]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/gfp.h
rhashtable: compact struct rhashtable_params
[mirror_ubuntu-artful-kernel.git] / include / linux / gfp.h
1 #ifndef __LINUX_GFP_H
2 #define __LINUX_GFP_H
3
4 #include <linux/mmdebug.h>
5 #include <linux/mmzone.h>
6 #include <linux/stddef.h>
7 #include <linux/linkage.h>
8 #include <linux/topology.h>
9
10 struct vm_area_struct;
11
12 /*
13 * In case of changes, please don't forget to update
14 * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c
15 */
16
17 /* Plain integer GFP bitmasks. Do not use this directly. */
18 #define ___GFP_DMA 0x01u
19 #define ___GFP_HIGHMEM 0x02u
20 #define ___GFP_DMA32 0x04u
21 #define ___GFP_MOVABLE 0x08u
22 #define ___GFP_RECLAIMABLE 0x10u
23 #define ___GFP_HIGH 0x20u
24 #define ___GFP_IO 0x40u
25 #define ___GFP_FS 0x80u
26 #define ___GFP_COLD 0x100u
27 #define ___GFP_NOWARN 0x200u
28 #define ___GFP_REPEAT 0x400u
29 #define ___GFP_NOFAIL 0x800u
30 #define ___GFP_NORETRY 0x1000u
31 #define ___GFP_MEMALLOC 0x2000u
32 #define ___GFP_COMP 0x4000u
33 #define ___GFP_ZERO 0x8000u
34 #define ___GFP_NOMEMALLOC 0x10000u
35 #define ___GFP_HARDWALL 0x20000u
36 #define ___GFP_THISNODE 0x40000u
37 #define ___GFP_ATOMIC 0x80000u
38 #define ___GFP_ACCOUNT 0x100000u
39 #define ___GFP_NOTRACK 0x200000u
40 #define ___GFP_DIRECT_RECLAIM 0x400000u
41 #define ___GFP_WRITE 0x800000u
42 #define ___GFP_KSWAPD_RECLAIM 0x1000000u
43 /* If the above are modified, __GFP_BITS_SHIFT may need updating */
44
45 /*
46 * Physical address zone modifiers (see linux/mmzone.h - low four bits)
47 *
48 * Do not put any conditional on these. If necessary modify the definitions
49 * without the underscores and use them consistently. The definitions here may
50 * be used in bit comparisons.
51 */
52 #define __GFP_DMA ((__force gfp_t)___GFP_DMA)
53 #define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM)
54 #define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32)
55 #define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */
56 #define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
57
58 /*
59 * Page mobility and placement hints
60 *
61 * These flags provide hints about how mobile the page is. Pages with similar
62 * mobility are placed within the same pageblocks to minimise problems due
63 * to external fragmentation.
64 *
65 * __GFP_MOVABLE (also a zone modifier) indicates that the page can be
66 * moved by page migration during memory compaction or can be reclaimed.
67 *
68 * __GFP_RECLAIMABLE is used for slab allocations that specify
69 * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
70 *
71 * __GFP_WRITE indicates the caller intends to dirty the page. Where possible,
72 * these pages will be spread between local zones to avoid all the dirty
73 * pages being in one zone (fair zone allocation policy).
74 *
75 * __GFP_HARDWALL enforces the cpuset memory allocation policy.
76 *
77 * __GFP_THISNODE forces the allocation to be satisified from the requested
78 * node with no fallbacks or placement policy enforcements.
79 *
80 * __GFP_ACCOUNT causes the allocation to be accounted to kmemcg.
81 */
82 #define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
83 #define __GFP_WRITE ((__force gfp_t)___GFP_WRITE)
84 #define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL)
85 #define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE)
86 #define __GFP_ACCOUNT ((__force gfp_t)___GFP_ACCOUNT)
87
88 /*
89 * Watermark modifiers -- controls access to emergency reserves
90 *
91 * __GFP_HIGH indicates that the caller is high-priority and that granting
92 * the request is necessary before the system can make forward progress.
93 * For example, creating an IO context to clean pages.
94 *
95 * __GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
96 * high priority. Users are typically interrupt handlers. This may be
97 * used in conjunction with __GFP_HIGH
98 *
99 * __GFP_MEMALLOC allows access to all memory. This should only be used when
100 * the caller guarantees the allocation will allow more memory to be freed
101 * very shortly e.g. process exiting or swapping. Users either should
102 * be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
103 *
104 * __GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
105 * This takes precedence over the __GFP_MEMALLOC flag if both are set.
106 */
107 #define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC)
108 #define __GFP_HIGH ((__force gfp_t)___GFP_HIGH)
109 #define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC)
110 #define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
111
112 /*
113 * Reclaim modifiers
114 *
115 * __GFP_IO can start physical IO.
116 *
117 * __GFP_FS can call down to the low-level FS. Clearing the flag avoids the
118 * allocator recursing into the filesystem which might already be holding
119 * locks.
120 *
121 * __GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
122 * This flag can be cleared to avoid unnecessary delays when a fallback
123 * option is available.
124 *
125 * __GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
126 * the low watermark is reached and have it reclaim pages until the high
127 * watermark is reached. A caller may wish to clear this flag when fallback
128 * options are available and the reclaim is likely to disrupt the system. The
129 * canonical example is THP allocation where a fallback is cheap but
130 * reclaim/compaction may cause indirect stalls.
131 *
132 * __GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
133 *
134 * __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt
135 * _might_ fail. This depends upon the particular VM implementation.
136 *
137 * __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
138 * cannot handle allocation failures. New users should be evaluated carefully
139 * (and the flag should be used only when there is no reasonable failure
140 * policy) but it is definitely preferable to use the flag rather than
141 * opencode endless loop around allocator.
142 *
143 * __GFP_NORETRY: The VM implementation must not retry indefinitely and will
144 * return NULL when direct reclaim and memory compaction have failed to allow
145 * the allocation to succeed. The OOM killer is not called with the current
146 * implementation.
147 */
148 #define __GFP_IO ((__force gfp_t)___GFP_IO)
149 #define __GFP_FS ((__force gfp_t)___GFP_FS)
150 #define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
151 #define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
152 #define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
153 #define __GFP_REPEAT ((__force gfp_t)___GFP_REPEAT)
154 #define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL)
155 #define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY)
156
157 /*
158 * Action modifiers
159 *
160 * __GFP_COLD indicates that the caller does not expect to be used in the near
161 * future. Where possible, a cache-cold page will be returned.
162 *
163 * __GFP_NOWARN suppresses allocation failure reports.
164 *
165 * __GFP_COMP address compound page metadata.
166 *
167 * __GFP_ZERO returns a zeroed page on success.
168 *
169 * __GFP_NOTRACK avoids tracking with kmemcheck.
170 *
171 * __GFP_NOTRACK_FALSE_POSITIVE is an alias of __GFP_NOTRACK. It's a means of
172 * distinguishing in the source between false positives and allocations that
173 * cannot be supported (e.g. page tables).
174 */
175 #define __GFP_COLD ((__force gfp_t)___GFP_COLD)
176 #define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN)
177 #define __GFP_COMP ((__force gfp_t)___GFP_COMP)
178 #define __GFP_ZERO ((__force gfp_t)___GFP_ZERO)
179 #define __GFP_NOTRACK ((__force gfp_t)___GFP_NOTRACK)
180 #define __GFP_NOTRACK_FALSE_POSITIVE (__GFP_NOTRACK)
181
182 /* Room for N __GFP_FOO bits */
183 #define __GFP_BITS_SHIFT 25
184 #define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
185
186 /*
187 * Useful GFP flag combinations that are commonly used. It is recommended
188 * that subsystems start with one of these combinations and then set/clear
189 * __GFP_FOO flags as necessary.
190 *
191 * GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
192 * watermark is applied to allow access to "atomic reserves"
193 *
194 * GFP_KERNEL is typical for kernel-internal allocations. The caller requires
195 * ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
196 *
197 * GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
198 * accounted to kmemcg.
199 *
200 * GFP_NOWAIT is for kernel allocations that should not stall for direct
201 * reclaim, start physical IO or use any filesystem callback.
202 *
203 * GFP_NOIO will use direct reclaim to discard clean pages or slab pages
204 * that do not require the starting of any physical IO.
205 *
206 * GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
207 *
208 * GFP_USER is for userspace allocations that also need to be directly
209 * accessibly by the kernel or hardware. It is typically used by hardware
210 * for buffers that are mapped to userspace (e.g. graphics) that hardware
211 * still must DMA to. cpuset limits are enforced for these allocations.
212 *
213 * GFP_DMA exists for historical reasons and should be avoided where possible.
214 * The flags indicates that the caller requires that the lowest zone be
215 * used (ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
216 * it would require careful auditing as some users really require it and
217 * others use the flag to avoid lowmem reserves in ZONE_DMA and treat the
218 * lowest zone as a type of emergency reserve.
219 *
220 * GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit
221 * address.
222 *
223 * GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
224 * do not need to be directly accessible by the kernel but that cannot
225 * move once in use. An example may be a hardware allocation that maps
226 * data directly into userspace but has no addressing limitations.
227 *
228 * GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
229 * need direct access to but can use kmap() when access is required. They
230 * are expected to be movable via page reclaim or page migration. Typically,
231 * pages on the LRU would also be allocated with GFP_HIGHUSER_MOVABLE.
232 *
233 * GFP_TRANSHUGE and GFP_TRANSHUGE_LIGHT are used for THP allocations. They are
234 * compound allocations that will generally fail quickly if memory is not
235 * available and will not wake kswapd/kcompactd on failure. The _LIGHT
236 * version does not attempt reclaim/compaction at all and is by default used
237 * in page fault path, while the non-light is used by khugepaged.
238 */
239 #define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
240 #define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS)
241 #define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
242 #define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM)
243 #define GFP_NOIO (__GFP_RECLAIM)
244 #define GFP_NOFS (__GFP_RECLAIM | __GFP_IO)
245 #define GFP_TEMPORARY (__GFP_RECLAIM | __GFP_IO | __GFP_FS | \
246 __GFP_RECLAIMABLE)
247 #define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
248 #define GFP_DMA __GFP_DMA
249 #define GFP_DMA32 __GFP_DMA32
250 #define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM)
251 #define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE)
252 #define GFP_TRANSHUGE_LIGHT ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
253 __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM)
254 #define GFP_TRANSHUGE (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)
255
256 /* Convert GFP flags to their corresponding migrate type */
257 #define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
258 #define GFP_MOVABLE_SHIFT 3
259
260 static inline int gfpflags_to_migratetype(const gfp_t gfp_flags)
261 {
262 VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
263 BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
264 BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
265
266 if (unlikely(page_group_by_mobility_disabled))
267 return MIGRATE_UNMOVABLE;
268
269 /* Group based on mobility */
270 return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
271 }
272 #undef GFP_MOVABLE_MASK
273 #undef GFP_MOVABLE_SHIFT
274
275 static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
276 {
277 return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
278 }
279
280 #ifdef CONFIG_HIGHMEM
281 #define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
282 #else
283 #define OPT_ZONE_HIGHMEM ZONE_NORMAL
284 #endif
285
286 #ifdef CONFIG_ZONE_DMA
287 #define OPT_ZONE_DMA ZONE_DMA
288 #else
289 #define OPT_ZONE_DMA ZONE_NORMAL
290 #endif
291
292 #ifdef CONFIG_ZONE_DMA32
293 #define OPT_ZONE_DMA32 ZONE_DMA32
294 #else
295 #define OPT_ZONE_DMA32 ZONE_NORMAL
296 #endif
297
298 /*
299 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
300 * zone to use given the lowest 4 bits of gfp_t. Entries are ZONE_SHIFT long
301 * and there are 16 of them to cover all possible combinations of
302 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
303 *
304 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
305 * But GFP_MOVABLE is not only a zone specifier but also an allocation
306 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
307 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
308 *
309 * bit result
310 * =================
311 * 0x0 => NORMAL
312 * 0x1 => DMA or NORMAL
313 * 0x2 => HIGHMEM or NORMAL
314 * 0x3 => BAD (DMA+HIGHMEM)
315 * 0x4 => DMA32 or DMA or NORMAL
316 * 0x5 => BAD (DMA+DMA32)
317 * 0x6 => BAD (HIGHMEM+DMA32)
318 * 0x7 => BAD (HIGHMEM+DMA32+DMA)
319 * 0x8 => NORMAL (MOVABLE+0)
320 * 0x9 => DMA or NORMAL (MOVABLE+DMA)
321 * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too)
322 * 0xb => BAD (MOVABLE+HIGHMEM+DMA)
323 * 0xc => DMA32 (MOVABLE+DMA32)
324 * 0xd => BAD (MOVABLE+DMA32+DMA)
325 * 0xe => BAD (MOVABLE+DMA32+HIGHMEM)
326 * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
327 *
328 * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
329 */
330
331 #if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
332 /* ZONE_DEVICE is not a valid GFP zone specifier */
333 #define GFP_ZONES_SHIFT 2
334 #else
335 #define GFP_ZONES_SHIFT ZONES_SHIFT
336 #endif
337
338 #if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
339 #error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
340 #endif
341
342 #define GFP_ZONE_TABLE ( \
343 (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \
344 | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \
345 | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \
346 | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \
347 | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \
348 | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \
349 | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
350 | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
351 )
352
353 /*
354 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
355 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
356 * entry starting with bit 0. Bit is set if the combination is not
357 * allowed.
358 */
359 #define GFP_ZONE_BAD ( \
360 1 << (___GFP_DMA | ___GFP_HIGHMEM) \
361 | 1 << (___GFP_DMA | ___GFP_DMA32) \
362 | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \
363 | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \
364 | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \
365 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \
366 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \
367 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \
368 )
369
370 static inline enum zone_type gfp_zone(gfp_t flags)
371 {
372 enum zone_type z;
373 int bit = (__force int) (flags & GFP_ZONEMASK);
374
375 z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
376 ((1 << GFP_ZONES_SHIFT) - 1);
377 VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
378 return z;
379 }
380
381 /*
382 * There is only one page-allocator function, and two main namespaces to
383 * it. The alloc_page*() variants return 'struct page *' and as such
384 * can allocate highmem pages, the *get*page*() variants return
385 * virtual kernel addresses to the allocated page(s).
386 */
387
388 static inline int gfp_zonelist(gfp_t flags)
389 {
390 #ifdef CONFIG_NUMA
391 if (unlikely(flags & __GFP_THISNODE))
392 return ZONELIST_NOFALLBACK;
393 #endif
394 return ZONELIST_FALLBACK;
395 }
396
397 /*
398 * We get the zone list from the current node and the gfp_mask.
399 * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones.
400 * There are two zonelists per node, one for all zones with memory and
401 * one containing just zones from the node the zonelist belongs to.
402 *
403 * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets
404 * optimized to &contig_page_data at compile-time.
405 */
406 static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
407 {
408 return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
409 }
410
411 #ifndef HAVE_ARCH_FREE_PAGE
412 static inline void arch_free_page(struct page *page, int order) { }
413 #endif
414 #ifndef HAVE_ARCH_ALLOC_PAGE
415 static inline void arch_alloc_page(struct page *page, int order) { }
416 #endif
417
418 struct page *
419 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
420 struct zonelist *zonelist, nodemask_t *nodemask);
421
422 static inline struct page *
423 __alloc_pages(gfp_t gfp_mask, unsigned int order,
424 struct zonelist *zonelist)
425 {
426 return __alloc_pages_nodemask(gfp_mask, order, zonelist, NULL);
427 }
428
429 /*
430 * Allocate pages, preferring the node given as nid. The node must be valid and
431 * online. For more general interface, see alloc_pages_node().
432 */
433 static inline struct page *
434 __alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
435 {
436 VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
437 VM_WARN_ON(!node_online(nid));
438
439 return __alloc_pages(gfp_mask, order, node_zonelist(nid, gfp_mask));
440 }
441
442 /*
443 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
444 * prefer the current CPU's closest node. Otherwise node must be valid and
445 * online.
446 */
447 static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
448 unsigned int order)
449 {
450 if (nid == NUMA_NO_NODE)
451 nid = numa_mem_id();
452
453 return __alloc_pages_node(nid, gfp_mask, order);
454 }
455
456 #ifdef CONFIG_NUMA
457 extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order);
458
459 static inline struct page *
460 alloc_pages(gfp_t gfp_mask, unsigned int order)
461 {
462 return alloc_pages_current(gfp_mask, order);
463 }
464 extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
465 struct vm_area_struct *vma, unsigned long addr,
466 int node, bool hugepage);
467 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
468 alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true)
469 #else
470 #define alloc_pages(gfp_mask, order) \
471 alloc_pages_node(numa_node_id(), gfp_mask, order)
472 #define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\
473 alloc_pages(gfp_mask, order)
474 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
475 alloc_pages(gfp_mask, order)
476 #endif
477 #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
478 #define alloc_page_vma(gfp_mask, vma, addr) \
479 alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false)
480 #define alloc_page_vma_node(gfp_mask, vma, addr, node) \
481 alloc_pages_vma(gfp_mask, 0, vma, addr, node, false)
482
483 extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
484 extern unsigned long get_zeroed_page(gfp_t gfp_mask);
485
486 void *alloc_pages_exact(size_t size, gfp_t gfp_mask);
487 void free_pages_exact(void *virt, size_t size);
488 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask);
489
490 #define __get_free_page(gfp_mask) \
491 __get_free_pages((gfp_mask), 0)
492
493 #define __get_dma_pages(gfp_mask, order) \
494 __get_free_pages((gfp_mask) | GFP_DMA, (order))
495
496 extern void __free_pages(struct page *page, unsigned int order);
497 extern void free_pages(unsigned long addr, unsigned int order);
498 extern void free_hot_cold_page(struct page *page, bool cold);
499 extern void free_hot_cold_page_list(struct list_head *list, bool cold);
500
501 struct page_frag_cache;
502 extern void __page_frag_cache_drain(struct page *page, unsigned int count);
503 extern void *page_frag_alloc(struct page_frag_cache *nc,
504 unsigned int fragsz, gfp_t gfp_mask);
505 extern void page_frag_free(void *addr);
506
507 #define __free_page(page) __free_pages((page), 0)
508 #define free_page(addr) free_pages((addr), 0)
509
510 void page_alloc_init(void);
511 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
512 void drain_all_pages(struct zone *zone);
513 void drain_local_pages(struct zone *zone);
514
515 void page_alloc_init_late(void);
516
517 /*
518 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
519 * GFP flags are used before interrupts are enabled. Once interrupts are
520 * enabled, it is set to __GFP_BITS_MASK while the system is running. During
521 * hibernation, it is used by PM to avoid I/O during memory allocation while
522 * devices are suspended.
523 */
524 extern gfp_t gfp_allowed_mask;
525
526 /* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
527 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
528
529 extern void pm_restrict_gfp_mask(void);
530 extern void pm_restore_gfp_mask(void);
531
532 #ifdef CONFIG_PM_SLEEP
533 extern bool pm_suspended_storage(void);
534 #else
535 static inline bool pm_suspended_storage(void)
536 {
537 return false;
538 }
539 #endif /* CONFIG_PM_SLEEP */
540
541 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
542 /* The below functions must be run on a range from a single zone. */
543 extern int alloc_contig_range(unsigned long start, unsigned long end,
544 unsigned migratetype, gfp_t gfp_mask);
545 extern void free_contig_range(unsigned long pfn, unsigned nr_pages);
546 #endif
547
548 #ifdef CONFIG_CMA
549 /* CMA stuff */
550 extern void init_cma_reserved_pageblock(struct page *page);
551 #endif
552
553 #endif /* __LINUX_GFP_H */