]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/gfp.h
mm: relocate 'write_protect_seq' in struct mm_struct
[mirror_ubuntu-jammy-kernel.git] / include / linux / gfp.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_GFP_H
3 #define __LINUX_GFP_H
4
5 #include <linux/mmdebug.h>
6 #include <linux/mmzone.h>
7 #include <linux/stddef.h>
8 #include <linux/linkage.h>
9 #include <linux/topology.h>
10
11 /* The typedef is in types.h but we want the documentation here */
12 #if 0
13 /**
14 * typedef gfp_t - Memory allocation flags.
15 *
16 * GFP flags are commonly used throughout Linux to indicate how memory
17 * should be allocated. The GFP acronym stands for get_free_pages(),
18 * the underlying memory allocation function. Not every GFP flag is
19 * supported by every function which may allocate memory. Most users
20 * will want to use a plain ``GFP_KERNEL``.
21 */
22 typedef unsigned int __bitwise gfp_t;
23 #endif
24
25 struct vm_area_struct;
26
27 /*
28 * In case of changes, please don't forget to update
29 * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c
30 */
31
32 /* Plain integer GFP bitmasks. Do not use this directly. */
33 #define ___GFP_DMA 0x01u
34 #define ___GFP_HIGHMEM 0x02u
35 #define ___GFP_DMA32 0x04u
36 #define ___GFP_MOVABLE 0x08u
37 #define ___GFP_RECLAIMABLE 0x10u
38 #define ___GFP_HIGH 0x20u
39 #define ___GFP_IO 0x40u
40 #define ___GFP_FS 0x80u
41 #define ___GFP_ZERO 0x100u
42 #define ___GFP_ATOMIC 0x200u
43 #define ___GFP_DIRECT_RECLAIM 0x400u
44 #define ___GFP_KSWAPD_RECLAIM 0x800u
45 #define ___GFP_WRITE 0x1000u
46 #define ___GFP_NOWARN 0x2000u
47 #define ___GFP_RETRY_MAYFAIL 0x4000u
48 #define ___GFP_NOFAIL 0x8000u
49 #define ___GFP_NORETRY 0x10000u
50 #define ___GFP_MEMALLOC 0x20000u
51 #define ___GFP_COMP 0x40000u
52 #define ___GFP_NOMEMALLOC 0x80000u
53 #define ___GFP_HARDWALL 0x100000u
54 #define ___GFP_THISNODE 0x200000u
55 #define ___GFP_ACCOUNT 0x400000u
56 #ifdef CONFIG_LOCKDEP
57 #define ___GFP_NOLOCKDEP 0x800000u
58 #else
59 #define ___GFP_NOLOCKDEP 0
60 #endif
61 /* If the above are modified, __GFP_BITS_SHIFT may need updating */
62
63 /*
64 * Physical address zone modifiers (see linux/mmzone.h - low four bits)
65 *
66 * Do not put any conditional on these. If necessary modify the definitions
67 * without the underscores and use them consistently. The definitions here may
68 * be used in bit comparisons.
69 */
70 #define __GFP_DMA ((__force gfp_t)___GFP_DMA)
71 #define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM)
72 #define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32)
73 #define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */
74 #define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
75
76 /**
77 * DOC: Page mobility and placement hints
78 *
79 * Page mobility and placement hints
80 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
81 *
82 * These flags provide hints about how mobile the page is. Pages with similar
83 * mobility are placed within the same pageblocks to minimise problems due
84 * to external fragmentation.
85 *
86 * %__GFP_MOVABLE (also a zone modifier) indicates that the page can be
87 * moved by page migration during memory compaction or can be reclaimed.
88 *
89 * %__GFP_RECLAIMABLE is used for slab allocations that specify
90 * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
91 *
92 * %__GFP_WRITE indicates the caller intends to dirty the page. Where possible,
93 * these pages will be spread between local zones to avoid all the dirty
94 * pages being in one zone (fair zone allocation policy).
95 *
96 * %__GFP_HARDWALL enforces the cpuset memory allocation policy.
97 *
98 * %__GFP_THISNODE forces the allocation to be satisfied from the requested
99 * node with no fallbacks or placement policy enforcements.
100 *
101 * %__GFP_ACCOUNT causes the allocation to be accounted to kmemcg.
102 */
103 #define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
104 #define __GFP_WRITE ((__force gfp_t)___GFP_WRITE)
105 #define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL)
106 #define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE)
107 #define __GFP_ACCOUNT ((__force gfp_t)___GFP_ACCOUNT)
108
109 /**
110 * DOC: Watermark modifiers
111 *
112 * Watermark modifiers -- controls access to emergency reserves
113 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
114 *
115 * %__GFP_HIGH indicates that the caller is high-priority and that granting
116 * the request is necessary before the system can make forward progress.
117 * For example, creating an IO context to clean pages.
118 *
119 * %__GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
120 * high priority. Users are typically interrupt handlers. This may be
121 * used in conjunction with %__GFP_HIGH
122 *
123 * %__GFP_MEMALLOC allows access to all memory. This should only be used when
124 * the caller guarantees the allocation will allow more memory to be freed
125 * very shortly e.g. process exiting or swapping. Users either should
126 * be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
127 * Users of this flag have to be extremely careful to not deplete the reserve
128 * completely and implement a throttling mechanism which controls the
129 * consumption of the reserve based on the amount of freed memory.
130 * Usage of a pre-allocated pool (e.g. mempool) should be always considered
131 * before using this flag.
132 *
133 * %__GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
134 * This takes precedence over the %__GFP_MEMALLOC flag if both are set.
135 */
136 #define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC)
137 #define __GFP_HIGH ((__force gfp_t)___GFP_HIGH)
138 #define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC)
139 #define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
140
141 /**
142 * DOC: Reclaim modifiers
143 *
144 * Reclaim modifiers
145 * ~~~~~~~~~~~~~~~~~
146 * Please note that all the following flags are only applicable to sleepable
147 * allocations (e.g. %GFP_NOWAIT and %GFP_ATOMIC will ignore them).
148 *
149 * %__GFP_IO can start physical IO.
150 *
151 * %__GFP_FS can call down to the low-level FS. Clearing the flag avoids the
152 * allocator recursing into the filesystem which might already be holding
153 * locks.
154 *
155 * %__GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
156 * This flag can be cleared to avoid unnecessary delays when a fallback
157 * option is available.
158 *
159 * %__GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
160 * the low watermark is reached and have it reclaim pages until the high
161 * watermark is reached. A caller may wish to clear this flag when fallback
162 * options are available and the reclaim is likely to disrupt the system. The
163 * canonical example is THP allocation where a fallback is cheap but
164 * reclaim/compaction may cause indirect stalls.
165 *
166 * %__GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
167 *
168 * The default allocator behavior depends on the request size. We have a concept
169 * of so called costly allocations (with order > %PAGE_ALLOC_COSTLY_ORDER).
170 * !costly allocations are too essential to fail so they are implicitly
171 * non-failing by default (with some exceptions like OOM victims might fail so
172 * the caller still has to check for failures) while costly requests try to be
173 * not disruptive and back off even without invoking the OOM killer.
174 * The following three modifiers might be used to override some of these
175 * implicit rules
176 *
177 * %__GFP_NORETRY: The VM implementation will try only very lightweight
178 * memory direct reclaim to get some memory under memory pressure (thus
179 * it can sleep). It will avoid disruptive actions like OOM killer. The
180 * caller must handle the failure which is quite likely to happen under
181 * heavy memory pressure. The flag is suitable when failure can easily be
182 * handled at small cost, such as reduced throughput
183 *
184 * %__GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim
185 * procedures that have previously failed if there is some indication
186 * that progress has been made else where. It can wait for other
187 * tasks to attempt high level approaches to freeing memory such as
188 * compaction (which removes fragmentation) and page-out.
189 * There is still a definite limit to the number of retries, but it is
190 * a larger limit than with %__GFP_NORETRY.
191 * Allocations with this flag may fail, but only when there is
192 * genuinely little unused memory. While these allocations do not
193 * directly trigger the OOM killer, their failure indicates that
194 * the system is likely to need to use the OOM killer soon. The
195 * caller must handle failure, but can reasonably do so by failing
196 * a higher-level request, or completing it only in a much less
197 * efficient manner.
198 * If the allocation does fail, and the caller is in a position to
199 * free some non-essential memory, doing so could benefit the system
200 * as a whole.
201 *
202 * %__GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
203 * cannot handle allocation failures. The allocation could block
204 * indefinitely but will never return with failure. Testing for
205 * failure is pointless.
206 * New users should be evaluated carefully (and the flag should be
207 * used only when there is no reasonable failure policy) but it is
208 * definitely preferable to use the flag rather than opencode endless
209 * loop around allocator.
210 * Using this flag for costly allocations is _highly_ discouraged.
211 */
212 #define __GFP_IO ((__force gfp_t)___GFP_IO)
213 #define __GFP_FS ((__force gfp_t)___GFP_FS)
214 #define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
215 #define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
216 #define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
217 #define __GFP_RETRY_MAYFAIL ((__force gfp_t)___GFP_RETRY_MAYFAIL)
218 #define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL)
219 #define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY)
220
221 /**
222 * DOC: Action modifiers
223 *
224 * Action modifiers
225 * ~~~~~~~~~~~~~~~~
226 *
227 * %__GFP_NOWARN suppresses allocation failure reports.
228 *
229 * %__GFP_COMP address compound page metadata.
230 *
231 * %__GFP_ZERO returns a zeroed page on success.
232 */
233 #define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN)
234 #define __GFP_COMP ((__force gfp_t)___GFP_COMP)
235 #define __GFP_ZERO ((__force gfp_t)___GFP_ZERO)
236
237 /* Disable lockdep for GFP context tracking */
238 #define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP)
239
240 /* Room for N __GFP_FOO bits */
241 #define __GFP_BITS_SHIFT (23 + IS_ENABLED(CONFIG_LOCKDEP))
242 #define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
243
244 /**
245 * DOC: Useful GFP flag combinations
246 *
247 * Useful GFP flag combinations
248 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
249 *
250 * Useful GFP flag combinations that are commonly used. It is recommended
251 * that subsystems start with one of these combinations and then set/clear
252 * %__GFP_FOO flags as necessary.
253 *
254 * %GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
255 * watermark is applied to allow access to "atomic reserves".
256 * The current implementation doesn't support NMI and few other strict
257 * non-preemptive contexts (e.g. raw_spin_lock). The same applies to %GFP_NOWAIT.
258 *
259 * %GFP_KERNEL is typical for kernel-internal allocations. The caller requires
260 * %ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
261 *
262 * %GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
263 * accounted to kmemcg.
264 *
265 * %GFP_NOWAIT is for kernel allocations that should not stall for direct
266 * reclaim, start physical IO or use any filesystem callback.
267 *
268 * %GFP_NOIO will use direct reclaim to discard clean pages or slab pages
269 * that do not require the starting of any physical IO.
270 * Please try to avoid using this flag directly and instead use
271 * memalloc_noio_{save,restore} to mark the whole scope which cannot
272 * perform any IO with a short explanation why. All allocation requests
273 * will inherit GFP_NOIO implicitly.
274 *
275 * %GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
276 * Please try to avoid using this flag directly and instead use
277 * memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't
278 * recurse into the FS layer with a short explanation why. All allocation
279 * requests will inherit GFP_NOFS implicitly.
280 *
281 * %GFP_USER is for userspace allocations that also need to be directly
282 * accessibly by the kernel or hardware. It is typically used by hardware
283 * for buffers that are mapped to userspace (e.g. graphics) that hardware
284 * still must DMA to. cpuset limits are enforced for these allocations.
285 *
286 * %GFP_DMA exists for historical reasons and should be avoided where possible.
287 * The flags indicates that the caller requires that the lowest zone be
288 * used (%ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
289 * it would require careful auditing as some users really require it and
290 * others use the flag to avoid lowmem reserves in %ZONE_DMA and treat the
291 * lowest zone as a type of emergency reserve.
292 *
293 * %GFP_DMA32 is similar to %GFP_DMA except that the caller requires a 32-bit
294 * address.
295 *
296 * %GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
297 * do not need to be directly accessible by the kernel but that cannot
298 * move once in use. An example may be a hardware allocation that maps
299 * data directly into userspace but has no addressing limitations.
300 *
301 * %GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
302 * need direct access to but can use kmap() when access is required. They
303 * are expected to be movable via page reclaim or page migration. Typically,
304 * pages on the LRU would also be allocated with %GFP_HIGHUSER_MOVABLE.
305 *
306 * %GFP_TRANSHUGE and %GFP_TRANSHUGE_LIGHT are used for THP allocations. They
307 * are compound allocations that will generally fail quickly if memory is not
308 * available and will not wake kswapd/kcompactd on failure. The _LIGHT
309 * version does not attempt reclaim/compaction at all and is by default used
310 * in page fault path, while the non-light is used by khugepaged.
311 */
312 #define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
313 #define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS)
314 #define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
315 #define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM)
316 #define GFP_NOIO (__GFP_RECLAIM)
317 #define GFP_NOFS (__GFP_RECLAIM | __GFP_IO)
318 #define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
319 #define GFP_DMA __GFP_DMA
320 #define GFP_DMA32 __GFP_DMA32
321 #define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM)
322 #define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE)
323 #define GFP_TRANSHUGE_LIGHT ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
324 __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM)
325 #define GFP_TRANSHUGE (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)
326
327 /* Convert GFP flags to their corresponding migrate type */
328 #define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
329 #define GFP_MOVABLE_SHIFT 3
330
331 static inline int gfp_migratetype(const gfp_t gfp_flags)
332 {
333 VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
334 BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
335 BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
336
337 if (unlikely(page_group_by_mobility_disabled))
338 return MIGRATE_UNMOVABLE;
339
340 /* Group based on mobility */
341 return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
342 }
343 #undef GFP_MOVABLE_MASK
344 #undef GFP_MOVABLE_SHIFT
345
346 static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
347 {
348 return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
349 }
350
351 /**
352 * gfpflags_normal_context - is gfp_flags a normal sleepable context?
353 * @gfp_flags: gfp_flags to test
354 *
355 * Test whether @gfp_flags indicates that the allocation is from the
356 * %current context and allowed to sleep.
357 *
358 * An allocation being allowed to block doesn't mean it owns the %current
359 * context. When direct reclaim path tries to allocate memory, the
360 * allocation context is nested inside whatever %current was doing at the
361 * time of the original allocation. The nested allocation may be allowed
362 * to block but modifying anything %current owns can corrupt the outer
363 * context's expectations.
364 *
365 * %true result from this function indicates that the allocation context
366 * can sleep and use anything that's associated with %current.
367 */
368 static inline bool gfpflags_normal_context(const gfp_t gfp_flags)
369 {
370 return (gfp_flags & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC)) ==
371 __GFP_DIRECT_RECLAIM;
372 }
373
374 #ifdef CONFIG_HIGHMEM
375 #define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
376 #else
377 #define OPT_ZONE_HIGHMEM ZONE_NORMAL
378 #endif
379
380 #ifdef CONFIG_ZONE_DMA
381 #define OPT_ZONE_DMA ZONE_DMA
382 #else
383 #define OPT_ZONE_DMA ZONE_NORMAL
384 #endif
385
386 #ifdef CONFIG_ZONE_DMA32
387 #define OPT_ZONE_DMA32 ZONE_DMA32
388 #else
389 #define OPT_ZONE_DMA32 ZONE_NORMAL
390 #endif
391
392 /*
393 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
394 * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT
395 * bits long and there are 16 of them to cover all possible combinations of
396 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
397 *
398 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
399 * But GFP_MOVABLE is not only a zone specifier but also an allocation
400 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
401 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
402 *
403 * bit result
404 * =================
405 * 0x0 => NORMAL
406 * 0x1 => DMA or NORMAL
407 * 0x2 => HIGHMEM or NORMAL
408 * 0x3 => BAD (DMA+HIGHMEM)
409 * 0x4 => DMA32 or NORMAL
410 * 0x5 => BAD (DMA+DMA32)
411 * 0x6 => BAD (HIGHMEM+DMA32)
412 * 0x7 => BAD (HIGHMEM+DMA32+DMA)
413 * 0x8 => NORMAL (MOVABLE+0)
414 * 0x9 => DMA or NORMAL (MOVABLE+DMA)
415 * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too)
416 * 0xb => BAD (MOVABLE+HIGHMEM+DMA)
417 * 0xc => DMA32 or NORMAL (MOVABLE+DMA32)
418 * 0xd => BAD (MOVABLE+DMA32+DMA)
419 * 0xe => BAD (MOVABLE+DMA32+HIGHMEM)
420 * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
421 *
422 * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
423 */
424
425 #if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
426 /* ZONE_DEVICE is not a valid GFP zone specifier */
427 #define GFP_ZONES_SHIFT 2
428 #else
429 #define GFP_ZONES_SHIFT ZONES_SHIFT
430 #endif
431
432 #if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
433 #error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
434 #endif
435
436 #define GFP_ZONE_TABLE ( \
437 (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \
438 | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \
439 | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \
440 | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \
441 | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \
442 | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \
443 | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
444 | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
445 )
446
447 /*
448 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
449 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
450 * entry starting with bit 0. Bit is set if the combination is not
451 * allowed.
452 */
453 #define GFP_ZONE_BAD ( \
454 1 << (___GFP_DMA | ___GFP_HIGHMEM) \
455 | 1 << (___GFP_DMA | ___GFP_DMA32) \
456 | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \
457 | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \
458 | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \
459 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \
460 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \
461 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \
462 )
463
464 static inline enum zone_type gfp_zone(gfp_t flags)
465 {
466 enum zone_type z;
467 int bit = (__force int) (flags & GFP_ZONEMASK);
468
469 z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
470 ((1 << GFP_ZONES_SHIFT) - 1);
471 VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
472 return z;
473 }
474
475 /*
476 * There is only one page-allocator function, and two main namespaces to
477 * it. The alloc_page*() variants return 'struct page *' and as such
478 * can allocate highmem pages, the *get*page*() variants return
479 * virtual kernel addresses to the allocated page(s).
480 */
481
482 static inline int gfp_zonelist(gfp_t flags)
483 {
484 #ifdef CONFIG_NUMA
485 if (unlikely(flags & __GFP_THISNODE))
486 return ZONELIST_NOFALLBACK;
487 #endif
488 return ZONELIST_FALLBACK;
489 }
490
491 /*
492 * We get the zone list from the current node and the gfp_mask.
493 * This zone list contains a maximum of MAX_NUMNODES*MAX_NR_ZONES zones.
494 * There are two zonelists per node, one for all zones with memory and
495 * one containing just zones from the node the zonelist belongs to.
496 *
497 * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets
498 * optimized to &contig_page_data at compile-time.
499 */
500 static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
501 {
502 return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
503 }
504
505 #ifndef HAVE_ARCH_FREE_PAGE
506 static inline void arch_free_page(struct page *page, int order) { }
507 #endif
508 #ifndef HAVE_ARCH_ALLOC_PAGE
509 static inline void arch_alloc_page(struct page *page, int order) { }
510 #endif
511 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
512 static inline int arch_make_page_accessible(struct page *page)
513 {
514 return 0;
515 }
516 #endif
517
518 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
519 nodemask_t *nodemask);
520
521 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
522 nodemask_t *nodemask, int nr_pages,
523 struct list_head *page_list,
524 struct page **page_array);
525
526 /* Bulk allocate order-0 pages */
527 static inline unsigned long
528 alloc_pages_bulk_list(gfp_t gfp, unsigned long nr_pages, struct list_head *list)
529 {
530 return __alloc_pages_bulk(gfp, numa_mem_id(), NULL, nr_pages, list, NULL);
531 }
532
533 static inline unsigned long
534 alloc_pages_bulk_array(gfp_t gfp, unsigned long nr_pages, struct page **page_array)
535 {
536 return __alloc_pages_bulk(gfp, numa_mem_id(), NULL, nr_pages, NULL, page_array);
537 }
538
539 /*
540 * Allocate pages, preferring the node given as nid. The node must be valid and
541 * online. For more general interface, see alloc_pages_node().
542 */
543 static inline struct page *
544 __alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
545 {
546 VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
547 VM_WARN_ON((gfp_mask & __GFP_THISNODE) && !node_online(nid));
548
549 return __alloc_pages(gfp_mask, order, nid, NULL);
550 }
551
552 /*
553 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
554 * prefer the current CPU's closest node. Otherwise node must be valid and
555 * online.
556 */
557 static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
558 unsigned int order)
559 {
560 if (nid == NUMA_NO_NODE)
561 nid = numa_mem_id();
562
563 return __alloc_pages_node(nid, gfp_mask, order);
564 }
565
566 #ifdef CONFIG_NUMA
567 struct page *alloc_pages(gfp_t gfp, unsigned int order);
568 extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
569 struct vm_area_struct *vma, unsigned long addr,
570 int node, bool hugepage);
571 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
572 alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true)
573 #else
574 static inline struct page *alloc_pages(gfp_t gfp_mask, unsigned int order)
575 {
576 return alloc_pages_node(numa_node_id(), gfp_mask, order);
577 }
578 #define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\
579 alloc_pages(gfp_mask, order)
580 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
581 alloc_pages(gfp_mask, order)
582 #endif
583 #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
584 #define alloc_page_vma(gfp_mask, vma, addr) \
585 alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false)
586
587 extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
588 extern unsigned long get_zeroed_page(gfp_t gfp_mask);
589
590 void *alloc_pages_exact(size_t size, gfp_t gfp_mask);
591 void free_pages_exact(void *virt, size_t size);
592 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask);
593
594 #define __get_free_page(gfp_mask) \
595 __get_free_pages((gfp_mask), 0)
596
597 #define __get_dma_pages(gfp_mask, order) \
598 __get_free_pages((gfp_mask) | GFP_DMA, (order))
599
600 extern void __free_pages(struct page *page, unsigned int order);
601 extern void free_pages(unsigned long addr, unsigned int order);
602
603 struct page_frag_cache;
604 extern void __page_frag_cache_drain(struct page *page, unsigned int count);
605 extern void *page_frag_alloc_align(struct page_frag_cache *nc,
606 unsigned int fragsz, gfp_t gfp_mask,
607 unsigned int align_mask);
608
609 static inline void *page_frag_alloc(struct page_frag_cache *nc,
610 unsigned int fragsz, gfp_t gfp_mask)
611 {
612 return page_frag_alloc_align(nc, fragsz, gfp_mask, ~0u);
613 }
614
615 extern void page_frag_free(void *addr);
616
617 #define __free_page(page) __free_pages((page), 0)
618 #define free_page(addr) free_pages((addr), 0)
619
620 void page_alloc_init(void);
621 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
622 void drain_all_pages(struct zone *zone);
623 void drain_local_pages(struct zone *zone);
624
625 void page_alloc_init_late(void);
626
627 /*
628 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
629 * GFP flags are used before interrupts are enabled. Once interrupts are
630 * enabled, it is set to __GFP_BITS_MASK while the system is running. During
631 * hibernation, it is used by PM to avoid I/O during memory allocation while
632 * devices are suspended.
633 */
634 extern gfp_t gfp_allowed_mask;
635
636 /* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
637 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
638
639 extern void pm_restrict_gfp_mask(void);
640 extern void pm_restore_gfp_mask(void);
641
642 extern gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma);
643
644 #ifdef CONFIG_PM_SLEEP
645 extern bool pm_suspended_storage(void);
646 #else
647 static inline bool pm_suspended_storage(void)
648 {
649 return false;
650 }
651 #endif /* CONFIG_PM_SLEEP */
652
653 #ifdef CONFIG_CONTIG_ALLOC
654 /* The below functions must be run on a range from a single zone. */
655 extern int alloc_contig_range(unsigned long start, unsigned long end,
656 unsigned migratetype, gfp_t gfp_mask);
657 extern struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
658 int nid, nodemask_t *nodemask);
659 #endif
660 void free_contig_range(unsigned long pfn, unsigned long nr_pages);
661
662 #ifdef CONFIG_CMA
663 /* CMA stuff */
664 extern void init_cma_reserved_pageblock(struct page *page);
665 #endif
666
667 #endif /* __LINUX_GFP_H */