]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/linux/filter.h
Merge tag 'armsoc-newsoc' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[mirror_ubuntu-eoan-kernel.git] / include / linux / filter.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Linux Socket Filter Data Structures
4 */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7
8 #include <stdarg.h>
9
10 #include <linux/atomic.h>
11 #include <linux/refcount.h>
12 #include <linux/compat.h>
13 #include <linux/skbuff.h>
14 #include <linux/linkage.h>
15 #include <linux/printk.h>
16 #include <linux/workqueue.h>
17 #include <linux/sched.h>
18 #include <linux/capability.h>
19 #include <linux/cryptohash.h>
20 #include <linux/set_memory.h>
21 #include <linux/kallsyms.h>
22 #include <linux/if_vlan.h>
23
24 #include <net/sch_generic.h>
25
26 #include <uapi/linux/filter.h>
27 #include <uapi/linux/bpf.h>
28
29 struct sk_buff;
30 struct sock;
31 struct seccomp_data;
32 struct bpf_prog_aux;
33 struct xdp_rxq_info;
34 struct xdp_buff;
35 struct sock_reuseport;
36
37 /* ArgX, context and stack frame pointer register positions. Note,
38 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
39 * calls in BPF_CALL instruction.
40 */
41 #define BPF_REG_ARG1 BPF_REG_1
42 #define BPF_REG_ARG2 BPF_REG_2
43 #define BPF_REG_ARG3 BPF_REG_3
44 #define BPF_REG_ARG4 BPF_REG_4
45 #define BPF_REG_ARG5 BPF_REG_5
46 #define BPF_REG_CTX BPF_REG_6
47 #define BPF_REG_FP BPF_REG_10
48
49 /* Additional register mappings for converted user programs. */
50 #define BPF_REG_A BPF_REG_0
51 #define BPF_REG_X BPF_REG_7
52 #define BPF_REG_TMP BPF_REG_2 /* scratch reg */
53 #define BPF_REG_D BPF_REG_8 /* data, callee-saved */
54 #define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */
55
56 /* Kernel hidden auxiliary/helper register. */
57 #define BPF_REG_AX MAX_BPF_REG
58 #define MAX_BPF_EXT_REG (MAX_BPF_REG + 1)
59 #define MAX_BPF_JIT_REG MAX_BPF_EXT_REG
60
61 /* unused opcode to mark special call to bpf_tail_call() helper */
62 #define BPF_TAIL_CALL 0xf0
63
64 /* unused opcode to mark call to interpreter with arguments */
65 #define BPF_CALL_ARGS 0xe0
66
67 /* As per nm, we expose JITed images as text (code) section for
68 * kallsyms. That way, tools like perf can find it to match
69 * addresses.
70 */
71 #define BPF_SYM_ELF_TYPE 't'
72
73 /* BPF program can access up to 512 bytes of stack space. */
74 #define MAX_BPF_STACK 512
75
76 /* Helper macros for filter block array initializers. */
77
78 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
79
80 #define BPF_ALU64_REG(OP, DST, SRC) \
81 ((struct bpf_insn) { \
82 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
83 .dst_reg = DST, \
84 .src_reg = SRC, \
85 .off = 0, \
86 .imm = 0 })
87
88 #define BPF_ALU32_REG(OP, DST, SRC) \
89 ((struct bpf_insn) { \
90 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \
91 .dst_reg = DST, \
92 .src_reg = SRC, \
93 .off = 0, \
94 .imm = 0 })
95
96 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
97
98 #define BPF_ALU64_IMM(OP, DST, IMM) \
99 ((struct bpf_insn) { \
100 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
101 .dst_reg = DST, \
102 .src_reg = 0, \
103 .off = 0, \
104 .imm = IMM })
105
106 #define BPF_ALU32_IMM(OP, DST, IMM) \
107 ((struct bpf_insn) { \
108 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \
109 .dst_reg = DST, \
110 .src_reg = 0, \
111 .off = 0, \
112 .imm = IMM })
113
114 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
115
116 #define BPF_ENDIAN(TYPE, DST, LEN) \
117 ((struct bpf_insn) { \
118 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
119 .dst_reg = DST, \
120 .src_reg = 0, \
121 .off = 0, \
122 .imm = LEN })
123
124 /* Short form of mov, dst_reg = src_reg */
125
126 #define BPF_MOV64_REG(DST, SRC) \
127 ((struct bpf_insn) { \
128 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
129 .dst_reg = DST, \
130 .src_reg = SRC, \
131 .off = 0, \
132 .imm = 0 })
133
134 #define BPF_MOV32_REG(DST, SRC) \
135 ((struct bpf_insn) { \
136 .code = BPF_ALU | BPF_MOV | BPF_X, \
137 .dst_reg = DST, \
138 .src_reg = SRC, \
139 .off = 0, \
140 .imm = 0 })
141
142 /* Short form of mov, dst_reg = imm32 */
143
144 #define BPF_MOV64_IMM(DST, IMM) \
145 ((struct bpf_insn) { \
146 .code = BPF_ALU64 | BPF_MOV | BPF_K, \
147 .dst_reg = DST, \
148 .src_reg = 0, \
149 .off = 0, \
150 .imm = IMM })
151
152 #define BPF_MOV32_IMM(DST, IMM) \
153 ((struct bpf_insn) { \
154 .code = BPF_ALU | BPF_MOV | BPF_K, \
155 .dst_reg = DST, \
156 .src_reg = 0, \
157 .off = 0, \
158 .imm = IMM })
159
160 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
161 #define BPF_LD_IMM64(DST, IMM) \
162 BPF_LD_IMM64_RAW(DST, 0, IMM)
163
164 #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
165 ((struct bpf_insn) { \
166 .code = BPF_LD | BPF_DW | BPF_IMM, \
167 .dst_reg = DST, \
168 .src_reg = SRC, \
169 .off = 0, \
170 .imm = (__u32) (IMM) }), \
171 ((struct bpf_insn) { \
172 .code = 0, /* zero is reserved opcode */ \
173 .dst_reg = 0, \
174 .src_reg = 0, \
175 .off = 0, \
176 .imm = ((__u64) (IMM)) >> 32 })
177
178 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
179 #define BPF_LD_MAP_FD(DST, MAP_FD) \
180 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
181
182 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
183
184 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
185 ((struct bpf_insn) { \
186 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
187 .dst_reg = DST, \
188 .src_reg = SRC, \
189 .off = 0, \
190 .imm = IMM })
191
192 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
193 ((struct bpf_insn) { \
194 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
195 .dst_reg = DST, \
196 .src_reg = SRC, \
197 .off = 0, \
198 .imm = IMM })
199
200 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
201
202 #define BPF_LD_ABS(SIZE, IMM) \
203 ((struct bpf_insn) { \
204 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
205 .dst_reg = 0, \
206 .src_reg = 0, \
207 .off = 0, \
208 .imm = IMM })
209
210 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
211
212 #define BPF_LD_IND(SIZE, SRC, IMM) \
213 ((struct bpf_insn) { \
214 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
215 .dst_reg = 0, \
216 .src_reg = SRC, \
217 .off = 0, \
218 .imm = IMM })
219
220 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
221
222 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
223 ((struct bpf_insn) { \
224 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
225 .dst_reg = DST, \
226 .src_reg = SRC, \
227 .off = OFF, \
228 .imm = 0 })
229
230 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
231
232 #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
233 ((struct bpf_insn) { \
234 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
235 .dst_reg = DST, \
236 .src_reg = SRC, \
237 .off = OFF, \
238 .imm = 0 })
239
240 /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
241
242 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) \
243 ((struct bpf_insn) { \
244 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \
245 .dst_reg = DST, \
246 .src_reg = SRC, \
247 .off = OFF, \
248 .imm = 0 })
249
250 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
251
252 #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
253 ((struct bpf_insn) { \
254 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
255 .dst_reg = DST, \
256 .src_reg = 0, \
257 .off = OFF, \
258 .imm = IMM })
259
260 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
261
262 #define BPF_JMP_REG(OP, DST, SRC, OFF) \
263 ((struct bpf_insn) { \
264 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \
265 .dst_reg = DST, \
266 .src_reg = SRC, \
267 .off = OFF, \
268 .imm = 0 })
269
270 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
271
272 #define BPF_JMP_IMM(OP, DST, IMM, OFF) \
273 ((struct bpf_insn) { \
274 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \
275 .dst_reg = DST, \
276 .src_reg = 0, \
277 .off = OFF, \
278 .imm = IMM })
279
280 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
281
282 #define BPF_JMP32_REG(OP, DST, SRC, OFF) \
283 ((struct bpf_insn) { \
284 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \
285 .dst_reg = DST, \
286 .src_reg = SRC, \
287 .off = OFF, \
288 .imm = 0 })
289
290 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
291
292 #define BPF_JMP32_IMM(OP, DST, IMM, OFF) \
293 ((struct bpf_insn) { \
294 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \
295 .dst_reg = DST, \
296 .src_reg = 0, \
297 .off = OFF, \
298 .imm = IMM })
299
300 /* Unconditional jumps, goto pc + off16 */
301
302 #define BPF_JMP_A(OFF) \
303 ((struct bpf_insn) { \
304 .code = BPF_JMP | BPF_JA, \
305 .dst_reg = 0, \
306 .src_reg = 0, \
307 .off = OFF, \
308 .imm = 0 })
309
310 /* Relative call */
311
312 #define BPF_CALL_REL(TGT) \
313 ((struct bpf_insn) { \
314 .code = BPF_JMP | BPF_CALL, \
315 .dst_reg = 0, \
316 .src_reg = BPF_PSEUDO_CALL, \
317 .off = 0, \
318 .imm = TGT })
319
320 /* Function call */
321
322 #define BPF_CAST_CALL(x) \
323 ((u64 (*)(u64, u64, u64, u64, u64))(x))
324
325 #define BPF_EMIT_CALL(FUNC) \
326 ((struct bpf_insn) { \
327 .code = BPF_JMP | BPF_CALL, \
328 .dst_reg = 0, \
329 .src_reg = 0, \
330 .off = 0, \
331 .imm = ((FUNC) - __bpf_call_base) })
332
333 /* Raw code statement block */
334
335 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
336 ((struct bpf_insn) { \
337 .code = CODE, \
338 .dst_reg = DST, \
339 .src_reg = SRC, \
340 .off = OFF, \
341 .imm = IMM })
342
343 /* Program exit */
344
345 #define BPF_EXIT_INSN() \
346 ((struct bpf_insn) { \
347 .code = BPF_JMP | BPF_EXIT, \
348 .dst_reg = 0, \
349 .src_reg = 0, \
350 .off = 0, \
351 .imm = 0 })
352
353 /* Internal classic blocks for direct assignment */
354
355 #define __BPF_STMT(CODE, K) \
356 ((struct sock_filter) BPF_STMT(CODE, K))
357
358 #define __BPF_JUMP(CODE, K, JT, JF) \
359 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
360
361 #define bytes_to_bpf_size(bytes) \
362 ({ \
363 int bpf_size = -EINVAL; \
364 \
365 if (bytes == sizeof(u8)) \
366 bpf_size = BPF_B; \
367 else if (bytes == sizeof(u16)) \
368 bpf_size = BPF_H; \
369 else if (bytes == sizeof(u32)) \
370 bpf_size = BPF_W; \
371 else if (bytes == sizeof(u64)) \
372 bpf_size = BPF_DW; \
373 \
374 bpf_size; \
375 })
376
377 #define bpf_size_to_bytes(bpf_size) \
378 ({ \
379 int bytes = -EINVAL; \
380 \
381 if (bpf_size == BPF_B) \
382 bytes = sizeof(u8); \
383 else if (bpf_size == BPF_H) \
384 bytes = sizeof(u16); \
385 else if (bpf_size == BPF_W) \
386 bytes = sizeof(u32); \
387 else if (bpf_size == BPF_DW) \
388 bytes = sizeof(u64); \
389 \
390 bytes; \
391 })
392
393 #define BPF_SIZEOF(type) \
394 ({ \
395 const int __size = bytes_to_bpf_size(sizeof(type)); \
396 BUILD_BUG_ON(__size < 0); \
397 __size; \
398 })
399
400 #define BPF_FIELD_SIZEOF(type, field) \
401 ({ \
402 const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \
403 BUILD_BUG_ON(__size < 0); \
404 __size; \
405 })
406
407 #define BPF_LDST_BYTES(insn) \
408 ({ \
409 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
410 WARN_ON(__size < 0); \
411 __size; \
412 })
413
414 #define __BPF_MAP_0(m, v, ...) v
415 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
416 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
417 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
418 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
419 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
420
421 #define __BPF_REG_0(...) __BPF_PAD(5)
422 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
423 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
424 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
425 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
426 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
427
428 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
429 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
430
431 #define __BPF_CAST(t, a) \
432 (__force t) \
433 (__force \
434 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \
435 (unsigned long)0, (t)0))) a
436 #define __BPF_V void
437 #define __BPF_N
438
439 #define __BPF_DECL_ARGS(t, a) t a
440 #define __BPF_DECL_REGS(t, a) u64 a
441
442 #define __BPF_PAD(n) \
443 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \
444 u64, __ur_3, u64, __ur_4, u64, __ur_5)
445
446 #define BPF_CALL_x(x, name, ...) \
447 static __always_inline \
448 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
449 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
450 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
451 { \
452 return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
453 } \
454 static __always_inline \
455 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
456
457 #define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__)
458 #define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__)
459 #define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__)
460 #define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__)
461 #define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__)
462 #define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__)
463
464 #define bpf_ctx_range(TYPE, MEMBER) \
465 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
466 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \
467 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
468 #if BITS_PER_LONG == 64
469 # define bpf_ctx_range_ptr(TYPE, MEMBER) \
470 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
471 #else
472 # define bpf_ctx_range_ptr(TYPE, MEMBER) \
473 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
474 #endif /* BITS_PER_LONG == 64 */
475
476 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \
477 ({ \
478 BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE)); \
479 *(PTR_SIZE) = (SIZE); \
480 offsetof(TYPE, MEMBER); \
481 })
482
483 #ifdef CONFIG_COMPAT
484 /* A struct sock_filter is architecture independent. */
485 struct compat_sock_fprog {
486 u16 len;
487 compat_uptr_t filter; /* struct sock_filter * */
488 };
489 #endif
490
491 struct sock_fprog_kern {
492 u16 len;
493 struct sock_filter *filter;
494 };
495
496 struct bpf_binary_header {
497 u32 pages;
498 /* Some arches need word alignment for their instructions */
499 u8 image[] __aligned(4);
500 };
501
502 struct bpf_prog {
503 u16 pages; /* Number of allocated pages */
504 u16 jited:1, /* Is our filter JIT'ed? */
505 jit_requested:1,/* archs need to JIT the prog */
506 undo_set_mem:1, /* Passed set_memory_ro() checkpoint */
507 gpl_compatible:1, /* Is filter GPL compatible? */
508 cb_access:1, /* Is control block accessed? */
509 dst_needed:1, /* Do we need dst entry? */
510 blinded:1, /* Was blinded */
511 is_func:1, /* program is a bpf function */
512 kprobe_override:1, /* Do we override a kprobe? */
513 has_callchain_buf:1; /* callchain buffer allocated? */
514 enum bpf_prog_type type; /* Type of BPF program */
515 enum bpf_attach_type expected_attach_type; /* For some prog types */
516 u32 len; /* Number of filter blocks */
517 u32 jited_len; /* Size of jited insns in bytes */
518 u8 tag[BPF_TAG_SIZE];
519 struct bpf_prog_aux *aux; /* Auxiliary fields */
520 struct sock_fprog_kern *orig_prog; /* Original BPF program */
521 unsigned int (*bpf_func)(const void *ctx,
522 const struct bpf_insn *insn);
523 /* Instructions for interpreter */
524 union {
525 struct sock_filter insns[0];
526 struct bpf_insn insnsi[0];
527 };
528 };
529
530 struct sk_filter {
531 refcount_t refcnt;
532 struct rcu_head rcu;
533 struct bpf_prog *prog;
534 };
535
536 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
537
538 #define BPF_PROG_RUN(prog, ctx) ({ \
539 u32 ret; \
540 cant_sleep(); \
541 if (static_branch_unlikely(&bpf_stats_enabled_key)) { \
542 struct bpf_prog_stats *stats; \
543 u64 start = sched_clock(); \
544 ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi); \
545 stats = this_cpu_ptr(prog->aux->stats); \
546 u64_stats_update_begin(&stats->syncp); \
547 stats->cnt++; \
548 stats->nsecs += sched_clock() - start; \
549 u64_stats_update_end(&stats->syncp); \
550 } else { \
551 ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi); \
552 } \
553 ret; })
554
555 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
556
557 struct bpf_skb_data_end {
558 struct qdisc_skb_cb qdisc_cb;
559 void *data_meta;
560 void *data_end;
561 };
562
563 struct bpf_redirect_info {
564 u32 ifindex;
565 u32 flags;
566 struct bpf_map *map;
567 struct bpf_map *map_to_flush;
568 u32 kern_flags;
569 };
570
571 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
572
573 /* flags for bpf_redirect_info kern_flags */
574 #define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */
575
576 /* Compute the linear packet data range [data, data_end) which
577 * will be accessed by various program types (cls_bpf, act_bpf,
578 * lwt, ...). Subsystems allowing direct data access must (!)
579 * ensure that cb[] area can be written to when BPF program is
580 * invoked (otherwise cb[] save/restore is necessary).
581 */
582 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
583 {
584 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
585
586 BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb));
587 cb->data_meta = skb->data - skb_metadata_len(skb);
588 cb->data_end = skb->data + skb_headlen(skb);
589 }
590
591 /* Similar to bpf_compute_data_pointers(), except that save orginal
592 * data in cb->data and cb->meta_data for restore.
593 */
594 static inline void bpf_compute_and_save_data_end(
595 struct sk_buff *skb, void **saved_data_end)
596 {
597 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
598
599 *saved_data_end = cb->data_end;
600 cb->data_end = skb->data + skb_headlen(skb);
601 }
602
603 /* Restore data saved by bpf_compute_data_pointers(). */
604 static inline void bpf_restore_data_end(
605 struct sk_buff *skb, void *saved_data_end)
606 {
607 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
608
609 cb->data_end = saved_data_end;
610 }
611
612 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
613 {
614 /* eBPF programs may read/write skb->cb[] area to transfer meta
615 * data between tail calls. Since this also needs to work with
616 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
617 *
618 * In some socket filter cases, the cb unfortunately needs to be
619 * saved/restored so that protocol specific skb->cb[] data won't
620 * be lost. In any case, due to unpriviledged eBPF programs
621 * attached to sockets, we need to clear the bpf_skb_cb() area
622 * to not leak previous contents to user space.
623 */
624 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
625 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) !=
626 FIELD_SIZEOF(struct qdisc_skb_cb, data));
627
628 return qdisc_skb_cb(skb)->data;
629 }
630
631 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
632 struct sk_buff *skb)
633 {
634 u8 *cb_data = bpf_skb_cb(skb);
635 u8 cb_saved[BPF_SKB_CB_LEN];
636 u32 res;
637
638 if (unlikely(prog->cb_access)) {
639 memcpy(cb_saved, cb_data, sizeof(cb_saved));
640 memset(cb_data, 0, sizeof(cb_saved));
641 }
642
643 res = BPF_PROG_RUN(prog, skb);
644
645 if (unlikely(prog->cb_access))
646 memcpy(cb_data, cb_saved, sizeof(cb_saved));
647
648 return res;
649 }
650
651 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
652 struct sk_buff *skb)
653 {
654 u32 res;
655
656 preempt_disable();
657 res = __bpf_prog_run_save_cb(prog, skb);
658 preempt_enable();
659 return res;
660 }
661
662 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
663 struct sk_buff *skb)
664 {
665 u8 *cb_data = bpf_skb_cb(skb);
666 u32 res;
667
668 if (unlikely(prog->cb_access))
669 memset(cb_data, 0, BPF_SKB_CB_LEN);
670
671 preempt_disable();
672 res = BPF_PROG_RUN(prog, skb);
673 preempt_enable();
674 return res;
675 }
676
677 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
678 struct xdp_buff *xdp)
679 {
680 /* Caller needs to hold rcu_read_lock() (!), otherwise program
681 * can be released while still running, or map elements could be
682 * freed early while still having concurrent users. XDP fastpath
683 * already takes rcu_read_lock() when fetching the program, so
684 * it's not necessary here anymore.
685 */
686 return BPF_PROG_RUN(prog, xdp);
687 }
688
689 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
690 {
691 return prog->len * sizeof(struct bpf_insn);
692 }
693
694 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
695 {
696 return round_up(bpf_prog_insn_size(prog) +
697 sizeof(__be64) + 1, SHA_MESSAGE_BYTES);
698 }
699
700 static inline unsigned int bpf_prog_size(unsigned int proglen)
701 {
702 return max(sizeof(struct bpf_prog),
703 offsetof(struct bpf_prog, insns[proglen]));
704 }
705
706 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
707 {
708 /* When classic BPF programs have been loaded and the arch
709 * does not have a classic BPF JIT (anymore), they have been
710 * converted via bpf_migrate_filter() to eBPF and thus always
711 * have an unspec program type.
712 */
713 return prog->type == BPF_PROG_TYPE_UNSPEC;
714 }
715
716 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
717 {
718 const u32 size_machine = sizeof(unsigned long);
719
720 if (size > size_machine && size % size_machine == 0)
721 size = size_machine;
722
723 return size;
724 }
725
726 static inline bool
727 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
728 {
729 return size <= size_default && (size & (size - 1)) == 0;
730 }
731
732 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
733
734 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
735 {
736 fp->undo_set_mem = 1;
737 set_memory_ro((unsigned long)fp, fp->pages);
738 }
739
740 static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
741 {
742 if (fp->undo_set_mem)
743 set_memory_rw((unsigned long)fp, fp->pages);
744 }
745
746 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
747 {
748 set_memory_ro((unsigned long)hdr, hdr->pages);
749 }
750
751 static inline void bpf_jit_binary_unlock_ro(struct bpf_binary_header *hdr)
752 {
753 set_memory_rw((unsigned long)hdr, hdr->pages);
754 }
755
756 static inline struct bpf_binary_header *
757 bpf_jit_binary_hdr(const struct bpf_prog *fp)
758 {
759 unsigned long real_start = (unsigned long)fp->bpf_func;
760 unsigned long addr = real_start & PAGE_MASK;
761
762 return (void *)addr;
763 }
764
765 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
766 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
767 {
768 return sk_filter_trim_cap(sk, skb, 1);
769 }
770
771 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
772 void bpf_prog_free(struct bpf_prog *fp);
773
774 bool bpf_opcode_in_insntable(u8 code);
775
776 void bpf_prog_free_linfo(struct bpf_prog *prog);
777 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
778 const u32 *insn_to_jit_off);
779 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
780 void bpf_prog_free_jited_linfo(struct bpf_prog *prog);
781 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog);
782
783 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
784 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
785 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
786 gfp_t gfp_extra_flags);
787 void __bpf_prog_free(struct bpf_prog *fp);
788
789 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
790 {
791 bpf_prog_unlock_ro(fp);
792 __bpf_prog_free(fp);
793 }
794
795 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
796 unsigned int flen);
797
798 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
799 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
800 bpf_aux_classic_check_t trans, bool save_orig);
801 void bpf_prog_destroy(struct bpf_prog *fp);
802
803 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
804 int sk_attach_bpf(u32 ufd, struct sock *sk);
805 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
806 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
807 void sk_reuseport_prog_free(struct bpf_prog *prog);
808 int sk_detach_filter(struct sock *sk);
809 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
810 unsigned int len);
811
812 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
813 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
814
815 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
816 #define __bpf_call_base_args \
817 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
818 __bpf_call_base)
819
820 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
821 void bpf_jit_compile(struct bpf_prog *prog);
822 bool bpf_helper_changes_pkt_data(void *func);
823
824 static inline bool bpf_dump_raw_ok(void)
825 {
826 /* Reconstruction of call-sites is dependent on kallsyms,
827 * thus make dump the same restriction.
828 */
829 return kallsyms_show_value() == 1;
830 }
831
832 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
833 const struct bpf_insn *patch, u32 len);
834 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
835
836 void bpf_clear_redirect_map(struct bpf_map *map);
837
838 static inline bool xdp_return_frame_no_direct(void)
839 {
840 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
841
842 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
843 }
844
845 static inline void xdp_set_return_frame_no_direct(void)
846 {
847 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
848
849 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
850 }
851
852 static inline void xdp_clear_return_frame_no_direct(void)
853 {
854 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
855
856 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
857 }
858
859 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
860 unsigned int pktlen)
861 {
862 unsigned int len;
863
864 if (unlikely(!(fwd->flags & IFF_UP)))
865 return -ENETDOWN;
866
867 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
868 if (pktlen > len)
869 return -EMSGSIZE;
870
871 return 0;
872 }
873
874 /* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the
875 * same cpu context. Further for best results no more than a single map
876 * for the do_redirect/do_flush pair should be used. This limitation is
877 * because we only track one map and force a flush when the map changes.
878 * This does not appear to be a real limitation for existing software.
879 */
880 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
881 struct xdp_buff *xdp, struct bpf_prog *prog);
882 int xdp_do_redirect(struct net_device *dev,
883 struct xdp_buff *xdp,
884 struct bpf_prog *prog);
885 void xdp_do_flush_map(void);
886
887 void bpf_warn_invalid_xdp_action(u32 act);
888
889 #ifdef CONFIG_INET
890 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
891 struct bpf_prog *prog, struct sk_buff *skb,
892 u32 hash);
893 #else
894 static inline struct sock *
895 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
896 struct bpf_prog *prog, struct sk_buff *skb,
897 u32 hash)
898 {
899 return NULL;
900 }
901 #endif
902
903 #ifdef CONFIG_BPF_JIT
904 extern int bpf_jit_enable;
905 extern int bpf_jit_harden;
906 extern int bpf_jit_kallsyms;
907 extern long bpf_jit_limit;
908
909 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
910
911 struct bpf_binary_header *
912 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
913 unsigned int alignment,
914 bpf_jit_fill_hole_t bpf_fill_ill_insns);
915 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
916 u64 bpf_jit_alloc_exec_limit(void);
917 void *bpf_jit_alloc_exec(unsigned long size);
918 void bpf_jit_free_exec(void *addr);
919 void bpf_jit_free(struct bpf_prog *fp);
920
921 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
922 const struct bpf_insn *insn, bool extra_pass,
923 u64 *func_addr, bool *func_addr_fixed);
924
925 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
926 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
927
928 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
929 u32 pass, void *image)
930 {
931 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
932 proglen, pass, image, current->comm, task_pid_nr(current));
933
934 if (image)
935 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
936 16, 1, image, proglen, false);
937 }
938
939 static inline bool bpf_jit_is_ebpf(void)
940 {
941 # ifdef CONFIG_HAVE_EBPF_JIT
942 return true;
943 # else
944 return false;
945 # endif
946 }
947
948 static inline bool ebpf_jit_enabled(void)
949 {
950 return bpf_jit_enable && bpf_jit_is_ebpf();
951 }
952
953 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
954 {
955 return fp->jited && bpf_jit_is_ebpf();
956 }
957
958 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
959 {
960 /* These are the prerequisites, should someone ever have the
961 * idea to call blinding outside of them, we make sure to
962 * bail out.
963 */
964 if (!bpf_jit_is_ebpf())
965 return false;
966 if (!prog->jit_requested)
967 return false;
968 if (!bpf_jit_harden)
969 return false;
970 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
971 return false;
972
973 return true;
974 }
975
976 static inline bool bpf_jit_kallsyms_enabled(void)
977 {
978 /* There are a couple of corner cases where kallsyms should
979 * not be enabled f.e. on hardening.
980 */
981 if (bpf_jit_harden)
982 return false;
983 if (!bpf_jit_kallsyms)
984 return false;
985 if (bpf_jit_kallsyms == 1)
986 return true;
987
988 return false;
989 }
990
991 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
992 unsigned long *off, char *sym);
993 bool is_bpf_text_address(unsigned long addr);
994 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
995 char *sym);
996
997 static inline const char *
998 bpf_address_lookup(unsigned long addr, unsigned long *size,
999 unsigned long *off, char **modname, char *sym)
1000 {
1001 const char *ret = __bpf_address_lookup(addr, size, off, sym);
1002
1003 if (ret && modname)
1004 *modname = NULL;
1005 return ret;
1006 }
1007
1008 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1009 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1010 void bpf_get_prog_name(const struct bpf_prog *prog, char *sym);
1011
1012 #else /* CONFIG_BPF_JIT */
1013
1014 static inline bool ebpf_jit_enabled(void)
1015 {
1016 return false;
1017 }
1018
1019 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1020 {
1021 return false;
1022 }
1023
1024 static inline void bpf_jit_free(struct bpf_prog *fp)
1025 {
1026 bpf_prog_unlock_free(fp);
1027 }
1028
1029 static inline bool bpf_jit_kallsyms_enabled(void)
1030 {
1031 return false;
1032 }
1033
1034 static inline const char *
1035 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1036 unsigned long *off, char *sym)
1037 {
1038 return NULL;
1039 }
1040
1041 static inline bool is_bpf_text_address(unsigned long addr)
1042 {
1043 return false;
1044 }
1045
1046 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1047 char *type, char *sym)
1048 {
1049 return -ERANGE;
1050 }
1051
1052 static inline const char *
1053 bpf_address_lookup(unsigned long addr, unsigned long *size,
1054 unsigned long *off, char **modname, char *sym)
1055 {
1056 return NULL;
1057 }
1058
1059 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1060 {
1061 }
1062
1063 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1064 {
1065 }
1066
1067 static inline void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
1068 {
1069 sym[0] = '\0';
1070 }
1071
1072 #endif /* CONFIG_BPF_JIT */
1073
1074 void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp);
1075 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1076
1077 #define BPF_ANC BIT(15)
1078
1079 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1080 {
1081 switch (first->code) {
1082 case BPF_RET | BPF_K:
1083 case BPF_LD | BPF_W | BPF_LEN:
1084 return false;
1085
1086 case BPF_LD | BPF_W | BPF_ABS:
1087 case BPF_LD | BPF_H | BPF_ABS:
1088 case BPF_LD | BPF_B | BPF_ABS:
1089 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1090 return true;
1091 return false;
1092
1093 default:
1094 return true;
1095 }
1096 }
1097
1098 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1099 {
1100 BUG_ON(ftest->code & BPF_ANC);
1101
1102 switch (ftest->code) {
1103 case BPF_LD | BPF_W | BPF_ABS:
1104 case BPF_LD | BPF_H | BPF_ABS:
1105 case BPF_LD | BPF_B | BPF_ABS:
1106 #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
1107 return BPF_ANC | SKF_AD_##CODE
1108 switch (ftest->k) {
1109 BPF_ANCILLARY(PROTOCOL);
1110 BPF_ANCILLARY(PKTTYPE);
1111 BPF_ANCILLARY(IFINDEX);
1112 BPF_ANCILLARY(NLATTR);
1113 BPF_ANCILLARY(NLATTR_NEST);
1114 BPF_ANCILLARY(MARK);
1115 BPF_ANCILLARY(QUEUE);
1116 BPF_ANCILLARY(HATYPE);
1117 BPF_ANCILLARY(RXHASH);
1118 BPF_ANCILLARY(CPU);
1119 BPF_ANCILLARY(ALU_XOR_X);
1120 BPF_ANCILLARY(VLAN_TAG);
1121 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1122 BPF_ANCILLARY(PAY_OFFSET);
1123 BPF_ANCILLARY(RANDOM);
1124 BPF_ANCILLARY(VLAN_TPID);
1125 }
1126 /* Fallthrough. */
1127 default:
1128 return ftest->code;
1129 }
1130 }
1131
1132 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1133 int k, unsigned int size);
1134
1135 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
1136 unsigned int size, void *buffer)
1137 {
1138 if (k >= 0)
1139 return skb_header_pointer(skb, k, size, buffer);
1140
1141 return bpf_internal_load_pointer_neg_helper(skb, k, size);
1142 }
1143
1144 static inline int bpf_tell_extensions(void)
1145 {
1146 return SKF_AD_MAX;
1147 }
1148
1149 struct bpf_sock_addr_kern {
1150 struct sock *sk;
1151 struct sockaddr *uaddr;
1152 /* Temporary "register" to make indirect stores to nested structures
1153 * defined above. We need three registers to make such a store, but
1154 * only two (src and dst) are available at convert_ctx_access time
1155 */
1156 u64 tmp_reg;
1157 void *t_ctx; /* Attach type specific context. */
1158 };
1159
1160 struct bpf_sock_ops_kern {
1161 struct sock *sk;
1162 u32 op;
1163 union {
1164 u32 args[4];
1165 u32 reply;
1166 u32 replylong[4];
1167 };
1168 u32 is_fullsock;
1169 u64 temp; /* temp and everything after is not
1170 * initialized to 0 before calling
1171 * the BPF program. New fields that
1172 * should be initialized to 0 should
1173 * be inserted before temp.
1174 * temp is scratch storage used by
1175 * sock_ops_convert_ctx_access
1176 * as temporary storage of a register.
1177 */
1178 };
1179
1180 #endif /* __LINUX_FILTER_H__ */