]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/firewire.h
drm/panel: Add support for the Raspberry Pi 7" Touchscreen.
[mirror_ubuntu-zesty-kernel.git] / include / linux / firewire.h
1 #ifndef _LINUX_FIREWIRE_H
2 #define _LINUX_FIREWIRE_H
3
4 #include <linux/completion.h>
5 #include <linux/device.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/kernel.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/mutex.h>
11 #include <linux/spinlock.h>
12 #include <linux/sysfs.h>
13 #include <linux/timer.h>
14 #include <linux/types.h>
15 #include <linux/workqueue.h>
16
17 #include <linux/atomic.h>
18 #include <asm/byteorder.h>
19
20 #define CSR_REGISTER_BASE 0xfffff0000000ULL
21
22 /* register offsets are relative to CSR_REGISTER_BASE */
23 #define CSR_STATE_CLEAR 0x0
24 #define CSR_STATE_SET 0x4
25 #define CSR_NODE_IDS 0x8
26 #define CSR_RESET_START 0xc
27 #define CSR_SPLIT_TIMEOUT_HI 0x18
28 #define CSR_SPLIT_TIMEOUT_LO 0x1c
29 #define CSR_CYCLE_TIME 0x200
30 #define CSR_BUS_TIME 0x204
31 #define CSR_BUSY_TIMEOUT 0x210
32 #define CSR_PRIORITY_BUDGET 0x218
33 #define CSR_BUS_MANAGER_ID 0x21c
34 #define CSR_BANDWIDTH_AVAILABLE 0x220
35 #define CSR_CHANNELS_AVAILABLE 0x224
36 #define CSR_CHANNELS_AVAILABLE_HI 0x224
37 #define CSR_CHANNELS_AVAILABLE_LO 0x228
38 #define CSR_MAINT_UTILITY 0x230
39 #define CSR_BROADCAST_CHANNEL 0x234
40 #define CSR_CONFIG_ROM 0x400
41 #define CSR_CONFIG_ROM_END 0x800
42 #define CSR_OMPR 0x900
43 #define CSR_OPCR(i) (0x904 + (i) * 4)
44 #define CSR_IMPR 0x980
45 #define CSR_IPCR(i) (0x984 + (i) * 4)
46 #define CSR_FCP_COMMAND 0xB00
47 #define CSR_FCP_RESPONSE 0xD00
48 #define CSR_FCP_END 0xF00
49 #define CSR_TOPOLOGY_MAP 0x1000
50 #define CSR_TOPOLOGY_MAP_END 0x1400
51 #define CSR_SPEED_MAP 0x2000
52 #define CSR_SPEED_MAP_END 0x3000
53
54 #define CSR_OFFSET 0x40
55 #define CSR_LEAF 0x80
56 #define CSR_DIRECTORY 0xc0
57
58 #define CSR_DESCRIPTOR 0x01
59 #define CSR_VENDOR 0x03
60 #define CSR_HARDWARE_VERSION 0x04
61 #define CSR_UNIT 0x11
62 #define CSR_SPECIFIER_ID 0x12
63 #define CSR_VERSION 0x13
64 #define CSR_DEPENDENT_INFO 0x14
65 #define CSR_MODEL 0x17
66 #define CSR_DIRECTORY_ID 0x20
67
68 struct fw_csr_iterator {
69 const u32 *p;
70 const u32 *end;
71 };
72
73 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p);
74 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value);
75 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size);
76
77 extern struct bus_type fw_bus_type;
78
79 struct fw_card_driver;
80 struct fw_node;
81
82 struct fw_card {
83 const struct fw_card_driver *driver;
84 struct device *device;
85 struct kref kref;
86 struct completion done;
87
88 int node_id;
89 int generation;
90 int current_tlabel;
91 u64 tlabel_mask;
92 struct list_head transaction_list;
93 u64 reset_jiffies;
94
95 u32 split_timeout_hi;
96 u32 split_timeout_lo;
97 unsigned int split_timeout_cycles;
98 unsigned int split_timeout_jiffies;
99
100 unsigned long long guid;
101 unsigned max_receive;
102 int link_speed;
103 int config_rom_generation;
104
105 spinlock_t lock; /* Take this lock when handling the lists in
106 * this struct. */
107 struct fw_node *local_node;
108 struct fw_node *root_node;
109 struct fw_node *irm_node;
110 u8 color; /* must be u8 to match the definition in struct fw_node */
111 int gap_count;
112 bool beta_repeaters_present;
113
114 int index;
115 struct list_head link;
116
117 struct list_head phy_receiver_list;
118
119 struct delayed_work br_work; /* bus reset job */
120 bool br_short;
121
122 struct delayed_work bm_work; /* bus manager job */
123 int bm_retries;
124 int bm_generation;
125 int bm_node_id;
126 bool bm_abdicate;
127
128 bool priority_budget_implemented; /* controller feature */
129 bool broadcast_channel_auto_allocated; /* controller feature */
130
131 bool broadcast_channel_allocated;
132 u32 broadcast_channel;
133 __be32 topology_map[(CSR_TOPOLOGY_MAP_END - CSR_TOPOLOGY_MAP) / 4];
134
135 __be32 maint_utility_register;
136 };
137
138 static inline struct fw_card *fw_card_get(struct fw_card *card)
139 {
140 kref_get(&card->kref);
141
142 return card;
143 }
144
145 void fw_card_release(struct kref *kref);
146
147 static inline void fw_card_put(struct fw_card *card)
148 {
149 kref_put(&card->kref, fw_card_release);
150 }
151
152 struct fw_attribute_group {
153 struct attribute_group *groups[2];
154 struct attribute_group group;
155 struct attribute *attrs[13];
156 };
157
158 enum fw_device_state {
159 FW_DEVICE_INITIALIZING,
160 FW_DEVICE_RUNNING,
161 FW_DEVICE_GONE,
162 FW_DEVICE_SHUTDOWN,
163 };
164
165 /*
166 * Note, fw_device.generation always has to be read before fw_device.node_id.
167 * Use SMP memory barriers to ensure this. Otherwise requests will be sent
168 * to an outdated node_id if the generation was updated in the meantime due
169 * to a bus reset.
170 *
171 * Likewise, fw-core will take care to update .node_id before .generation so
172 * that whenever fw_device.generation is current WRT the actual bus generation,
173 * fw_device.node_id is guaranteed to be current too.
174 *
175 * The same applies to fw_device.card->node_id vs. fw_device.generation.
176 *
177 * fw_device.config_rom and fw_device.config_rom_length may be accessed during
178 * the lifetime of any fw_unit belonging to the fw_device, before device_del()
179 * was called on the last fw_unit. Alternatively, they may be accessed while
180 * holding fw_device_rwsem.
181 */
182 struct fw_device {
183 atomic_t state;
184 struct fw_node *node;
185 int node_id;
186 int generation;
187 unsigned max_speed;
188 struct fw_card *card;
189 struct device device;
190
191 struct mutex client_list_mutex;
192 struct list_head client_list;
193
194 const u32 *config_rom;
195 size_t config_rom_length;
196 int config_rom_retries;
197 unsigned is_local:1;
198 unsigned max_rec:4;
199 unsigned cmc:1;
200 unsigned irmc:1;
201 unsigned bc_implemented:2;
202
203 work_func_t workfn;
204 struct delayed_work work;
205 struct fw_attribute_group attribute_group;
206 };
207
208 static inline struct fw_device *fw_device(struct device *dev)
209 {
210 return container_of(dev, struct fw_device, device);
211 }
212
213 static inline int fw_device_is_shutdown(struct fw_device *device)
214 {
215 return atomic_read(&device->state) == FW_DEVICE_SHUTDOWN;
216 }
217
218 int fw_device_enable_phys_dma(struct fw_device *device);
219
220 /*
221 * fw_unit.directory must not be accessed after device_del(&fw_unit.device).
222 */
223 struct fw_unit {
224 struct device device;
225 const u32 *directory;
226 struct fw_attribute_group attribute_group;
227 };
228
229 static inline struct fw_unit *fw_unit(struct device *dev)
230 {
231 return container_of(dev, struct fw_unit, device);
232 }
233
234 static inline struct fw_unit *fw_unit_get(struct fw_unit *unit)
235 {
236 get_device(&unit->device);
237
238 return unit;
239 }
240
241 static inline void fw_unit_put(struct fw_unit *unit)
242 {
243 put_device(&unit->device);
244 }
245
246 static inline struct fw_device *fw_parent_device(struct fw_unit *unit)
247 {
248 return fw_device(unit->device.parent);
249 }
250
251 struct ieee1394_device_id;
252
253 struct fw_driver {
254 struct device_driver driver;
255 int (*probe)(struct fw_unit *unit, const struct ieee1394_device_id *id);
256 /* Called when the parent device sits through a bus reset. */
257 void (*update)(struct fw_unit *unit);
258 void (*remove)(struct fw_unit *unit);
259 const struct ieee1394_device_id *id_table;
260 };
261
262 struct fw_packet;
263 struct fw_request;
264
265 typedef void (*fw_packet_callback_t)(struct fw_packet *packet,
266 struct fw_card *card, int status);
267 typedef void (*fw_transaction_callback_t)(struct fw_card *card, int rcode,
268 void *data, size_t length,
269 void *callback_data);
270 /*
271 * This callback handles an inbound request subaction. It is called in
272 * RCU read-side context, therefore must not sleep.
273 *
274 * The callback should not initiate outbound request subactions directly.
275 * Otherwise there is a danger of recursion of inbound and outbound
276 * transactions from and to the local node.
277 *
278 * The callback is responsible that either fw_send_response() or kfree()
279 * is called on the @request, except for FCP registers for which the core
280 * takes care of that.
281 */
282 typedef void (*fw_address_callback_t)(struct fw_card *card,
283 struct fw_request *request,
284 int tcode, int destination, int source,
285 int generation,
286 unsigned long long offset,
287 void *data, size_t length,
288 void *callback_data);
289
290 struct fw_packet {
291 int speed;
292 int generation;
293 u32 header[4];
294 size_t header_length;
295 void *payload;
296 size_t payload_length;
297 dma_addr_t payload_bus;
298 bool payload_mapped;
299 u32 timestamp;
300
301 /*
302 * This callback is called when the packet transmission has completed.
303 * For successful transmission, the status code is the ack received
304 * from the destination. Otherwise it is one of the juju-specific
305 * rcodes: RCODE_SEND_ERROR, _CANCELLED, _BUSY, _GENERATION, _NO_ACK.
306 * The callback can be called from tasklet context and thus
307 * must never block.
308 */
309 fw_packet_callback_t callback;
310 int ack;
311 struct list_head link;
312 void *driver_data;
313 };
314
315 struct fw_transaction {
316 int node_id; /* The generation is implied; it is always the current. */
317 int tlabel;
318 struct list_head link;
319 struct fw_card *card;
320 bool is_split_transaction;
321 struct timer_list split_timeout_timer;
322
323 struct fw_packet packet;
324
325 /*
326 * The data passed to the callback is valid only during the
327 * callback.
328 */
329 fw_transaction_callback_t callback;
330 void *callback_data;
331 };
332
333 struct fw_address_handler {
334 u64 offset;
335 u64 length;
336 fw_address_callback_t address_callback;
337 void *callback_data;
338 struct list_head link;
339 };
340
341 struct fw_address_region {
342 u64 start;
343 u64 end;
344 };
345
346 extern const struct fw_address_region fw_high_memory_region;
347
348 int fw_core_add_address_handler(struct fw_address_handler *handler,
349 const struct fw_address_region *region);
350 void fw_core_remove_address_handler(struct fw_address_handler *handler);
351 void fw_send_response(struct fw_card *card,
352 struct fw_request *request, int rcode);
353 int fw_get_request_speed(struct fw_request *request);
354 void fw_send_request(struct fw_card *card, struct fw_transaction *t,
355 int tcode, int destination_id, int generation, int speed,
356 unsigned long long offset, void *payload, size_t length,
357 fw_transaction_callback_t callback, void *callback_data);
358 int fw_cancel_transaction(struct fw_card *card,
359 struct fw_transaction *transaction);
360 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
361 int generation, int speed, unsigned long long offset,
362 void *payload, size_t length);
363 const char *fw_rcode_string(int rcode);
364
365 static inline int fw_stream_packet_destination_id(int tag, int channel, int sy)
366 {
367 return tag << 14 | channel << 8 | sy;
368 }
369
370 void fw_schedule_bus_reset(struct fw_card *card, bool delayed,
371 bool short_reset);
372
373 struct fw_descriptor {
374 struct list_head link;
375 size_t length;
376 u32 immediate;
377 u32 key;
378 const u32 *data;
379 };
380
381 int fw_core_add_descriptor(struct fw_descriptor *desc);
382 void fw_core_remove_descriptor(struct fw_descriptor *desc);
383
384 /*
385 * The iso packet format allows for an immediate header/payload part
386 * stored in 'header' immediately after the packet info plus an
387 * indirect payload part that is pointer to by the 'payload' field.
388 * Applications can use one or the other or both to implement simple
389 * low-bandwidth streaming (e.g. audio) or more advanced
390 * scatter-gather streaming (e.g. assembling video frame automatically).
391 */
392 struct fw_iso_packet {
393 u16 payload_length; /* Length of indirect payload */
394 u32 interrupt:1; /* Generate interrupt on this packet */
395 u32 skip:1; /* tx: Set to not send packet at all */
396 /* rx: Sync bit, wait for matching sy */
397 u32 tag:2; /* tx: Tag in packet header */
398 u32 sy:4; /* tx: Sy in packet header */
399 u32 header_length:8; /* Length of immediate header */
400 u32 header[0]; /* tx: Top of 1394 isoch. data_block */
401 };
402
403 #define FW_ISO_CONTEXT_TRANSMIT 0
404 #define FW_ISO_CONTEXT_RECEIVE 1
405 #define FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL 2
406
407 #define FW_ISO_CONTEXT_MATCH_TAG0 1
408 #define FW_ISO_CONTEXT_MATCH_TAG1 2
409 #define FW_ISO_CONTEXT_MATCH_TAG2 4
410 #define FW_ISO_CONTEXT_MATCH_TAG3 8
411 #define FW_ISO_CONTEXT_MATCH_ALL_TAGS 15
412
413 /*
414 * An iso buffer is just a set of pages mapped for DMA in the
415 * specified direction. Since the pages are to be used for DMA, they
416 * are not mapped into the kernel virtual address space. We store the
417 * DMA address in the page private. The helper function
418 * fw_iso_buffer_map() will map the pages into a given vma.
419 */
420 struct fw_iso_buffer {
421 enum dma_data_direction direction;
422 struct page **pages;
423 int page_count;
424 int page_count_mapped;
425 };
426
427 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
428 int page_count, enum dma_data_direction direction);
429 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, struct fw_card *card);
430 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed);
431
432 struct fw_iso_context;
433 typedef void (*fw_iso_callback_t)(struct fw_iso_context *context,
434 u32 cycle, size_t header_length,
435 void *header, void *data);
436 typedef void (*fw_iso_mc_callback_t)(struct fw_iso_context *context,
437 dma_addr_t completed, void *data);
438 struct fw_iso_context {
439 struct fw_card *card;
440 int type;
441 int channel;
442 int speed;
443 bool drop_overflow_headers;
444 size_t header_size;
445 union {
446 fw_iso_callback_t sc;
447 fw_iso_mc_callback_t mc;
448 } callback;
449 void *callback_data;
450 };
451
452 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
453 int type, int channel, int speed, size_t header_size,
454 fw_iso_callback_t callback, void *callback_data);
455 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels);
456 int fw_iso_context_queue(struct fw_iso_context *ctx,
457 struct fw_iso_packet *packet,
458 struct fw_iso_buffer *buffer,
459 unsigned long payload);
460 void fw_iso_context_queue_flush(struct fw_iso_context *ctx);
461 int fw_iso_context_flush_completions(struct fw_iso_context *ctx);
462 int fw_iso_context_start(struct fw_iso_context *ctx,
463 int cycle, int sync, int tags);
464 int fw_iso_context_stop(struct fw_iso_context *ctx);
465 void fw_iso_context_destroy(struct fw_iso_context *ctx);
466 void fw_iso_resource_manage(struct fw_card *card, int generation,
467 u64 channels_mask, int *channel, int *bandwidth,
468 bool allocate);
469
470 extern struct workqueue_struct *fw_workqueue;
471
472 #endif /* _LINUX_FIREWIRE_H */