned int idx; /* index within the parent dimm array */
379
380 u32 grain; /* granularity of reported error in bytes */
381 enum dev_type dtype; /* memory device type */
382 enum mem_type mtype; /* memory dimm type */
383 enum edac_type edac_mode; /* EDAC mode for this dimm */
384
385 u32 nr_pages; /* number of pages on this dimm */
386
387 unsigned int csrow, cschannel; /* Points to the old API data */
388
389 u16 smbios_handle; /* Handle for SMBIOS type 17 */
390
391 u32 ce_count;
392 u32 ue_count;
393 };
394
395 /**
396 * struct rank_info - contains the information for one DIMM rank
397 *
398 * @chan_idx: channel number where the rank is (typically, 0 or 1)
399 * @ce_count: number of correctable errors for this rank
400 * @csrow: A pointer to the chip select row structure (the parent
401 * structure). The location of the rank is given by
402 * the (csrow->csrow_idx, chan_idx) vector.
403 * @dimm: A pointer to the DIMM structure, where the DIMM label
404 * information is stored.
405 *
406 * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
407 * This is a bad assumption, but it makes this patch easier. Later
408 * patches in this series will fix this issue.
409 */
410 struct rank_info {
411 int chan_idx;
412 struct csrow_info *csrow;
413 struct dimm_info *dimm;
414
415 u32 ce_count; /* Correctable Errors for this csrow */
416 };
417
418 struct csrow_info {
419 struct device dev;
420
421 /* Used only by edac_mc_find_csrow_by_page() */
422 unsigned long first_page; /* first page number in csrow */
423 unsigned long last_page; /* last page number in csrow */
424 unsigned long page_mask; /* used for interleaving -
425 * 0UL for non intlv */
426
427 int csrow_idx; /* the chip-select row */
428
429 u32 ue_count; /* Uncorrectable Errors for this csrow */
430 u32 ce_count; /* Correctable Errors for this csrow */
431
432 struct mem_ctl_info *mci; /* the parent */
433
434 /* channel information for this csrow */
435 u32 nr_channels;
436 struct rank_info **channels;
437 };
438
439 /*
440 * struct errcount_attribute - used to store the several error counts
441 */
442 struct errcount_attribute_data {
443 int n_layers;
444 int pos[EDAC_MAX_LAYERS];
445 int layer0, layer1, layer2;
446 };
447
448 /**
449 * struct edac_raw_error_desc - Raw error report structure
450 * @grain: minimum granularity for an error report, in bytes
451 * @error_count: number of errors of the same type
452 * @type: severity of the error (CE/UE/Fatal)
453 * @top_layer: top layer of the error (layer[0])
454 * @mid_layer: middle layer of the error (layer[1])
455 * @low_layer: low layer of the error (layer[2])
456 * @page_frame_number: page where the error happened
457 * @offset_in_page: page offset
458 * @syndrome: syndrome of the error (or 0 if unknown or if
459 * the syndrome is not applicable)
460 * @msg: error message
461 * @location: location of the error
462 * @label: label of the affected DIMM(s)
463 * @other_detail: other driver-specific detail about the error
464 */
465 struct edac_raw_error_desc {
466 char location[LOCATION_SIZE];
467 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
468 long grain;
469
470 u16 error_count;
471 enum hw_event_mc_err_type type;
472 int top_layer;
473 int mid_layer;
474 int low_layer;
475 unsigned long page_frame_number;
476 unsigned long offset_in_page;
477 unsigned long syndrome;
478 const char *msg;
479 const char *other_detail;
480 };
481
482 /* MEMORY controller information structure
483 */
484 struct mem_ctl_info {
485 struct device dev;
486 struct bus_type *bus;
487
488 struct list_head link; /* for global list of mem_ctl_info structs */
489
490 struct module *owner; /* Module owner of this control struct */
491
492 unsigned long mtype_cap; /* memory types supported by mc */
493 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
494 unsigned long edac_cap; /* configuration capabilities - this is
495 * closely related to edac_ctl_cap. The
496 * difference is that the controller may be
497 * capable of s4ecd4ed which would be listed
498 * in edac_ctl_cap, but if channels aren't
499 * capable of s4ecd4ed then the edac_cap would
500 * not have that capability.
501 */
502 unsigned long scrub_cap; /* chipset scrub capabilities */
503 enum scrub_type scrub_mode; /* current scrub mode */
504
505 /* Translates sdram memory scrub rate given in bytes/sec to the
506 internal representation and configures whatever else needs
507 to be configured.
508 */
509 int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
510
511 /* Get the current sdram memory scrub rate from the internal
512 representation and converts it to the closest matching
513 bandwidth in bytes/sec.
514 */
515 int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
516
517
518 /* pointer to edac checking routine */
519 void (*edac_check) (struct mem_ctl_info * mci);
520
521 /*
522 * Remaps memory pages: controller pages to physical pages.
523 * For most MC's, this will be NULL.
524 */
525 /* FIXME - why not send the phys page to begin with? */
526 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
527 unsigned long page);
528 int mc_idx;
529 struct csrow_info **csrows;
530 unsigned int nr_csrows, num_cschannel;
531
532 /*
533 * Memory Controller hierarchy
534 *
535 * There are basically two types of memory controller: the ones that
536 * sees memory sticks ("dimms"), and the ones that sees memory ranks.
537 * All old memory controllers enumerate memories per rank, but most
538 * of the recent drivers enumerate memories per DIMM, instead.
539 * When the memory controller is per rank, csbased is true.
540 */
541 unsigned int n_layers;
542 struct edac_mc_layer *layers;
543 bool csbased;
544
545 /*
546 * DIMM info. Will eventually remove the entire csrows_info some day
547 */
548 unsigned int tot_dimms;
549 struct dimm_info **dimms;
550
551 /*
552 * FIXME - what about controllers on other busses? - IDs must be
553 * unique. dev pointer should be sufficiently unique, but
554 * BUS:SLOT.FUNC numbers may not be unique.
555 */
556 struct device *pdev;
557 const char *mod_name;
558 const char *ctl_name;
559 const char *dev_name;
560 void *pvt_info;
561 unsigned long start_time; /* mci load start time (in jiffies) */
562
563 /*
564 * drivers shouldn't access those fields directly, as the core
565 * already handles that.
566 */
567 u32 ce_noinfo_count, ue_noinfo_count;
568 u32 ue_mc, ce_mc;
569
570 struct completion complete;
571
572 /* Additional top controller level attributes, but specified
573 * by the low level driver.
574 *
575 * Set by the low level driver to provide attributes at the
576 * controller level.
577 * An array of structures, NULL terminated
578 *
579 * If attributes are desired, then set to array of attributes
580 * If no attributes are desired, leave NULL
581 */
582 const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
583
584 /* work struct for this MC */
585 struct delayed_work work;
586
587 /*
588 * Used to report an error - by being at the global struct
589 * makes the memory allocated by the EDAC core
590 */
591 struct edac_raw_error_desc error_desc;
592
593 /* the internal state of this controller instance */
594 int op_state;
595
596 struct dentry *debugfs;
597 u8 fake_inject_layer[EDAC_MAX_LAYERS];
598 bool fake_inject_ue;
599 u16 fake_inject_count;
600 };
601
602 #define mci_for_each_dimm(mci, dimm) \
603 for ((dimm) = (mci)->dimms[0]; \
604 (dimm); \
605 (dimm) = (dimm)->idx + 1 < (mci)->tot_dimms \
606 ? (mci)->dimms[(dimm)->idx + 1] \
607 : NULL)
608
609 /**
610 * edac_get_dimm - Get DIMM info from a memory controller given by
611 * [layer0,layer1,layer2] position
612 *
613 * @mci: MC descriptor struct mem_ctl_info
614 * @layer0: layer0 position
615 * @layer1: layer1 position. Unused if n_layers < 2
616 * @layer2: layer2 position. Unused if n_layers < 3
617 *
618 * For 1 layer, this function returns "dimms[layer0]";
619 *
620 * For 2 layers, this function is similar to allocating a two-dimensional
621 * array and returning "dimms[layer0][layer1]";
622 *
623 * For 3 layers, this function is similar to allocating a tri-dimensional
624 * array and returning "dimms[layer0][layer1][layer2]";
625 */
626 static inline struct dimm_info *edac_get_dimm(struct mem_ctl_info *mci,
627 int layer0, int layer1, int layer2)
628 {
629 int index;
630
631 if (layer0 < 0
632 || (mci->n_layers > 1 && layer1 < 0)
633 || (mci->n_layers > 2 && layer2 < 0))
634 return NULL;
635
636 index = layer0;
637
638 if (mci->n_layers > 1)
639 index = index * mci->layers[1].size + layer1;
640
641 if (mci->n_layers > 2)
642 index = index * mci->layers[2].size + layer2;
643
644 if (index < 0 || index >= mci->tot_dimms)
645 return NULL;
646
647 if (WARN_ON_ONCE(mci->dimms[index]->idx != index))
648 return NULL;
649
650 return mci->dimms[index];
651 }
652 #endif /* _LINUX_EDAC_H_ */