]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/linux/hyperv.h
Merge tag 'csky-for-linus-5.2-fixup-gcc-unwind' of git://github.com/c-sky/csky-linux
[mirror_ubuntu-eoan-kernel.git] / include / linux / hyperv.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 *
4 * Copyright (c) 2011, Microsoft Corporation.
5 *
6 * Authors:
7 * Haiyang Zhang <haiyangz@microsoft.com>
8 * Hank Janssen <hjanssen@microsoft.com>
9 * K. Y. Srinivasan <kys@microsoft.com>
10 */
11
12 #ifndef _HYPERV_H
13 #define _HYPERV_H
14
15 #include <uapi/linux/hyperv.h>
16
17 #include <linux/types.h>
18 #include <linux/scatterlist.h>
19 #include <linux/list.h>
20 #include <linux/timer.h>
21 #include <linux/completion.h>
22 #include <linux/device.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/reciprocal_div.h>
26
27 #define MAX_PAGE_BUFFER_COUNT 32
28 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
29
30 #pragma pack(push, 1)
31
32 /* Single-page buffer */
33 struct hv_page_buffer {
34 u32 len;
35 u32 offset;
36 u64 pfn;
37 };
38
39 /* Multiple-page buffer */
40 struct hv_multipage_buffer {
41 /* Length and Offset determines the # of pfns in the array */
42 u32 len;
43 u32 offset;
44 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
45 };
46
47 /*
48 * Multiple-page buffer array; the pfn array is variable size:
49 * The number of entries in the PFN array is determined by
50 * "len" and "offset".
51 */
52 struct hv_mpb_array {
53 /* Length and Offset determines the # of pfns in the array */
54 u32 len;
55 u32 offset;
56 u64 pfn_array[];
57 };
58
59 /* 0x18 includes the proprietary packet header */
60 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
61 (sizeof(struct hv_page_buffer) * \
62 MAX_PAGE_BUFFER_COUNT))
63 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
64 sizeof(struct hv_multipage_buffer))
65
66
67 #pragma pack(pop)
68
69 struct hv_ring_buffer {
70 /* Offset in bytes from the start of ring data below */
71 u32 write_index;
72
73 /* Offset in bytes from the start of ring data below */
74 u32 read_index;
75
76 u32 interrupt_mask;
77
78 /*
79 * WS2012/Win8 and later versions of Hyper-V implement interrupt
80 * driven flow management. The feature bit feat_pending_send_sz
81 * is set by the host on the host->guest ring buffer, and by the
82 * guest on the guest->host ring buffer.
83 *
84 * The meaning of the feature bit is a bit complex in that it has
85 * semantics that apply to both ring buffers. If the guest sets
86 * the feature bit in the guest->host ring buffer, the guest is
87 * telling the host that:
88 * 1) It will set the pending_send_sz field in the guest->host ring
89 * buffer when it is waiting for space to become available, and
90 * 2) It will read the pending_send_sz field in the host->guest
91 * ring buffer and interrupt the host when it frees enough space
92 *
93 * Similarly, if the host sets the feature bit in the host->guest
94 * ring buffer, the host is telling the guest that:
95 * 1) It will set the pending_send_sz field in the host->guest ring
96 * buffer when it is waiting for space to become available, and
97 * 2) It will read the pending_send_sz field in the guest->host
98 * ring buffer and interrupt the guest when it frees enough space
99 *
100 * If either the guest or host does not set the feature bit that it
101 * owns, that guest or host must do polling if it encounters a full
102 * ring buffer, and not signal the other end with an interrupt.
103 */
104 u32 pending_send_sz;
105 u32 reserved1[12];
106 union {
107 struct {
108 u32 feat_pending_send_sz:1;
109 };
110 u32 value;
111 } feature_bits;
112
113 /* Pad it to PAGE_SIZE so that data starts on page boundary */
114 u8 reserved2[4028];
115
116 /*
117 * Ring data starts here + RingDataStartOffset
118 * !!! DO NOT place any fields below this !!!
119 */
120 u8 buffer[0];
121 } __packed;
122
123 struct hv_ring_buffer_info {
124 struct hv_ring_buffer *ring_buffer;
125 u32 ring_size; /* Include the shared header */
126 struct reciprocal_value ring_size_div10_reciprocal;
127 spinlock_t ring_lock;
128
129 u32 ring_datasize; /* < ring_size */
130 u32 priv_read_index;
131 /*
132 * The ring buffer mutex lock. This lock prevents the ring buffer from
133 * being freed while the ring buffer is being accessed.
134 */
135 struct mutex ring_buffer_mutex;
136 };
137
138
139 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
140 {
141 u32 read_loc, write_loc, dsize, read;
142
143 dsize = rbi->ring_datasize;
144 read_loc = rbi->ring_buffer->read_index;
145 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
146
147 read = write_loc >= read_loc ? (write_loc - read_loc) :
148 (dsize - read_loc) + write_loc;
149
150 return read;
151 }
152
153 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
154 {
155 u32 read_loc, write_loc, dsize, write;
156
157 dsize = rbi->ring_datasize;
158 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
159 write_loc = rbi->ring_buffer->write_index;
160
161 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
162 read_loc - write_loc;
163 return write;
164 }
165
166 static inline u32 hv_get_avail_to_write_percent(
167 const struct hv_ring_buffer_info *rbi)
168 {
169 u32 avail_write = hv_get_bytes_to_write(rbi);
170
171 return reciprocal_divide(
172 (avail_write << 3) + (avail_write << 1),
173 rbi->ring_size_div10_reciprocal);
174 }
175
176 /*
177 * VMBUS version is 32 bit entity broken up into
178 * two 16 bit quantities: major_number. minor_number.
179 *
180 * 0 . 13 (Windows Server 2008)
181 * 1 . 1 (Windows 7)
182 * 2 . 4 (Windows 8)
183 * 3 . 0 (Windows 8 R2)
184 * 4 . 0 (Windows 10)
185 * 5 . 0 (Newer Windows 10)
186 */
187
188 #define VERSION_WS2008 ((0 << 16) | (13))
189 #define VERSION_WIN7 ((1 << 16) | (1))
190 #define VERSION_WIN8 ((2 << 16) | (4))
191 #define VERSION_WIN8_1 ((3 << 16) | (0))
192 #define VERSION_WIN10 ((4 << 16) | (0))
193 #define VERSION_WIN10_V5 ((5 << 16) | (0))
194
195 #define VERSION_INVAL -1
196
197 #define VERSION_CURRENT VERSION_WIN10_V5
198
199 /* Make maximum size of pipe payload of 16K */
200 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
201
202 /* Define PipeMode values. */
203 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
204 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
205
206 /* The size of the user defined data buffer for non-pipe offers. */
207 #define MAX_USER_DEFINED_BYTES 120
208
209 /* The size of the user defined data buffer for pipe offers. */
210 #define MAX_PIPE_USER_DEFINED_BYTES 116
211
212 /*
213 * At the center of the Channel Management library is the Channel Offer. This
214 * struct contains the fundamental information about an offer.
215 */
216 struct vmbus_channel_offer {
217 guid_t if_type;
218 guid_t if_instance;
219
220 /*
221 * These two fields are not currently used.
222 */
223 u64 reserved1;
224 u64 reserved2;
225
226 u16 chn_flags;
227 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
228
229 union {
230 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
231 struct {
232 unsigned char user_def[MAX_USER_DEFINED_BYTES];
233 } std;
234
235 /*
236 * Pipes:
237 * The following sructure is an integrated pipe protocol, which
238 * is implemented on top of standard user-defined data. Pipe
239 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
240 * use.
241 */
242 struct {
243 u32 pipe_mode;
244 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
245 } pipe;
246 } u;
247 /*
248 * The sub_channel_index is defined in win8.
249 */
250 u16 sub_channel_index;
251 u16 reserved3;
252 } __packed;
253
254 /* Server Flags */
255 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
256 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
257 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
258 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
259 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
260 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
261 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
262 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
263
264 struct vmpacket_descriptor {
265 u16 type;
266 u16 offset8;
267 u16 len8;
268 u16 flags;
269 u64 trans_id;
270 } __packed;
271
272 struct vmpacket_header {
273 u32 prev_pkt_start_offset;
274 struct vmpacket_descriptor descriptor;
275 } __packed;
276
277 struct vmtransfer_page_range {
278 u32 byte_count;
279 u32 byte_offset;
280 } __packed;
281
282 struct vmtransfer_page_packet_header {
283 struct vmpacket_descriptor d;
284 u16 xfer_pageset_id;
285 u8 sender_owns_set;
286 u8 reserved;
287 u32 range_cnt;
288 struct vmtransfer_page_range ranges[1];
289 } __packed;
290
291 struct vmgpadl_packet_header {
292 struct vmpacket_descriptor d;
293 u32 gpadl;
294 u32 reserved;
295 } __packed;
296
297 struct vmadd_remove_transfer_page_set {
298 struct vmpacket_descriptor d;
299 u32 gpadl;
300 u16 xfer_pageset_id;
301 u16 reserved;
302 } __packed;
303
304 /*
305 * This structure defines a range in guest physical space that can be made to
306 * look virtually contiguous.
307 */
308 struct gpa_range {
309 u32 byte_count;
310 u32 byte_offset;
311 u64 pfn_array[0];
312 };
313
314 /*
315 * This is the format for an Establish Gpadl packet, which contains a handle by
316 * which this GPADL will be known and a set of GPA ranges associated with it.
317 * This can be converted to a MDL by the guest OS. If there are multiple GPA
318 * ranges, then the resulting MDL will be "chained," representing multiple VA
319 * ranges.
320 */
321 struct vmestablish_gpadl {
322 struct vmpacket_descriptor d;
323 u32 gpadl;
324 u32 range_cnt;
325 struct gpa_range range[1];
326 } __packed;
327
328 /*
329 * This is the format for a Teardown Gpadl packet, which indicates that the
330 * GPADL handle in the Establish Gpadl packet will never be referenced again.
331 */
332 struct vmteardown_gpadl {
333 struct vmpacket_descriptor d;
334 u32 gpadl;
335 u32 reserved; /* for alignment to a 8-byte boundary */
336 } __packed;
337
338 /*
339 * This is the format for a GPA-Direct packet, which contains a set of GPA
340 * ranges, in addition to commands and/or data.
341 */
342 struct vmdata_gpa_direct {
343 struct vmpacket_descriptor d;
344 u32 reserved;
345 u32 range_cnt;
346 struct gpa_range range[1];
347 } __packed;
348
349 /* This is the format for a Additional Data Packet. */
350 struct vmadditional_data {
351 struct vmpacket_descriptor d;
352 u64 total_bytes;
353 u32 offset;
354 u32 byte_cnt;
355 unsigned char data[1];
356 } __packed;
357
358 union vmpacket_largest_possible_header {
359 struct vmpacket_descriptor simple_hdr;
360 struct vmtransfer_page_packet_header xfer_page_hdr;
361 struct vmgpadl_packet_header gpadl_hdr;
362 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
363 struct vmestablish_gpadl establish_gpadl_hdr;
364 struct vmteardown_gpadl teardown_gpadl_hdr;
365 struct vmdata_gpa_direct data_gpa_direct_hdr;
366 };
367
368 #define VMPACKET_DATA_START_ADDRESS(__packet) \
369 (void *)(((unsigned char *)__packet) + \
370 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
371
372 #define VMPACKET_DATA_LENGTH(__packet) \
373 ((((struct vmpacket_descriptor)__packet)->len8 - \
374 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
375
376 #define VMPACKET_TRANSFER_MODE(__packet) \
377 (((struct IMPACT)__packet)->type)
378
379 enum vmbus_packet_type {
380 VM_PKT_INVALID = 0x0,
381 VM_PKT_SYNCH = 0x1,
382 VM_PKT_ADD_XFER_PAGESET = 0x2,
383 VM_PKT_RM_XFER_PAGESET = 0x3,
384 VM_PKT_ESTABLISH_GPADL = 0x4,
385 VM_PKT_TEARDOWN_GPADL = 0x5,
386 VM_PKT_DATA_INBAND = 0x6,
387 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
388 VM_PKT_DATA_USING_GPADL = 0x8,
389 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
390 VM_PKT_CANCEL_REQUEST = 0xa,
391 VM_PKT_COMP = 0xb,
392 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
393 VM_PKT_ADDITIONAL_DATA = 0xd
394 };
395
396 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
397
398
399 /* Version 1 messages */
400 enum vmbus_channel_message_type {
401 CHANNELMSG_INVALID = 0,
402 CHANNELMSG_OFFERCHANNEL = 1,
403 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
404 CHANNELMSG_REQUESTOFFERS = 3,
405 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
406 CHANNELMSG_OPENCHANNEL = 5,
407 CHANNELMSG_OPENCHANNEL_RESULT = 6,
408 CHANNELMSG_CLOSECHANNEL = 7,
409 CHANNELMSG_GPADL_HEADER = 8,
410 CHANNELMSG_GPADL_BODY = 9,
411 CHANNELMSG_GPADL_CREATED = 10,
412 CHANNELMSG_GPADL_TEARDOWN = 11,
413 CHANNELMSG_GPADL_TORNDOWN = 12,
414 CHANNELMSG_RELID_RELEASED = 13,
415 CHANNELMSG_INITIATE_CONTACT = 14,
416 CHANNELMSG_VERSION_RESPONSE = 15,
417 CHANNELMSG_UNLOAD = 16,
418 CHANNELMSG_UNLOAD_RESPONSE = 17,
419 CHANNELMSG_18 = 18,
420 CHANNELMSG_19 = 19,
421 CHANNELMSG_20 = 20,
422 CHANNELMSG_TL_CONNECT_REQUEST = 21,
423 CHANNELMSG_COUNT
424 };
425
426 struct vmbus_channel_message_header {
427 enum vmbus_channel_message_type msgtype;
428 u32 padding;
429 } __packed;
430
431 /* Query VMBus Version parameters */
432 struct vmbus_channel_query_vmbus_version {
433 struct vmbus_channel_message_header header;
434 u32 version;
435 } __packed;
436
437 /* VMBus Version Supported parameters */
438 struct vmbus_channel_version_supported {
439 struct vmbus_channel_message_header header;
440 u8 version_supported;
441 } __packed;
442
443 /* Offer Channel parameters */
444 struct vmbus_channel_offer_channel {
445 struct vmbus_channel_message_header header;
446 struct vmbus_channel_offer offer;
447 u32 child_relid;
448 u8 monitorid;
449 /*
450 * win7 and beyond splits this field into a bit field.
451 */
452 u8 monitor_allocated:1;
453 u8 reserved:7;
454 /*
455 * These are new fields added in win7 and later.
456 * Do not access these fields without checking the
457 * negotiated protocol.
458 *
459 * If "is_dedicated_interrupt" is set, we must not set the
460 * associated bit in the channel bitmap while sending the
461 * interrupt to the host.
462 *
463 * connection_id is to be used in signaling the host.
464 */
465 u16 is_dedicated_interrupt:1;
466 u16 reserved1:15;
467 u32 connection_id;
468 } __packed;
469
470 /* Rescind Offer parameters */
471 struct vmbus_channel_rescind_offer {
472 struct vmbus_channel_message_header header;
473 u32 child_relid;
474 } __packed;
475
476 static inline u32
477 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
478 {
479 return rbi->ring_buffer->pending_send_sz;
480 }
481
482 /*
483 * Request Offer -- no parameters, SynIC message contains the partition ID
484 * Set Snoop -- no parameters, SynIC message contains the partition ID
485 * Clear Snoop -- no parameters, SynIC message contains the partition ID
486 * All Offers Delivered -- no parameters, SynIC message contains the partition
487 * ID
488 * Flush Client -- no parameters, SynIC message contains the partition ID
489 */
490
491 /* Open Channel parameters */
492 struct vmbus_channel_open_channel {
493 struct vmbus_channel_message_header header;
494
495 /* Identifies the specific VMBus channel that is being opened. */
496 u32 child_relid;
497
498 /* ID making a particular open request at a channel offer unique. */
499 u32 openid;
500
501 /* GPADL for the channel's ring buffer. */
502 u32 ringbuffer_gpadlhandle;
503
504 /*
505 * Starting with win8, this field will be used to specify
506 * the target virtual processor on which to deliver the interrupt for
507 * the host to guest communication.
508 * Prior to win8, incoming channel interrupts would only
509 * be delivered on cpu 0. Setting this value to 0 would
510 * preserve the earlier behavior.
511 */
512 u32 target_vp;
513
514 /*
515 * The upstream ring buffer begins at offset zero in the memory
516 * described by RingBufferGpadlHandle. The downstream ring buffer
517 * follows it at this offset (in pages).
518 */
519 u32 downstream_ringbuffer_pageoffset;
520
521 /* User-specific data to be passed along to the server endpoint. */
522 unsigned char userdata[MAX_USER_DEFINED_BYTES];
523 } __packed;
524
525 /* Open Channel Result parameters */
526 struct vmbus_channel_open_result {
527 struct vmbus_channel_message_header header;
528 u32 child_relid;
529 u32 openid;
530 u32 status;
531 } __packed;
532
533 /* Close channel parameters; */
534 struct vmbus_channel_close_channel {
535 struct vmbus_channel_message_header header;
536 u32 child_relid;
537 } __packed;
538
539 /* Channel Message GPADL */
540 #define GPADL_TYPE_RING_BUFFER 1
541 #define GPADL_TYPE_SERVER_SAVE_AREA 2
542 #define GPADL_TYPE_TRANSACTION 8
543
544 /*
545 * The number of PFNs in a GPADL message is defined by the number of
546 * pages that would be spanned by ByteCount and ByteOffset. If the
547 * implied number of PFNs won't fit in this packet, there will be a
548 * follow-up packet that contains more.
549 */
550 struct vmbus_channel_gpadl_header {
551 struct vmbus_channel_message_header header;
552 u32 child_relid;
553 u32 gpadl;
554 u16 range_buflen;
555 u16 rangecount;
556 struct gpa_range range[0];
557 } __packed;
558
559 /* This is the followup packet that contains more PFNs. */
560 struct vmbus_channel_gpadl_body {
561 struct vmbus_channel_message_header header;
562 u32 msgnumber;
563 u32 gpadl;
564 u64 pfn[0];
565 } __packed;
566
567 struct vmbus_channel_gpadl_created {
568 struct vmbus_channel_message_header header;
569 u32 child_relid;
570 u32 gpadl;
571 u32 creation_status;
572 } __packed;
573
574 struct vmbus_channel_gpadl_teardown {
575 struct vmbus_channel_message_header header;
576 u32 child_relid;
577 u32 gpadl;
578 } __packed;
579
580 struct vmbus_channel_gpadl_torndown {
581 struct vmbus_channel_message_header header;
582 u32 gpadl;
583 } __packed;
584
585 struct vmbus_channel_relid_released {
586 struct vmbus_channel_message_header header;
587 u32 child_relid;
588 } __packed;
589
590 struct vmbus_channel_initiate_contact {
591 struct vmbus_channel_message_header header;
592 u32 vmbus_version_requested;
593 u32 target_vcpu; /* The VCPU the host should respond to */
594 union {
595 u64 interrupt_page;
596 struct {
597 u8 msg_sint;
598 u8 padding1[3];
599 u32 padding2;
600 };
601 };
602 u64 monitor_page1;
603 u64 monitor_page2;
604 } __packed;
605
606 /* Hyper-V socket: guest's connect()-ing to host */
607 struct vmbus_channel_tl_connect_request {
608 struct vmbus_channel_message_header header;
609 guid_t guest_endpoint_id;
610 guid_t host_service_id;
611 } __packed;
612
613 struct vmbus_channel_version_response {
614 struct vmbus_channel_message_header header;
615 u8 version_supported;
616
617 u8 connection_state;
618 u16 padding;
619
620 /*
621 * On new hosts that support VMBus protocol 5.0, we must use
622 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
623 * and for subsequent messages, we must use the Message Connection ID
624 * field in the host-returned Version Response Message.
625 *
626 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
627 */
628 u32 msg_conn_id;
629 } __packed;
630
631 enum vmbus_channel_state {
632 CHANNEL_OFFER_STATE,
633 CHANNEL_OPENING_STATE,
634 CHANNEL_OPEN_STATE,
635 CHANNEL_OPENED_STATE,
636 };
637
638 /*
639 * Represents each channel msg on the vmbus connection This is a
640 * variable-size data structure depending on the msg type itself
641 */
642 struct vmbus_channel_msginfo {
643 /* Bookkeeping stuff */
644 struct list_head msglistentry;
645
646 /* So far, this is only used to handle gpadl body message */
647 struct list_head submsglist;
648
649 /* Synchronize the request/response if needed */
650 struct completion waitevent;
651 struct vmbus_channel *waiting_channel;
652 union {
653 struct vmbus_channel_version_supported version_supported;
654 struct vmbus_channel_open_result open_result;
655 struct vmbus_channel_gpadl_torndown gpadl_torndown;
656 struct vmbus_channel_gpadl_created gpadl_created;
657 struct vmbus_channel_version_response version_response;
658 } response;
659
660 u32 msgsize;
661 /*
662 * The channel message that goes out on the "wire".
663 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
664 */
665 unsigned char msg[0];
666 };
667
668 struct vmbus_close_msg {
669 struct vmbus_channel_msginfo info;
670 struct vmbus_channel_close_channel msg;
671 };
672
673 /* Define connection identifier type. */
674 union hv_connection_id {
675 u32 asu32;
676 struct {
677 u32 id:24;
678 u32 reserved:8;
679 } u;
680 };
681
682 enum hv_numa_policy {
683 HV_BALANCED = 0,
684 HV_LOCALIZED,
685 };
686
687 enum vmbus_device_type {
688 HV_IDE = 0,
689 HV_SCSI,
690 HV_FC,
691 HV_NIC,
692 HV_ND,
693 HV_PCIE,
694 HV_FB,
695 HV_KBD,
696 HV_MOUSE,
697 HV_KVP,
698 HV_TS,
699 HV_HB,
700 HV_SHUTDOWN,
701 HV_FCOPY,
702 HV_BACKUP,
703 HV_DM,
704 HV_UNKNOWN,
705 };
706
707 struct vmbus_device {
708 u16 dev_type;
709 guid_t guid;
710 bool perf_device;
711 };
712
713 struct vmbus_channel {
714 struct list_head listentry;
715
716 struct hv_device *device_obj;
717
718 enum vmbus_channel_state state;
719
720 struct vmbus_channel_offer_channel offermsg;
721 /*
722 * These are based on the OfferMsg.MonitorId.
723 * Save it here for easy access.
724 */
725 u8 monitor_grp;
726 u8 monitor_bit;
727
728 bool rescind; /* got rescind msg */
729 struct completion rescind_event;
730
731 u32 ringbuffer_gpadlhandle;
732
733 /* Allocated memory for ring buffer */
734 struct page *ringbuffer_page;
735 u32 ringbuffer_pagecount;
736 u32 ringbuffer_send_offset;
737 struct hv_ring_buffer_info outbound; /* send to parent */
738 struct hv_ring_buffer_info inbound; /* receive from parent */
739
740 struct vmbus_close_msg close_msg;
741
742 /* Statistics */
743 u64 interrupts; /* Host to Guest interrupts */
744 u64 sig_events; /* Guest to Host events */
745
746 /*
747 * Guest to host interrupts caused by the outbound ring buffer changing
748 * from empty to not empty.
749 */
750 u64 intr_out_empty;
751
752 /*
753 * Indicates that a full outbound ring buffer was encountered. The flag
754 * is set to true when a full outbound ring buffer is encountered and
755 * set to false when a write to the outbound ring buffer is completed.
756 */
757 bool out_full_flag;
758
759 /* Channel callback's invoked in softirq context */
760 struct tasklet_struct callback_event;
761 void (*onchannel_callback)(void *context);
762 void *channel_callback_context;
763
764 /*
765 * A channel can be marked for one of three modes of reading:
766 * BATCHED - callback called from taslket and should read
767 * channel until empty. Interrupts from the host
768 * are masked while read is in process (default).
769 * DIRECT - callback called from tasklet (softirq).
770 * ISR - callback called in interrupt context and must
771 * invoke its own deferred processing.
772 * Host interrupts are disabled and must be re-enabled
773 * when ring is empty.
774 */
775 enum hv_callback_mode {
776 HV_CALL_BATCHED,
777 HV_CALL_DIRECT,
778 HV_CALL_ISR
779 } callback_mode;
780
781 bool is_dedicated_interrupt;
782 u64 sig_event;
783
784 /*
785 * Starting with win8, this field will be used to specify
786 * the target virtual processor on which to deliver the interrupt for
787 * the host to guest communication.
788 * Prior to win8, incoming channel interrupts would only
789 * be delivered on cpu 0. Setting this value to 0 would
790 * preserve the earlier behavior.
791 */
792 u32 target_vp;
793 /* The corresponding CPUID in the guest */
794 u32 target_cpu;
795 /*
796 * State to manage the CPU affiliation of channels.
797 */
798 struct cpumask alloced_cpus_in_node;
799 int numa_node;
800 /*
801 * Support for sub-channels. For high performance devices,
802 * it will be useful to have multiple sub-channels to support
803 * a scalable communication infrastructure with the host.
804 * The support for sub-channels is implemented as an extention
805 * to the current infrastructure.
806 * The initial offer is considered the primary channel and this
807 * offer message will indicate if the host supports sub-channels.
808 * The guest is free to ask for sub-channels to be offerred and can
809 * open these sub-channels as a normal "primary" channel. However,
810 * all sub-channels will have the same type and instance guids as the
811 * primary channel. Requests sent on a given channel will result in a
812 * response on the same channel.
813 */
814
815 /*
816 * Sub-channel creation callback. This callback will be called in
817 * process context when a sub-channel offer is received from the host.
818 * The guest can open the sub-channel in the context of this callback.
819 */
820 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
821
822 /*
823 * Channel rescind callback. Some channels (the hvsock ones), need to
824 * register a callback which is invoked in vmbus_onoffer_rescind().
825 */
826 void (*chn_rescind_callback)(struct vmbus_channel *channel);
827
828 /*
829 * The spinlock to protect the structure. It is being used to protect
830 * test-and-set access to various attributes of the structure as well
831 * as all sc_list operations.
832 */
833 spinlock_t lock;
834 /*
835 * All Sub-channels of a primary channel are linked here.
836 */
837 struct list_head sc_list;
838 /*
839 * The primary channel this sub-channel belongs to.
840 * This will be NULL for the primary channel.
841 */
842 struct vmbus_channel *primary_channel;
843 /*
844 * Support per-channel state for use by vmbus drivers.
845 */
846 void *per_channel_state;
847 /*
848 * To support per-cpu lookup mapping of relid to channel,
849 * link up channels based on their CPU affinity.
850 */
851 struct list_head percpu_list;
852
853 /*
854 * Defer freeing channel until after all cpu's have
855 * gone through grace period.
856 */
857 struct rcu_head rcu;
858
859 /*
860 * For sysfs per-channel properties.
861 */
862 struct kobject kobj;
863
864 /*
865 * For performance critical channels (storage, networking
866 * etc,), Hyper-V has a mechanism to enhance the throughput
867 * at the expense of latency:
868 * When the host is to be signaled, we just set a bit in a shared page
869 * and this bit will be inspected by the hypervisor within a certain
870 * window and if the bit is set, the host will be signaled. The window
871 * of time is the monitor latency - currently around 100 usecs. This
872 * mechanism improves throughput by:
873 *
874 * A) Making the host more efficient - each time it wakes up,
875 * potentially it will process morev number of packets. The
876 * monitor latency allows a batch to build up.
877 * B) By deferring the hypercall to signal, we will also minimize
878 * the interrupts.
879 *
880 * Clearly, these optimizations improve throughput at the expense of
881 * latency. Furthermore, since the channel is shared for both
882 * control and data messages, control messages currently suffer
883 * unnecessary latency adversley impacting performance and boot
884 * time. To fix this issue, permit tagging the channel as being
885 * in "low latency" mode. In this mode, we will bypass the monitor
886 * mechanism.
887 */
888 bool low_latency;
889
890 /*
891 * NUMA distribution policy:
892 * We support two policies:
893 * 1) Balanced: Here all performance critical channels are
894 * distributed evenly amongst all the NUMA nodes.
895 * This policy will be the default policy.
896 * 2) Localized: All channels of a given instance of a
897 * performance critical service will be assigned CPUs
898 * within a selected NUMA node.
899 */
900 enum hv_numa_policy affinity_policy;
901
902 bool probe_done;
903
904 /*
905 * We must offload the handling of the primary/sub channels
906 * from the single-threaded vmbus_connection.work_queue to
907 * two different workqueue, otherwise we can block
908 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
909 */
910 struct work_struct add_channel_work;
911
912 /*
913 * Guest to host interrupts caused by the inbound ring buffer changing
914 * from full to not full while a packet is waiting.
915 */
916 u64 intr_in_full;
917
918 /*
919 * The total number of write operations that encountered a full
920 * outbound ring buffer.
921 */
922 u64 out_full_total;
923
924 /*
925 * The number of write operations that were the first to encounter a
926 * full outbound ring buffer.
927 */
928 u64 out_full_first;
929 };
930
931 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
932 {
933 return !!(c->offermsg.offer.chn_flags &
934 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
935 }
936
937 static inline void set_channel_affinity_state(struct vmbus_channel *c,
938 enum hv_numa_policy policy)
939 {
940 c->affinity_policy = policy;
941 }
942
943 static inline void set_channel_read_mode(struct vmbus_channel *c,
944 enum hv_callback_mode mode)
945 {
946 c->callback_mode = mode;
947 }
948
949 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
950 {
951 c->per_channel_state = s;
952 }
953
954 static inline void *get_per_channel_state(struct vmbus_channel *c)
955 {
956 return c->per_channel_state;
957 }
958
959 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
960 u32 size)
961 {
962 unsigned long flags;
963
964 if (size) {
965 spin_lock_irqsave(&c->outbound.ring_lock, flags);
966 ++c->out_full_total;
967
968 if (!c->out_full_flag) {
969 ++c->out_full_first;
970 c->out_full_flag = true;
971 }
972 spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
973 } else {
974 c->out_full_flag = false;
975 }
976
977 c->outbound.ring_buffer->pending_send_sz = size;
978 }
979
980 static inline void set_low_latency_mode(struct vmbus_channel *c)
981 {
982 c->low_latency = true;
983 }
984
985 static inline void clear_low_latency_mode(struct vmbus_channel *c)
986 {
987 c->low_latency = false;
988 }
989
990 void vmbus_onmessage(void *context);
991
992 int vmbus_request_offers(void);
993
994 /*
995 * APIs for managing sub-channels.
996 */
997
998 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
999 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1000
1001 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1002 void (*chn_rescind_cb)(struct vmbus_channel *));
1003
1004 /*
1005 * Check if sub-channels have already been offerred. This API will be useful
1006 * when the driver is unloaded after establishing sub-channels. In this case,
1007 * when the driver is re-loaded, the driver would have to check if the
1008 * subchannels have already been established before attempting to request
1009 * the creation of sub-channels.
1010 * This function returns TRUE to indicate that subchannels have already been
1011 * created.
1012 * This function should be invoked after setting the callback function for
1013 * sub-channel creation.
1014 */
1015 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1016
1017 /* The format must be the same as struct vmdata_gpa_direct */
1018 struct vmbus_channel_packet_page_buffer {
1019 u16 type;
1020 u16 dataoffset8;
1021 u16 length8;
1022 u16 flags;
1023 u64 transactionid;
1024 u32 reserved;
1025 u32 rangecount;
1026 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1027 } __packed;
1028
1029 /* The format must be the same as struct vmdata_gpa_direct */
1030 struct vmbus_channel_packet_multipage_buffer {
1031 u16 type;
1032 u16 dataoffset8;
1033 u16 length8;
1034 u16 flags;
1035 u64 transactionid;
1036 u32 reserved;
1037 u32 rangecount; /* Always 1 in this case */
1038 struct hv_multipage_buffer range;
1039 } __packed;
1040
1041 /* The format must be the same as struct vmdata_gpa_direct */
1042 struct vmbus_packet_mpb_array {
1043 u16 type;
1044 u16 dataoffset8;
1045 u16 length8;
1046 u16 flags;
1047 u64 transactionid;
1048 u32 reserved;
1049 u32 rangecount; /* Always 1 in this case */
1050 struct hv_mpb_array range;
1051 } __packed;
1052
1053 int vmbus_alloc_ring(struct vmbus_channel *channel,
1054 u32 send_size, u32 recv_size);
1055 void vmbus_free_ring(struct vmbus_channel *channel);
1056
1057 int vmbus_connect_ring(struct vmbus_channel *channel,
1058 void (*onchannel_callback)(void *context),
1059 void *context);
1060 int vmbus_disconnect_ring(struct vmbus_channel *channel);
1061
1062 extern int vmbus_open(struct vmbus_channel *channel,
1063 u32 send_ringbuffersize,
1064 u32 recv_ringbuffersize,
1065 void *userdata,
1066 u32 userdatalen,
1067 void (*onchannel_callback)(void *context),
1068 void *context);
1069
1070 extern void vmbus_close(struct vmbus_channel *channel);
1071
1072 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1073 void *buffer,
1074 u32 bufferLen,
1075 u64 requestid,
1076 enum vmbus_packet_type type,
1077 u32 flags);
1078
1079 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1080 struct hv_page_buffer pagebuffers[],
1081 u32 pagecount,
1082 void *buffer,
1083 u32 bufferlen,
1084 u64 requestid);
1085
1086 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1087 struct vmbus_packet_mpb_array *mpb,
1088 u32 desc_size,
1089 void *buffer,
1090 u32 bufferlen,
1091 u64 requestid);
1092
1093 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1094 void *kbuffer,
1095 u32 size,
1096 u32 *gpadl_handle);
1097
1098 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1099 u32 gpadl_handle);
1100
1101 void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1102
1103 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1104 void *buffer,
1105 u32 bufferlen,
1106 u32 *buffer_actual_len,
1107 u64 *requestid);
1108
1109 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1110 void *buffer,
1111 u32 bufferlen,
1112 u32 *buffer_actual_len,
1113 u64 *requestid);
1114
1115
1116 extern void vmbus_ontimer(unsigned long data);
1117
1118 /* Base driver object */
1119 struct hv_driver {
1120 const char *name;
1121
1122 /*
1123 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1124 * channel flag, actually doesn't mean a synthetic device because the
1125 * offer's if_type/if_instance can change for every new hvsock
1126 * connection.
1127 *
1128 * However, to facilitate the notification of new-offer/rescind-offer
1129 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1130 * a special vmbus device, and hence we need the below flag to
1131 * indicate if the driver is the hvsock driver or not: we need to
1132 * specially treat the hvosck offer & driver in vmbus_match().
1133 */
1134 bool hvsock;
1135
1136 /* the device type supported by this driver */
1137 guid_t dev_type;
1138 const struct hv_vmbus_device_id *id_table;
1139
1140 struct device_driver driver;
1141
1142 /* dynamic device GUID's */
1143 struct {
1144 spinlock_t lock;
1145 struct list_head list;
1146 } dynids;
1147
1148 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1149 int (*remove)(struct hv_device *);
1150 void (*shutdown)(struct hv_device *);
1151
1152 };
1153
1154 /* Base device object */
1155 struct hv_device {
1156 /* the device type id of this device */
1157 guid_t dev_type;
1158
1159 /* the device instance id of this device */
1160 guid_t dev_instance;
1161 u16 vendor_id;
1162 u16 device_id;
1163
1164 struct device device;
1165 char *driver_override; /* Driver name to force a match */
1166
1167 struct vmbus_channel *channel;
1168 struct kset *channels_kset;
1169 };
1170
1171
1172 static inline struct hv_device *device_to_hv_device(struct device *d)
1173 {
1174 return container_of(d, struct hv_device, device);
1175 }
1176
1177 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1178 {
1179 return container_of(d, struct hv_driver, driver);
1180 }
1181
1182 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1183 {
1184 dev_set_drvdata(&dev->device, data);
1185 }
1186
1187 static inline void *hv_get_drvdata(struct hv_device *dev)
1188 {
1189 return dev_get_drvdata(&dev->device);
1190 }
1191
1192 struct hv_ring_buffer_debug_info {
1193 u32 current_interrupt_mask;
1194 u32 current_read_index;
1195 u32 current_write_index;
1196 u32 bytes_avail_toread;
1197 u32 bytes_avail_towrite;
1198 };
1199
1200
1201 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1202 struct hv_ring_buffer_debug_info *debug_info);
1203
1204 /* Vmbus interface */
1205 #define vmbus_driver_register(driver) \
1206 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1207 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1208 struct module *owner,
1209 const char *mod_name);
1210 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1211
1212 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1213
1214 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1215 resource_size_t min, resource_size_t max,
1216 resource_size_t size, resource_size_t align,
1217 bool fb_overlap_ok);
1218 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1219
1220 /*
1221 * GUID definitions of various offer types - services offered to the guest.
1222 */
1223
1224 /*
1225 * Network GUID
1226 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1227 */
1228 #define HV_NIC_GUID \
1229 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1230 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1231
1232 /*
1233 * IDE GUID
1234 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1235 */
1236 #define HV_IDE_GUID \
1237 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1238 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1239
1240 /*
1241 * SCSI GUID
1242 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1243 */
1244 #define HV_SCSI_GUID \
1245 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1246 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1247
1248 /*
1249 * Shutdown GUID
1250 * {0e0b6031-5213-4934-818b-38d90ced39db}
1251 */
1252 #define HV_SHUTDOWN_GUID \
1253 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1254 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1255
1256 /*
1257 * Time Synch GUID
1258 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1259 */
1260 #define HV_TS_GUID \
1261 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1262 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1263
1264 /*
1265 * Heartbeat GUID
1266 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1267 */
1268 #define HV_HEART_BEAT_GUID \
1269 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1270 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1271
1272 /*
1273 * KVP GUID
1274 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1275 */
1276 #define HV_KVP_GUID \
1277 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1278 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1279
1280 /*
1281 * Dynamic memory GUID
1282 * {525074dc-8985-46e2-8057-a307dc18a502}
1283 */
1284 #define HV_DM_GUID \
1285 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1286 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1287
1288 /*
1289 * Mouse GUID
1290 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1291 */
1292 #define HV_MOUSE_GUID \
1293 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1294 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1295
1296 /*
1297 * Keyboard GUID
1298 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1299 */
1300 #define HV_KBD_GUID \
1301 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1302 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1303
1304 /*
1305 * VSS (Backup/Restore) GUID
1306 */
1307 #define HV_VSS_GUID \
1308 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1309 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1310 /*
1311 * Synthetic Video GUID
1312 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1313 */
1314 #define HV_SYNTHVID_GUID \
1315 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1316 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1317
1318 /*
1319 * Synthetic FC GUID
1320 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1321 */
1322 #define HV_SYNTHFC_GUID \
1323 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1324 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1325
1326 /*
1327 * Guest File Copy Service
1328 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1329 */
1330
1331 #define HV_FCOPY_GUID \
1332 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1333 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1334
1335 /*
1336 * NetworkDirect. This is the guest RDMA service.
1337 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1338 */
1339 #define HV_ND_GUID \
1340 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1341 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1342
1343 /*
1344 * PCI Express Pass Through
1345 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1346 */
1347
1348 #define HV_PCIE_GUID \
1349 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1350 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1351
1352 /*
1353 * Linux doesn't support the 3 devices: the first two are for
1354 * Automatic Virtual Machine Activation, and the third is for
1355 * Remote Desktop Virtualization.
1356 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1357 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1358 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1359 */
1360
1361 #define HV_AVMA1_GUID \
1362 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1363 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1364
1365 #define HV_AVMA2_GUID \
1366 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1367 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1368
1369 #define HV_RDV_GUID \
1370 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1371 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1372
1373 /*
1374 * Common header for Hyper-V ICs
1375 */
1376
1377 #define ICMSGTYPE_NEGOTIATE 0
1378 #define ICMSGTYPE_HEARTBEAT 1
1379 #define ICMSGTYPE_KVPEXCHANGE 2
1380 #define ICMSGTYPE_SHUTDOWN 3
1381 #define ICMSGTYPE_TIMESYNC 4
1382 #define ICMSGTYPE_VSS 5
1383
1384 #define ICMSGHDRFLAG_TRANSACTION 1
1385 #define ICMSGHDRFLAG_REQUEST 2
1386 #define ICMSGHDRFLAG_RESPONSE 4
1387
1388
1389 /*
1390 * While we want to handle util services as regular devices,
1391 * there is only one instance of each of these services; so
1392 * we statically allocate the service specific state.
1393 */
1394
1395 struct hv_util_service {
1396 u8 *recv_buffer;
1397 void *channel;
1398 void (*util_cb)(void *);
1399 int (*util_init)(struct hv_util_service *);
1400 void (*util_deinit)(void);
1401 };
1402
1403 struct vmbuspipe_hdr {
1404 u32 flags;
1405 u32 msgsize;
1406 } __packed;
1407
1408 struct ic_version {
1409 u16 major;
1410 u16 minor;
1411 } __packed;
1412
1413 struct icmsg_hdr {
1414 struct ic_version icverframe;
1415 u16 icmsgtype;
1416 struct ic_version icvermsg;
1417 u16 icmsgsize;
1418 u32 status;
1419 u8 ictransaction_id;
1420 u8 icflags;
1421 u8 reserved[2];
1422 } __packed;
1423
1424 struct icmsg_negotiate {
1425 u16 icframe_vercnt;
1426 u16 icmsg_vercnt;
1427 u32 reserved;
1428 struct ic_version icversion_data[1]; /* any size array */
1429 } __packed;
1430
1431 struct shutdown_msg_data {
1432 u32 reason_code;
1433 u32 timeout_seconds;
1434 u32 flags;
1435 u8 display_message[2048];
1436 } __packed;
1437
1438 struct heartbeat_msg_data {
1439 u64 seq_num;
1440 u32 reserved[8];
1441 } __packed;
1442
1443 /* Time Sync IC defs */
1444 #define ICTIMESYNCFLAG_PROBE 0
1445 #define ICTIMESYNCFLAG_SYNC 1
1446 #define ICTIMESYNCFLAG_SAMPLE 2
1447
1448 #ifdef __x86_64__
1449 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1450 #else
1451 #define WLTIMEDELTA 116444736000000000LL
1452 #endif
1453
1454 struct ictimesync_data {
1455 u64 parenttime;
1456 u64 childtime;
1457 u64 roundtriptime;
1458 u8 flags;
1459 } __packed;
1460
1461 struct ictimesync_ref_data {
1462 u64 parenttime;
1463 u64 vmreferencetime;
1464 u8 flags;
1465 char leapflags;
1466 char stratum;
1467 u8 reserved[3];
1468 } __packed;
1469
1470 struct hyperv_service_callback {
1471 u8 msg_type;
1472 char *log_msg;
1473 guid_t data;
1474 struct vmbus_channel *channel;
1475 void (*callback)(void *context);
1476 };
1477
1478 #define MAX_SRV_VER 0x7ffffff
1479 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1480 const int *fw_version, int fw_vercnt,
1481 const int *srv_version, int srv_vercnt,
1482 int *nego_fw_version, int *nego_srv_version);
1483
1484 void hv_process_channel_removal(struct vmbus_channel *channel);
1485
1486 void vmbus_setevent(struct vmbus_channel *channel);
1487 /*
1488 * Negotiated version with the Host.
1489 */
1490
1491 extern __u32 vmbus_proto_version;
1492
1493 int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1494 const guid_t *shv_host_servie_id);
1495 void vmbus_set_event(struct vmbus_channel *channel);
1496
1497 /* Get the start of the ring buffer. */
1498 static inline void *
1499 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1500 {
1501 return ring_info->ring_buffer->buffer;
1502 }
1503
1504 /*
1505 * Mask off host interrupt callback notifications
1506 */
1507 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1508 {
1509 rbi->ring_buffer->interrupt_mask = 1;
1510
1511 /* make sure mask update is not reordered */
1512 virt_mb();
1513 }
1514
1515 /*
1516 * Re-enable host callback and return number of outstanding bytes
1517 */
1518 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1519 {
1520
1521 rbi->ring_buffer->interrupt_mask = 0;
1522
1523 /* make sure mask update is not reordered */
1524 virt_mb();
1525
1526 /*
1527 * Now check to see if the ring buffer is still empty.
1528 * If it is not, we raced and we need to process new
1529 * incoming messages.
1530 */
1531 return hv_get_bytes_to_read(rbi);
1532 }
1533
1534 /*
1535 * An API to support in-place processing of incoming VMBUS packets.
1536 */
1537
1538 /* Get data payload associated with descriptor */
1539 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1540 {
1541 return (void *)((unsigned long)desc + (desc->offset8 << 3));
1542 }
1543
1544 /* Get data size associated with descriptor */
1545 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1546 {
1547 return (desc->len8 << 3) - (desc->offset8 << 3);
1548 }
1549
1550
1551 struct vmpacket_descriptor *
1552 hv_pkt_iter_first(struct vmbus_channel *channel);
1553
1554 struct vmpacket_descriptor *
1555 __hv_pkt_iter_next(struct vmbus_channel *channel,
1556 const struct vmpacket_descriptor *pkt);
1557
1558 void hv_pkt_iter_close(struct vmbus_channel *channel);
1559
1560 /*
1561 * Get next packet descriptor from iterator
1562 * If at end of list, return NULL and update host.
1563 */
1564 static inline struct vmpacket_descriptor *
1565 hv_pkt_iter_next(struct vmbus_channel *channel,
1566 const struct vmpacket_descriptor *pkt)
1567 {
1568 struct vmpacket_descriptor *nxt;
1569
1570 nxt = __hv_pkt_iter_next(channel, pkt);
1571 if (!nxt)
1572 hv_pkt_iter_close(channel);
1573
1574 return nxt;
1575 }
1576
1577 #define foreach_vmbus_pkt(pkt, channel) \
1578 for (pkt = hv_pkt_iter_first(channel); pkt; \
1579 pkt = hv_pkt_iter_next(channel, pkt))
1580
1581 #endif /* _HYPERV_H */