]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/filter.h
Merge tag 'rodata-v4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[mirror_ubuntu-artful-kernel.git] / include / linux / filter.h
1 /*
2 * Linux Socket Filter Data Structures
3 */
4 #ifndef __LINUX_FILTER_H__
5 #define __LINUX_FILTER_H__
6
7 #include <stdarg.h>
8
9 #include <linux/atomic.h>
10 #include <linux/compat.h>
11 #include <linux/skbuff.h>
12 #include <linux/linkage.h>
13 #include <linux/printk.h>
14 #include <linux/workqueue.h>
15 #include <linux/sched.h>
16 #include <linux/capability.h>
17 #include <linux/cryptohash.h>
18
19 #include <net/sch_generic.h>
20
21 #include <asm/cacheflush.h>
22
23 #include <uapi/linux/filter.h>
24 #include <uapi/linux/bpf.h>
25
26 struct sk_buff;
27 struct sock;
28 struct seccomp_data;
29 struct bpf_prog_aux;
30
31 /* ArgX, context and stack frame pointer register positions. Note,
32 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
33 * calls in BPF_CALL instruction.
34 */
35 #define BPF_REG_ARG1 BPF_REG_1
36 #define BPF_REG_ARG2 BPF_REG_2
37 #define BPF_REG_ARG3 BPF_REG_3
38 #define BPF_REG_ARG4 BPF_REG_4
39 #define BPF_REG_ARG5 BPF_REG_5
40 #define BPF_REG_CTX BPF_REG_6
41 #define BPF_REG_FP BPF_REG_10
42
43 /* Additional register mappings for converted user programs. */
44 #define BPF_REG_A BPF_REG_0
45 #define BPF_REG_X BPF_REG_7
46 #define BPF_REG_TMP BPF_REG_8
47
48 /* Kernel hidden auxiliary/helper register for hardening step.
49 * Only used by eBPF JITs. It's nothing more than a temporary
50 * register that JITs use internally, only that here it's part
51 * of eBPF instructions that have been rewritten for blinding
52 * constants. See JIT pre-step in bpf_jit_blind_constants().
53 */
54 #define BPF_REG_AX MAX_BPF_REG
55 #define MAX_BPF_JIT_REG (MAX_BPF_REG + 1)
56
57 /* BPF program can access up to 512 bytes of stack space. */
58 #define MAX_BPF_STACK 512
59
60 #define BPF_TAG_SIZE 8
61
62 /* Helper macros for filter block array initializers. */
63
64 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
65
66 #define BPF_ALU64_REG(OP, DST, SRC) \
67 ((struct bpf_insn) { \
68 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
69 .dst_reg = DST, \
70 .src_reg = SRC, \
71 .off = 0, \
72 .imm = 0 })
73
74 #define BPF_ALU32_REG(OP, DST, SRC) \
75 ((struct bpf_insn) { \
76 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \
77 .dst_reg = DST, \
78 .src_reg = SRC, \
79 .off = 0, \
80 .imm = 0 })
81
82 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
83
84 #define BPF_ALU64_IMM(OP, DST, IMM) \
85 ((struct bpf_insn) { \
86 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
87 .dst_reg = DST, \
88 .src_reg = 0, \
89 .off = 0, \
90 .imm = IMM })
91
92 #define BPF_ALU32_IMM(OP, DST, IMM) \
93 ((struct bpf_insn) { \
94 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \
95 .dst_reg = DST, \
96 .src_reg = 0, \
97 .off = 0, \
98 .imm = IMM })
99
100 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
101
102 #define BPF_ENDIAN(TYPE, DST, LEN) \
103 ((struct bpf_insn) { \
104 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
105 .dst_reg = DST, \
106 .src_reg = 0, \
107 .off = 0, \
108 .imm = LEN })
109
110 /* Short form of mov, dst_reg = src_reg */
111
112 #define BPF_MOV64_REG(DST, SRC) \
113 ((struct bpf_insn) { \
114 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
115 .dst_reg = DST, \
116 .src_reg = SRC, \
117 .off = 0, \
118 .imm = 0 })
119
120 #define BPF_MOV32_REG(DST, SRC) \
121 ((struct bpf_insn) { \
122 .code = BPF_ALU | BPF_MOV | BPF_X, \
123 .dst_reg = DST, \
124 .src_reg = SRC, \
125 .off = 0, \
126 .imm = 0 })
127
128 /* Short form of mov, dst_reg = imm32 */
129
130 #define BPF_MOV64_IMM(DST, IMM) \
131 ((struct bpf_insn) { \
132 .code = BPF_ALU64 | BPF_MOV | BPF_K, \
133 .dst_reg = DST, \
134 .src_reg = 0, \
135 .off = 0, \
136 .imm = IMM })
137
138 #define BPF_MOV32_IMM(DST, IMM) \
139 ((struct bpf_insn) { \
140 .code = BPF_ALU | BPF_MOV | BPF_K, \
141 .dst_reg = DST, \
142 .src_reg = 0, \
143 .off = 0, \
144 .imm = IMM })
145
146 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
147 #define BPF_LD_IMM64(DST, IMM) \
148 BPF_LD_IMM64_RAW(DST, 0, IMM)
149
150 #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
151 ((struct bpf_insn) { \
152 .code = BPF_LD | BPF_DW | BPF_IMM, \
153 .dst_reg = DST, \
154 .src_reg = SRC, \
155 .off = 0, \
156 .imm = (__u32) (IMM) }), \
157 ((struct bpf_insn) { \
158 .code = 0, /* zero is reserved opcode */ \
159 .dst_reg = 0, \
160 .src_reg = 0, \
161 .off = 0, \
162 .imm = ((__u64) (IMM)) >> 32 })
163
164 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
165 #define BPF_LD_MAP_FD(DST, MAP_FD) \
166 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
167
168 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
169
170 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
171 ((struct bpf_insn) { \
172 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
173 .dst_reg = DST, \
174 .src_reg = SRC, \
175 .off = 0, \
176 .imm = IMM })
177
178 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
179 ((struct bpf_insn) { \
180 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
181 .dst_reg = DST, \
182 .src_reg = SRC, \
183 .off = 0, \
184 .imm = IMM })
185
186 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
187
188 #define BPF_LD_ABS(SIZE, IMM) \
189 ((struct bpf_insn) { \
190 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
191 .dst_reg = 0, \
192 .src_reg = 0, \
193 .off = 0, \
194 .imm = IMM })
195
196 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
197
198 #define BPF_LD_IND(SIZE, SRC, IMM) \
199 ((struct bpf_insn) { \
200 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
201 .dst_reg = 0, \
202 .src_reg = SRC, \
203 .off = 0, \
204 .imm = IMM })
205
206 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
207
208 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
209 ((struct bpf_insn) { \
210 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
211 .dst_reg = DST, \
212 .src_reg = SRC, \
213 .off = OFF, \
214 .imm = 0 })
215
216 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
217
218 #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
219 ((struct bpf_insn) { \
220 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
221 .dst_reg = DST, \
222 .src_reg = SRC, \
223 .off = OFF, \
224 .imm = 0 })
225
226 /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
227
228 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) \
229 ((struct bpf_insn) { \
230 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \
231 .dst_reg = DST, \
232 .src_reg = SRC, \
233 .off = OFF, \
234 .imm = 0 })
235
236 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
237
238 #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
239 ((struct bpf_insn) { \
240 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
241 .dst_reg = DST, \
242 .src_reg = 0, \
243 .off = OFF, \
244 .imm = IMM })
245
246 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
247
248 #define BPF_JMP_REG(OP, DST, SRC, OFF) \
249 ((struct bpf_insn) { \
250 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \
251 .dst_reg = DST, \
252 .src_reg = SRC, \
253 .off = OFF, \
254 .imm = 0 })
255
256 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
257
258 #define BPF_JMP_IMM(OP, DST, IMM, OFF) \
259 ((struct bpf_insn) { \
260 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \
261 .dst_reg = DST, \
262 .src_reg = 0, \
263 .off = OFF, \
264 .imm = IMM })
265
266 /* Function call */
267
268 #define BPF_EMIT_CALL(FUNC) \
269 ((struct bpf_insn) { \
270 .code = BPF_JMP | BPF_CALL, \
271 .dst_reg = 0, \
272 .src_reg = 0, \
273 .off = 0, \
274 .imm = ((FUNC) - __bpf_call_base) })
275
276 /* Raw code statement block */
277
278 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
279 ((struct bpf_insn) { \
280 .code = CODE, \
281 .dst_reg = DST, \
282 .src_reg = SRC, \
283 .off = OFF, \
284 .imm = IMM })
285
286 /* Program exit */
287
288 #define BPF_EXIT_INSN() \
289 ((struct bpf_insn) { \
290 .code = BPF_JMP | BPF_EXIT, \
291 .dst_reg = 0, \
292 .src_reg = 0, \
293 .off = 0, \
294 .imm = 0 })
295
296 /* Internal classic blocks for direct assignment */
297
298 #define __BPF_STMT(CODE, K) \
299 ((struct sock_filter) BPF_STMT(CODE, K))
300
301 #define __BPF_JUMP(CODE, K, JT, JF) \
302 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
303
304 #define bytes_to_bpf_size(bytes) \
305 ({ \
306 int bpf_size = -EINVAL; \
307 \
308 if (bytes == sizeof(u8)) \
309 bpf_size = BPF_B; \
310 else if (bytes == sizeof(u16)) \
311 bpf_size = BPF_H; \
312 else if (bytes == sizeof(u32)) \
313 bpf_size = BPF_W; \
314 else if (bytes == sizeof(u64)) \
315 bpf_size = BPF_DW; \
316 \
317 bpf_size; \
318 })
319
320 #define BPF_SIZEOF(type) \
321 ({ \
322 const int __size = bytes_to_bpf_size(sizeof(type)); \
323 BUILD_BUG_ON(__size < 0); \
324 __size; \
325 })
326
327 #define BPF_FIELD_SIZEOF(type, field) \
328 ({ \
329 const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \
330 BUILD_BUG_ON(__size < 0); \
331 __size; \
332 })
333
334 #define __BPF_MAP_0(m, v, ...) v
335 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
336 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
337 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
338 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
339 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
340
341 #define __BPF_REG_0(...) __BPF_PAD(5)
342 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
343 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
344 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
345 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
346 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
347
348 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
349 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
350
351 #define __BPF_CAST(t, a) \
352 (__force t) \
353 (__force \
354 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \
355 (unsigned long)0, (t)0))) a
356 #define __BPF_V void
357 #define __BPF_N
358
359 #define __BPF_DECL_ARGS(t, a) t a
360 #define __BPF_DECL_REGS(t, a) u64 a
361
362 #define __BPF_PAD(n) \
363 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \
364 u64, __ur_3, u64, __ur_4, u64, __ur_5)
365
366 #define BPF_CALL_x(x, name, ...) \
367 static __always_inline \
368 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
369 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
370 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
371 { \
372 return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
373 } \
374 static __always_inline \
375 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
376
377 #define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__)
378 #define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__)
379 #define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__)
380 #define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__)
381 #define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__)
382 #define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__)
383
384 #ifdef CONFIG_COMPAT
385 /* A struct sock_filter is architecture independent. */
386 struct compat_sock_fprog {
387 u16 len;
388 compat_uptr_t filter; /* struct sock_filter * */
389 };
390 #endif
391
392 struct sock_fprog_kern {
393 u16 len;
394 struct sock_filter *filter;
395 };
396
397 struct bpf_binary_header {
398 unsigned int pages;
399 u8 image[];
400 };
401
402 struct bpf_prog {
403 u16 pages; /* Number of allocated pages */
404 kmemcheck_bitfield_begin(meta);
405 u16 jited:1, /* Is our filter JIT'ed? */
406 gpl_compatible:1, /* Is filter GPL compatible? */
407 cb_access:1, /* Is control block accessed? */
408 dst_needed:1, /* Do we need dst entry? */
409 xdp_adjust_head:1; /* Adjusting pkt head? */
410 kmemcheck_bitfield_end(meta);
411 enum bpf_prog_type type; /* Type of BPF program */
412 u32 len; /* Number of filter blocks */
413 u8 tag[BPF_TAG_SIZE];
414 struct bpf_prog_aux *aux; /* Auxiliary fields */
415 struct sock_fprog_kern *orig_prog; /* Original BPF program */
416 unsigned int (*bpf_func)(const void *ctx,
417 const struct bpf_insn *insn);
418 /* Instructions for interpreter */
419 union {
420 struct sock_filter insns[0];
421 struct bpf_insn insnsi[0];
422 };
423 };
424
425 struct sk_filter {
426 atomic_t refcnt;
427 struct rcu_head rcu;
428 struct bpf_prog *prog;
429 };
430
431 #define BPF_PROG_RUN(filter, ctx) (*filter->bpf_func)(ctx, filter->insnsi)
432
433 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
434
435 struct bpf_skb_data_end {
436 struct qdisc_skb_cb qdisc_cb;
437 void *data_end;
438 };
439
440 struct xdp_buff {
441 void *data;
442 void *data_end;
443 void *data_hard_start;
444 };
445
446 /* compute the linear packet data range [data, data_end) which
447 * will be accessed by cls_bpf, act_bpf and lwt programs
448 */
449 static inline void bpf_compute_data_end(struct sk_buff *skb)
450 {
451 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
452
453 BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb));
454 cb->data_end = skb->data + skb_headlen(skb);
455 }
456
457 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
458 {
459 /* eBPF programs may read/write skb->cb[] area to transfer meta
460 * data between tail calls. Since this also needs to work with
461 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
462 *
463 * In some socket filter cases, the cb unfortunately needs to be
464 * saved/restored so that protocol specific skb->cb[] data won't
465 * be lost. In any case, due to unpriviledged eBPF programs
466 * attached to sockets, we need to clear the bpf_skb_cb() area
467 * to not leak previous contents to user space.
468 */
469 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
470 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) !=
471 FIELD_SIZEOF(struct qdisc_skb_cb, data));
472
473 return qdisc_skb_cb(skb)->data;
474 }
475
476 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
477 struct sk_buff *skb)
478 {
479 u8 *cb_data = bpf_skb_cb(skb);
480 u8 cb_saved[BPF_SKB_CB_LEN];
481 u32 res;
482
483 if (unlikely(prog->cb_access)) {
484 memcpy(cb_saved, cb_data, sizeof(cb_saved));
485 memset(cb_data, 0, sizeof(cb_saved));
486 }
487
488 res = BPF_PROG_RUN(prog, skb);
489
490 if (unlikely(prog->cb_access))
491 memcpy(cb_data, cb_saved, sizeof(cb_saved));
492
493 return res;
494 }
495
496 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
497 struct sk_buff *skb)
498 {
499 u8 *cb_data = bpf_skb_cb(skb);
500
501 if (unlikely(prog->cb_access))
502 memset(cb_data, 0, BPF_SKB_CB_LEN);
503
504 return BPF_PROG_RUN(prog, skb);
505 }
506
507 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
508 struct xdp_buff *xdp)
509 {
510 /* Caller needs to hold rcu_read_lock() (!), otherwise program
511 * can be released while still running, or map elements could be
512 * freed early while still having concurrent users. XDP fastpath
513 * already takes rcu_read_lock() when fetching the program, so
514 * it's not necessary here anymore.
515 */
516 return BPF_PROG_RUN(prog, xdp);
517 }
518
519 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
520 {
521 return prog->len * sizeof(struct bpf_insn);
522 }
523
524 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
525 {
526 return round_up(bpf_prog_insn_size(prog) +
527 sizeof(__be64) + 1, SHA_MESSAGE_BYTES);
528 }
529
530 static inline unsigned int bpf_prog_size(unsigned int proglen)
531 {
532 return max(sizeof(struct bpf_prog),
533 offsetof(struct bpf_prog, insns[proglen]));
534 }
535
536 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
537 {
538 /* When classic BPF programs have been loaded and the arch
539 * does not have a classic BPF JIT (anymore), they have been
540 * converted via bpf_migrate_filter() to eBPF and thus always
541 * have an unspec program type.
542 */
543 return prog->type == BPF_PROG_TYPE_UNSPEC;
544 }
545
546 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
547
548 #ifdef CONFIG_STRICT_MODULE_RWX
549 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
550 {
551 set_memory_ro((unsigned long)fp, fp->pages);
552 }
553
554 static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
555 {
556 set_memory_rw((unsigned long)fp, fp->pages);
557 }
558 #else
559 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
560 {
561 }
562
563 static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
564 {
565 }
566 #endif /* CONFIG_STRICT_MODULE_RWX */
567
568 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
569 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
570 {
571 return sk_filter_trim_cap(sk, skb, 1);
572 }
573
574 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
575 void bpf_prog_free(struct bpf_prog *fp);
576
577 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
578 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
579 gfp_t gfp_extra_flags);
580 void __bpf_prog_free(struct bpf_prog *fp);
581
582 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
583 {
584 bpf_prog_unlock_ro(fp);
585 __bpf_prog_free(fp);
586 }
587
588 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
589 unsigned int flen);
590
591 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
592 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
593 bpf_aux_classic_check_t trans, bool save_orig);
594 void bpf_prog_destroy(struct bpf_prog *fp);
595
596 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
597 int sk_attach_bpf(u32 ufd, struct sock *sk);
598 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
599 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
600 int sk_detach_filter(struct sock *sk);
601 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
602 unsigned int len);
603
604 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
605 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
606
607 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
608
609 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
610 bool bpf_helper_changes_pkt_data(void *func);
611
612 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
613 const struct bpf_insn *patch, u32 len);
614 void bpf_warn_invalid_xdp_action(u32 act);
615
616 #ifdef CONFIG_BPF_JIT
617 extern int bpf_jit_enable;
618 extern int bpf_jit_harden;
619
620 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
621
622 struct bpf_binary_header *
623 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
624 unsigned int alignment,
625 bpf_jit_fill_hole_t bpf_fill_ill_insns);
626 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
627
628 void bpf_jit_compile(struct bpf_prog *fp);
629 void bpf_jit_free(struct bpf_prog *fp);
630
631 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
632 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
633
634 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
635 u32 pass, void *image)
636 {
637 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
638 proglen, pass, image, current->comm, task_pid_nr(current));
639
640 if (image)
641 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
642 16, 1, image, proglen, false);
643 }
644
645 static inline bool bpf_jit_is_ebpf(void)
646 {
647 # ifdef CONFIG_HAVE_EBPF_JIT
648 return true;
649 # else
650 return false;
651 # endif
652 }
653
654 static inline bool bpf_jit_blinding_enabled(void)
655 {
656 /* These are the prerequisites, should someone ever have the
657 * idea to call blinding outside of them, we make sure to
658 * bail out.
659 */
660 if (!bpf_jit_is_ebpf())
661 return false;
662 if (!bpf_jit_enable)
663 return false;
664 if (!bpf_jit_harden)
665 return false;
666 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
667 return false;
668
669 return true;
670 }
671 #else
672 static inline void bpf_jit_compile(struct bpf_prog *fp)
673 {
674 }
675
676 static inline void bpf_jit_free(struct bpf_prog *fp)
677 {
678 bpf_prog_unlock_free(fp);
679 }
680 #endif /* CONFIG_BPF_JIT */
681
682 #define BPF_ANC BIT(15)
683
684 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
685 {
686 switch (first->code) {
687 case BPF_RET | BPF_K:
688 case BPF_LD | BPF_W | BPF_LEN:
689 return false;
690
691 case BPF_LD | BPF_W | BPF_ABS:
692 case BPF_LD | BPF_H | BPF_ABS:
693 case BPF_LD | BPF_B | BPF_ABS:
694 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
695 return true;
696 return false;
697
698 default:
699 return true;
700 }
701 }
702
703 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
704 {
705 BUG_ON(ftest->code & BPF_ANC);
706
707 switch (ftest->code) {
708 case BPF_LD | BPF_W | BPF_ABS:
709 case BPF_LD | BPF_H | BPF_ABS:
710 case BPF_LD | BPF_B | BPF_ABS:
711 #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
712 return BPF_ANC | SKF_AD_##CODE
713 switch (ftest->k) {
714 BPF_ANCILLARY(PROTOCOL);
715 BPF_ANCILLARY(PKTTYPE);
716 BPF_ANCILLARY(IFINDEX);
717 BPF_ANCILLARY(NLATTR);
718 BPF_ANCILLARY(NLATTR_NEST);
719 BPF_ANCILLARY(MARK);
720 BPF_ANCILLARY(QUEUE);
721 BPF_ANCILLARY(HATYPE);
722 BPF_ANCILLARY(RXHASH);
723 BPF_ANCILLARY(CPU);
724 BPF_ANCILLARY(ALU_XOR_X);
725 BPF_ANCILLARY(VLAN_TAG);
726 BPF_ANCILLARY(VLAN_TAG_PRESENT);
727 BPF_ANCILLARY(PAY_OFFSET);
728 BPF_ANCILLARY(RANDOM);
729 BPF_ANCILLARY(VLAN_TPID);
730 }
731 /* Fallthrough. */
732 default:
733 return ftest->code;
734 }
735 }
736
737 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
738 int k, unsigned int size);
739
740 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
741 unsigned int size, void *buffer)
742 {
743 if (k >= 0)
744 return skb_header_pointer(skb, k, size, buffer);
745
746 return bpf_internal_load_pointer_neg_helper(skb, k, size);
747 }
748
749 static inline int bpf_tell_extensions(void)
750 {
751 return SKF_AD_MAX;
752 }
753
754 #endif /* __LINUX_FILTER_H__ */