]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/hyperv.h
Merge branch 'for-4.17/dax' into libnvdimm-for-next
[mirror_ubuntu-jammy-kernel.git] / include / linux / hyperv.h
1 /*
2 *
3 * Copyright (c) 2011, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
24
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27
28 #include <uapi/linux/hyperv.h>
29 #include <uapi/asm/hyperv.h>
30
31 #include <linux/types.h>
32 #include <linux/scatterlist.h>
33 #include <linux/list.h>
34 #include <linux/timer.h>
35 #include <linux/completion.h>
36 #include <linux/device.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/interrupt.h>
39
40 #define MAX_PAGE_BUFFER_COUNT 32
41 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
42
43 #pragma pack(push, 1)
44
45 /* Single-page buffer */
46 struct hv_page_buffer {
47 u32 len;
48 u32 offset;
49 u64 pfn;
50 };
51
52 /* Multiple-page buffer */
53 struct hv_multipage_buffer {
54 /* Length and Offset determines the # of pfns in the array */
55 u32 len;
56 u32 offset;
57 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
58 };
59
60 /*
61 * Multiple-page buffer array; the pfn array is variable size:
62 * The number of entries in the PFN array is determined by
63 * "len" and "offset".
64 */
65 struct hv_mpb_array {
66 /* Length and Offset determines the # of pfns in the array */
67 u32 len;
68 u32 offset;
69 u64 pfn_array[];
70 };
71
72 /* 0x18 includes the proprietary packet header */
73 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
74 (sizeof(struct hv_page_buffer) * \
75 MAX_PAGE_BUFFER_COUNT))
76 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
77 sizeof(struct hv_multipage_buffer))
78
79
80 #pragma pack(pop)
81
82 struct hv_ring_buffer {
83 /* Offset in bytes from the start of ring data below */
84 u32 write_index;
85
86 /* Offset in bytes from the start of ring data below */
87 u32 read_index;
88
89 u32 interrupt_mask;
90
91 /*
92 * Win8 uses some of the reserved bits to implement
93 * interrupt driven flow management. On the send side
94 * we can request that the receiver interrupt the sender
95 * when the ring transitions from being full to being able
96 * to handle a message of size "pending_send_sz".
97 *
98 * Add necessary state for this enhancement.
99 */
100 u32 pending_send_sz;
101
102 u32 reserved1[12];
103
104 union {
105 struct {
106 u32 feat_pending_send_sz:1;
107 };
108 u32 value;
109 } feature_bits;
110
111 /* Pad it to PAGE_SIZE so that data starts on page boundary */
112 u8 reserved2[4028];
113
114 /*
115 * Ring data starts here + RingDataStartOffset
116 * !!! DO NOT place any fields below this !!!
117 */
118 u8 buffer[0];
119 } __packed;
120
121 struct hv_ring_buffer_info {
122 struct hv_ring_buffer *ring_buffer;
123 u32 ring_size; /* Include the shared header */
124 spinlock_t ring_lock;
125
126 u32 ring_datasize; /* < ring_size */
127 u32 priv_read_index;
128 };
129
130
131 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
132 {
133 u32 read_loc, write_loc, dsize, read;
134
135 dsize = rbi->ring_datasize;
136 read_loc = rbi->ring_buffer->read_index;
137 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
138
139 read = write_loc >= read_loc ? (write_loc - read_loc) :
140 (dsize - read_loc) + write_loc;
141
142 return read;
143 }
144
145 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
146 {
147 u32 read_loc, write_loc, dsize, write;
148
149 dsize = rbi->ring_datasize;
150 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
151 write_loc = rbi->ring_buffer->write_index;
152
153 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
154 read_loc - write_loc;
155 return write;
156 }
157
158 /*
159 * VMBUS version is 32 bit entity broken up into
160 * two 16 bit quantities: major_number. minor_number.
161 *
162 * 0 . 13 (Windows Server 2008)
163 * 1 . 1 (Windows 7)
164 * 2 . 4 (Windows 8)
165 * 3 . 0 (Windows 8 R2)
166 * 4 . 0 (Windows 10)
167 */
168
169 #define VERSION_WS2008 ((0 << 16) | (13))
170 #define VERSION_WIN7 ((1 << 16) | (1))
171 #define VERSION_WIN8 ((2 << 16) | (4))
172 #define VERSION_WIN8_1 ((3 << 16) | (0))
173 #define VERSION_WIN10 ((4 << 16) | (0))
174
175 #define VERSION_INVAL -1
176
177 #define VERSION_CURRENT VERSION_WIN10
178
179 /* Make maximum size of pipe payload of 16K */
180 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
181
182 /* Define PipeMode values. */
183 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
184 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
185
186 /* The size of the user defined data buffer for non-pipe offers. */
187 #define MAX_USER_DEFINED_BYTES 120
188
189 /* The size of the user defined data buffer for pipe offers. */
190 #define MAX_PIPE_USER_DEFINED_BYTES 116
191
192 /*
193 * At the center of the Channel Management library is the Channel Offer. This
194 * struct contains the fundamental information about an offer.
195 */
196 struct vmbus_channel_offer {
197 uuid_le if_type;
198 uuid_le if_instance;
199
200 /*
201 * These two fields are not currently used.
202 */
203 u64 reserved1;
204 u64 reserved2;
205
206 u16 chn_flags;
207 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
208
209 union {
210 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
211 struct {
212 unsigned char user_def[MAX_USER_DEFINED_BYTES];
213 } std;
214
215 /*
216 * Pipes:
217 * The following sructure is an integrated pipe protocol, which
218 * is implemented on top of standard user-defined data. Pipe
219 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
220 * use.
221 */
222 struct {
223 u32 pipe_mode;
224 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
225 } pipe;
226 } u;
227 /*
228 * The sub_channel_index is defined in win8.
229 */
230 u16 sub_channel_index;
231 u16 reserved3;
232 } __packed;
233
234 /* Server Flags */
235 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
236 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
237 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
238 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
239 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
240 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
241 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
242 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
243
244 struct vmpacket_descriptor {
245 u16 type;
246 u16 offset8;
247 u16 len8;
248 u16 flags;
249 u64 trans_id;
250 } __packed;
251
252 struct vmpacket_header {
253 u32 prev_pkt_start_offset;
254 struct vmpacket_descriptor descriptor;
255 } __packed;
256
257 struct vmtransfer_page_range {
258 u32 byte_count;
259 u32 byte_offset;
260 } __packed;
261
262 struct vmtransfer_page_packet_header {
263 struct vmpacket_descriptor d;
264 u16 xfer_pageset_id;
265 u8 sender_owns_set;
266 u8 reserved;
267 u32 range_cnt;
268 struct vmtransfer_page_range ranges[1];
269 } __packed;
270
271 struct vmgpadl_packet_header {
272 struct vmpacket_descriptor d;
273 u32 gpadl;
274 u32 reserved;
275 } __packed;
276
277 struct vmadd_remove_transfer_page_set {
278 struct vmpacket_descriptor d;
279 u32 gpadl;
280 u16 xfer_pageset_id;
281 u16 reserved;
282 } __packed;
283
284 /*
285 * This structure defines a range in guest physical space that can be made to
286 * look virtually contiguous.
287 */
288 struct gpa_range {
289 u32 byte_count;
290 u32 byte_offset;
291 u64 pfn_array[0];
292 };
293
294 /*
295 * This is the format for an Establish Gpadl packet, which contains a handle by
296 * which this GPADL will be known and a set of GPA ranges associated with it.
297 * This can be converted to a MDL by the guest OS. If there are multiple GPA
298 * ranges, then the resulting MDL will be "chained," representing multiple VA
299 * ranges.
300 */
301 struct vmestablish_gpadl {
302 struct vmpacket_descriptor d;
303 u32 gpadl;
304 u32 range_cnt;
305 struct gpa_range range[1];
306 } __packed;
307
308 /*
309 * This is the format for a Teardown Gpadl packet, which indicates that the
310 * GPADL handle in the Establish Gpadl packet will never be referenced again.
311 */
312 struct vmteardown_gpadl {
313 struct vmpacket_descriptor d;
314 u32 gpadl;
315 u32 reserved; /* for alignment to a 8-byte boundary */
316 } __packed;
317
318 /*
319 * This is the format for a GPA-Direct packet, which contains a set of GPA
320 * ranges, in addition to commands and/or data.
321 */
322 struct vmdata_gpa_direct {
323 struct vmpacket_descriptor d;
324 u32 reserved;
325 u32 range_cnt;
326 struct gpa_range range[1];
327 } __packed;
328
329 /* This is the format for a Additional Data Packet. */
330 struct vmadditional_data {
331 struct vmpacket_descriptor d;
332 u64 total_bytes;
333 u32 offset;
334 u32 byte_cnt;
335 unsigned char data[1];
336 } __packed;
337
338 union vmpacket_largest_possible_header {
339 struct vmpacket_descriptor simple_hdr;
340 struct vmtransfer_page_packet_header xfer_page_hdr;
341 struct vmgpadl_packet_header gpadl_hdr;
342 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
343 struct vmestablish_gpadl establish_gpadl_hdr;
344 struct vmteardown_gpadl teardown_gpadl_hdr;
345 struct vmdata_gpa_direct data_gpa_direct_hdr;
346 };
347
348 #define VMPACKET_DATA_START_ADDRESS(__packet) \
349 (void *)(((unsigned char *)__packet) + \
350 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
351
352 #define VMPACKET_DATA_LENGTH(__packet) \
353 ((((struct vmpacket_descriptor)__packet)->len8 - \
354 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
355
356 #define VMPACKET_TRANSFER_MODE(__packet) \
357 (((struct IMPACT)__packet)->type)
358
359 enum vmbus_packet_type {
360 VM_PKT_INVALID = 0x0,
361 VM_PKT_SYNCH = 0x1,
362 VM_PKT_ADD_XFER_PAGESET = 0x2,
363 VM_PKT_RM_XFER_PAGESET = 0x3,
364 VM_PKT_ESTABLISH_GPADL = 0x4,
365 VM_PKT_TEARDOWN_GPADL = 0x5,
366 VM_PKT_DATA_INBAND = 0x6,
367 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
368 VM_PKT_DATA_USING_GPADL = 0x8,
369 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
370 VM_PKT_CANCEL_REQUEST = 0xa,
371 VM_PKT_COMP = 0xb,
372 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
373 VM_PKT_ADDITIONAL_DATA = 0xd
374 };
375
376 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
377
378
379 /* Version 1 messages */
380 enum vmbus_channel_message_type {
381 CHANNELMSG_INVALID = 0,
382 CHANNELMSG_OFFERCHANNEL = 1,
383 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
384 CHANNELMSG_REQUESTOFFERS = 3,
385 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
386 CHANNELMSG_OPENCHANNEL = 5,
387 CHANNELMSG_OPENCHANNEL_RESULT = 6,
388 CHANNELMSG_CLOSECHANNEL = 7,
389 CHANNELMSG_GPADL_HEADER = 8,
390 CHANNELMSG_GPADL_BODY = 9,
391 CHANNELMSG_GPADL_CREATED = 10,
392 CHANNELMSG_GPADL_TEARDOWN = 11,
393 CHANNELMSG_GPADL_TORNDOWN = 12,
394 CHANNELMSG_RELID_RELEASED = 13,
395 CHANNELMSG_INITIATE_CONTACT = 14,
396 CHANNELMSG_VERSION_RESPONSE = 15,
397 CHANNELMSG_UNLOAD = 16,
398 CHANNELMSG_UNLOAD_RESPONSE = 17,
399 CHANNELMSG_18 = 18,
400 CHANNELMSG_19 = 19,
401 CHANNELMSG_20 = 20,
402 CHANNELMSG_TL_CONNECT_REQUEST = 21,
403 CHANNELMSG_COUNT
404 };
405
406 struct vmbus_channel_message_header {
407 enum vmbus_channel_message_type msgtype;
408 u32 padding;
409 } __packed;
410
411 /* Query VMBus Version parameters */
412 struct vmbus_channel_query_vmbus_version {
413 struct vmbus_channel_message_header header;
414 u32 version;
415 } __packed;
416
417 /* VMBus Version Supported parameters */
418 struct vmbus_channel_version_supported {
419 struct vmbus_channel_message_header header;
420 u8 version_supported;
421 } __packed;
422
423 /* Offer Channel parameters */
424 struct vmbus_channel_offer_channel {
425 struct vmbus_channel_message_header header;
426 struct vmbus_channel_offer offer;
427 u32 child_relid;
428 u8 monitorid;
429 /*
430 * win7 and beyond splits this field into a bit field.
431 */
432 u8 monitor_allocated:1;
433 u8 reserved:7;
434 /*
435 * These are new fields added in win7 and later.
436 * Do not access these fields without checking the
437 * negotiated protocol.
438 *
439 * If "is_dedicated_interrupt" is set, we must not set the
440 * associated bit in the channel bitmap while sending the
441 * interrupt to the host.
442 *
443 * connection_id is to be used in signaling the host.
444 */
445 u16 is_dedicated_interrupt:1;
446 u16 reserved1:15;
447 u32 connection_id;
448 } __packed;
449
450 /* Rescind Offer parameters */
451 struct vmbus_channel_rescind_offer {
452 struct vmbus_channel_message_header header;
453 u32 child_relid;
454 } __packed;
455
456 static inline u32
457 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
458 {
459 return rbi->ring_buffer->pending_send_sz;
460 }
461
462 /*
463 * Request Offer -- no parameters, SynIC message contains the partition ID
464 * Set Snoop -- no parameters, SynIC message contains the partition ID
465 * Clear Snoop -- no parameters, SynIC message contains the partition ID
466 * All Offers Delivered -- no parameters, SynIC message contains the partition
467 * ID
468 * Flush Client -- no parameters, SynIC message contains the partition ID
469 */
470
471 /* Open Channel parameters */
472 struct vmbus_channel_open_channel {
473 struct vmbus_channel_message_header header;
474
475 /* Identifies the specific VMBus channel that is being opened. */
476 u32 child_relid;
477
478 /* ID making a particular open request at a channel offer unique. */
479 u32 openid;
480
481 /* GPADL for the channel's ring buffer. */
482 u32 ringbuffer_gpadlhandle;
483
484 /*
485 * Starting with win8, this field will be used to specify
486 * the target virtual processor on which to deliver the interrupt for
487 * the host to guest communication.
488 * Prior to win8, incoming channel interrupts would only
489 * be delivered on cpu 0. Setting this value to 0 would
490 * preserve the earlier behavior.
491 */
492 u32 target_vp;
493
494 /*
495 * The upstream ring buffer begins at offset zero in the memory
496 * described by RingBufferGpadlHandle. The downstream ring buffer
497 * follows it at this offset (in pages).
498 */
499 u32 downstream_ringbuffer_pageoffset;
500
501 /* User-specific data to be passed along to the server endpoint. */
502 unsigned char userdata[MAX_USER_DEFINED_BYTES];
503 } __packed;
504
505 /* Open Channel Result parameters */
506 struct vmbus_channel_open_result {
507 struct vmbus_channel_message_header header;
508 u32 child_relid;
509 u32 openid;
510 u32 status;
511 } __packed;
512
513 /* Close channel parameters; */
514 struct vmbus_channel_close_channel {
515 struct vmbus_channel_message_header header;
516 u32 child_relid;
517 } __packed;
518
519 /* Channel Message GPADL */
520 #define GPADL_TYPE_RING_BUFFER 1
521 #define GPADL_TYPE_SERVER_SAVE_AREA 2
522 #define GPADL_TYPE_TRANSACTION 8
523
524 /*
525 * The number of PFNs in a GPADL message is defined by the number of
526 * pages that would be spanned by ByteCount and ByteOffset. If the
527 * implied number of PFNs won't fit in this packet, there will be a
528 * follow-up packet that contains more.
529 */
530 struct vmbus_channel_gpadl_header {
531 struct vmbus_channel_message_header header;
532 u32 child_relid;
533 u32 gpadl;
534 u16 range_buflen;
535 u16 rangecount;
536 struct gpa_range range[0];
537 } __packed;
538
539 /* This is the followup packet that contains more PFNs. */
540 struct vmbus_channel_gpadl_body {
541 struct vmbus_channel_message_header header;
542 u32 msgnumber;
543 u32 gpadl;
544 u64 pfn[0];
545 } __packed;
546
547 struct vmbus_channel_gpadl_created {
548 struct vmbus_channel_message_header header;
549 u32 child_relid;
550 u32 gpadl;
551 u32 creation_status;
552 } __packed;
553
554 struct vmbus_channel_gpadl_teardown {
555 struct vmbus_channel_message_header header;
556 u32 child_relid;
557 u32 gpadl;
558 } __packed;
559
560 struct vmbus_channel_gpadl_torndown {
561 struct vmbus_channel_message_header header;
562 u32 gpadl;
563 } __packed;
564
565 struct vmbus_channel_relid_released {
566 struct vmbus_channel_message_header header;
567 u32 child_relid;
568 } __packed;
569
570 struct vmbus_channel_initiate_contact {
571 struct vmbus_channel_message_header header;
572 u32 vmbus_version_requested;
573 u32 target_vcpu; /* The VCPU the host should respond to */
574 u64 interrupt_page;
575 u64 monitor_page1;
576 u64 monitor_page2;
577 } __packed;
578
579 /* Hyper-V socket: guest's connect()-ing to host */
580 struct vmbus_channel_tl_connect_request {
581 struct vmbus_channel_message_header header;
582 uuid_le guest_endpoint_id;
583 uuid_le host_service_id;
584 } __packed;
585
586 struct vmbus_channel_version_response {
587 struct vmbus_channel_message_header header;
588 u8 version_supported;
589 } __packed;
590
591 enum vmbus_channel_state {
592 CHANNEL_OFFER_STATE,
593 CHANNEL_OPENING_STATE,
594 CHANNEL_OPEN_STATE,
595 CHANNEL_OPENED_STATE,
596 };
597
598 /*
599 * Represents each channel msg on the vmbus connection This is a
600 * variable-size data structure depending on the msg type itself
601 */
602 struct vmbus_channel_msginfo {
603 /* Bookkeeping stuff */
604 struct list_head msglistentry;
605
606 /* So far, this is only used to handle gpadl body message */
607 struct list_head submsglist;
608
609 /* Synchronize the request/response if needed */
610 struct completion waitevent;
611 struct vmbus_channel *waiting_channel;
612 union {
613 struct vmbus_channel_version_supported version_supported;
614 struct vmbus_channel_open_result open_result;
615 struct vmbus_channel_gpadl_torndown gpadl_torndown;
616 struct vmbus_channel_gpadl_created gpadl_created;
617 struct vmbus_channel_version_response version_response;
618 } response;
619
620 u32 msgsize;
621 /*
622 * The channel message that goes out on the "wire".
623 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
624 */
625 unsigned char msg[0];
626 };
627
628 struct vmbus_close_msg {
629 struct vmbus_channel_msginfo info;
630 struct vmbus_channel_close_channel msg;
631 };
632
633 /* Define connection identifier type. */
634 union hv_connection_id {
635 u32 asu32;
636 struct {
637 u32 id:24;
638 u32 reserved:8;
639 } u;
640 };
641
642 enum hv_numa_policy {
643 HV_BALANCED = 0,
644 HV_LOCALIZED,
645 };
646
647 enum vmbus_device_type {
648 HV_IDE = 0,
649 HV_SCSI,
650 HV_FC,
651 HV_NIC,
652 HV_ND,
653 HV_PCIE,
654 HV_FB,
655 HV_KBD,
656 HV_MOUSE,
657 HV_KVP,
658 HV_TS,
659 HV_HB,
660 HV_SHUTDOWN,
661 HV_FCOPY,
662 HV_BACKUP,
663 HV_DM,
664 HV_UNKNOWN,
665 };
666
667 struct vmbus_device {
668 u16 dev_type;
669 uuid_le guid;
670 bool perf_device;
671 };
672
673 struct vmbus_channel {
674 struct list_head listentry;
675
676 struct hv_device *device_obj;
677
678 enum vmbus_channel_state state;
679
680 struct vmbus_channel_offer_channel offermsg;
681 /*
682 * These are based on the OfferMsg.MonitorId.
683 * Save it here for easy access.
684 */
685 u8 monitor_grp;
686 u8 monitor_bit;
687
688 bool rescind; /* got rescind msg */
689 struct completion rescind_event;
690
691 u32 ringbuffer_gpadlhandle;
692
693 /* Allocated memory for ring buffer */
694 void *ringbuffer_pages;
695 u32 ringbuffer_pagecount;
696 struct hv_ring_buffer_info outbound; /* send to parent */
697 struct hv_ring_buffer_info inbound; /* receive from parent */
698
699 struct vmbus_close_msg close_msg;
700
701 /* Statistics */
702 u64 interrupts; /* Host to Guest interrupts */
703 u64 sig_events; /* Guest to Host events */
704
705 /* Channel callback's invoked in softirq context */
706 struct tasklet_struct callback_event;
707 void (*onchannel_callback)(void *context);
708 void *channel_callback_context;
709
710 /*
711 * A channel can be marked for one of three modes of reading:
712 * BATCHED - callback called from taslket and should read
713 * channel until empty. Interrupts from the host
714 * are masked while read is in process (default).
715 * DIRECT - callback called from tasklet (softirq).
716 * ISR - callback called in interrupt context and must
717 * invoke its own deferred processing.
718 * Host interrupts are disabled and must be re-enabled
719 * when ring is empty.
720 */
721 enum hv_callback_mode {
722 HV_CALL_BATCHED,
723 HV_CALL_DIRECT,
724 HV_CALL_ISR
725 } callback_mode;
726
727 bool is_dedicated_interrupt;
728 u64 sig_event;
729
730 /*
731 * Starting with win8, this field will be used to specify
732 * the target virtual processor on which to deliver the interrupt for
733 * the host to guest communication.
734 * Prior to win8, incoming channel interrupts would only
735 * be delivered on cpu 0. Setting this value to 0 would
736 * preserve the earlier behavior.
737 */
738 u32 target_vp;
739 /* The corresponding CPUID in the guest */
740 u32 target_cpu;
741 /*
742 * State to manage the CPU affiliation of channels.
743 */
744 struct cpumask alloced_cpus_in_node;
745 int numa_node;
746 /*
747 * Support for sub-channels. For high performance devices,
748 * it will be useful to have multiple sub-channels to support
749 * a scalable communication infrastructure with the host.
750 * The support for sub-channels is implemented as an extention
751 * to the current infrastructure.
752 * The initial offer is considered the primary channel and this
753 * offer message will indicate if the host supports sub-channels.
754 * The guest is free to ask for sub-channels to be offerred and can
755 * open these sub-channels as a normal "primary" channel. However,
756 * all sub-channels will have the same type and instance guids as the
757 * primary channel. Requests sent on a given channel will result in a
758 * response on the same channel.
759 */
760
761 /*
762 * Sub-channel creation callback. This callback will be called in
763 * process context when a sub-channel offer is received from the host.
764 * The guest can open the sub-channel in the context of this callback.
765 */
766 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
767
768 /*
769 * Channel rescind callback. Some channels (the hvsock ones), need to
770 * register a callback which is invoked in vmbus_onoffer_rescind().
771 */
772 void (*chn_rescind_callback)(struct vmbus_channel *channel);
773
774 /*
775 * The spinlock to protect the structure. It is being used to protect
776 * test-and-set access to various attributes of the structure as well
777 * as all sc_list operations.
778 */
779 spinlock_t lock;
780 /*
781 * All Sub-channels of a primary channel are linked here.
782 */
783 struct list_head sc_list;
784 /*
785 * Current number of sub-channels.
786 */
787 int num_sc;
788 /*
789 * Number of a sub-channel (position within sc_list) which is supposed
790 * to be used as the next outgoing channel.
791 */
792 int next_oc;
793 /*
794 * The primary channel this sub-channel belongs to.
795 * This will be NULL for the primary channel.
796 */
797 struct vmbus_channel *primary_channel;
798 /*
799 * Support per-channel state for use by vmbus drivers.
800 */
801 void *per_channel_state;
802 /*
803 * To support per-cpu lookup mapping of relid to channel,
804 * link up channels based on their CPU affinity.
805 */
806 struct list_head percpu_list;
807
808 /*
809 * Defer freeing channel until after all cpu's have
810 * gone through grace period.
811 */
812 struct rcu_head rcu;
813
814 /*
815 * For sysfs per-channel properties.
816 */
817 struct kobject kobj;
818
819 /*
820 * For performance critical channels (storage, networking
821 * etc,), Hyper-V has a mechanism to enhance the throughput
822 * at the expense of latency:
823 * When the host is to be signaled, we just set a bit in a shared page
824 * and this bit will be inspected by the hypervisor within a certain
825 * window and if the bit is set, the host will be signaled. The window
826 * of time is the monitor latency - currently around 100 usecs. This
827 * mechanism improves throughput by:
828 *
829 * A) Making the host more efficient - each time it wakes up,
830 * potentially it will process morev number of packets. The
831 * monitor latency allows a batch to build up.
832 * B) By deferring the hypercall to signal, we will also minimize
833 * the interrupts.
834 *
835 * Clearly, these optimizations improve throughput at the expense of
836 * latency. Furthermore, since the channel is shared for both
837 * control and data messages, control messages currently suffer
838 * unnecessary latency adversley impacting performance and boot
839 * time. To fix this issue, permit tagging the channel as being
840 * in "low latency" mode. In this mode, we will bypass the monitor
841 * mechanism.
842 */
843 bool low_latency;
844
845 /*
846 * NUMA distribution policy:
847 * We support teo policies:
848 * 1) Balanced: Here all performance critical channels are
849 * distributed evenly amongst all the NUMA nodes.
850 * This policy will be the default policy.
851 * 2) Localized: All channels of a given instance of a
852 * performance critical service will be assigned CPUs
853 * within a selected NUMA node.
854 */
855 enum hv_numa_policy affinity_policy;
856
857 bool probe_done;
858
859 };
860
861 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
862 {
863 return !!(c->offermsg.offer.chn_flags &
864 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
865 }
866
867 static inline void set_channel_affinity_state(struct vmbus_channel *c,
868 enum hv_numa_policy policy)
869 {
870 c->affinity_policy = policy;
871 }
872
873 static inline void set_channel_read_mode(struct vmbus_channel *c,
874 enum hv_callback_mode mode)
875 {
876 c->callback_mode = mode;
877 }
878
879 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
880 {
881 c->per_channel_state = s;
882 }
883
884 static inline void *get_per_channel_state(struct vmbus_channel *c)
885 {
886 return c->per_channel_state;
887 }
888
889 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
890 u32 size)
891 {
892 c->outbound.ring_buffer->pending_send_sz = size;
893 }
894
895 static inline void set_low_latency_mode(struct vmbus_channel *c)
896 {
897 c->low_latency = true;
898 }
899
900 static inline void clear_low_latency_mode(struct vmbus_channel *c)
901 {
902 c->low_latency = false;
903 }
904
905 void vmbus_onmessage(void *context);
906
907 int vmbus_request_offers(void);
908
909 /*
910 * APIs for managing sub-channels.
911 */
912
913 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
914 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
915
916 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
917 void (*chn_rescind_cb)(struct vmbus_channel *));
918
919 /*
920 * Retrieve the (sub) channel on which to send an outgoing request.
921 * When a primary channel has multiple sub-channels, we choose a
922 * channel whose VCPU binding is closest to the VCPU on which
923 * this call is being made.
924 */
925 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
926
927 /*
928 * Check if sub-channels have already been offerred. This API will be useful
929 * when the driver is unloaded after establishing sub-channels. In this case,
930 * when the driver is re-loaded, the driver would have to check if the
931 * subchannels have already been established before attempting to request
932 * the creation of sub-channels.
933 * This function returns TRUE to indicate that subchannels have already been
934 * created.
935 * This function should be invoked after setting the callback function for
936 * sub-channel creation.
937 */
938 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
939
940 /* The format must be the same as struct vmdata_gpa_direct */
941 struct vmbus_channel_packet_page_buffer {
942 u16 type;
943 u16 dataoffset8;
944 u16 length8;
945 u16 flags;
946 u64 transactionid;
947 u32 reserved;
948 u32 rangecount;
949 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
950 } __packed;
951
952 /* The format must be the same as struct vmdata_gpa_direct */
953 struct vmbus_channel_packet_multipage_buffer {
954 u16 type;
955 u16 dataoffset8;
956 u16 length8;
957 u16 flags;
958 u64 transactionid;
959 u32 reserved;
960 u32 rangecount; /* Always 1 in this case */
961 struct hv_multipage_buffer range;
962 } __packed;
963
964 /* The format must be the same as struct vmdata_gpa_direct */
965 struct vmbus_packet_mpb_array {
966 u16 type;
967 u16 dataoffset8;
968 u16 length8;
969 u16 flags;
970 u64 transactionid;
971 u32 reserved;
972 u32 rangecount; /* Always 1 in this case */
973 struct hv_mpb_array range;
974 } __packed;
975
976
977 extern int vmbus_open(struct vmbus_channel *channel,
978 u32 send_ringbuffersize,
979 u32 recv_ringbuffersize,
980 void *userdata,
981 u32 userdatalen,
982 void (*onchannel_callback)(void *context),
983 void *context);
984
985 extern void vmbus_close(struct vmbus_channel *channel);
986
987 extern int vmbus_sendpacket(struct vmbus_channel *channel,
988 void *buffer,
989 u32 bufferLen,
990 u64 requestid,
991 enum vmbus_packet_type type,
992 u32 flags);
993
994 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
995 struct hv_page_buffer pagebuffers[],
996 u32 pagecount,
997 void *buffer,
998 u32 bufferlen,
999 u64 requestid);
1000
1001 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1002 struct vmbus_packet_mpb_array *mpb,
1003 u32 desc_size,
1004 void *buffer,
1005 u32 bufferlen,
1006 u64 requestid);
1007
1008 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1009 void *kbuffer,
1010 u32 size,
1011 u32 *gpadl_handle);
1012
1013 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1014 u32 gpadl_handle);
1015
1016 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1017 void *buffer,
1018 u32 bufferlen,
1019 u32 *buffer_actual_len,
1020 u64 *requestid);
1021
1022 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1023 void *buffer,
1024 u32 bufferlen,
1025 u32 *buffer_actual_len,
1026 u64 *requestid);
1027
1028
1029 extern void vmbus_ontimer(unsigned long data);
1030
1031 /* Base driver object */
1032 struct hv_driver {
1033 const char *name;
1034
1035 /*
1036 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1037 * channel flag, actually doesn't mean a synthetic device because the
1038 * offer's if_type/if_instance can change for every new hvsock
1039 * connection.
1040 *
1041 * However, to facilitate the notification of new-offer/rescind-offer
1042 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1043 * a special vmbus device, and hence we need the below flag to
1044 * indicate if the driver is the hvsock driver or not: we need to
1045 * specially treat the hvosck offer & driver in vmbus_match().
1046 */
1047 bool hvsock;
1048
1049 /* the device type supported by this driver */
1050 uuid_le dev_type;
1051 const struct hv_vmbus_device_id *id_table;
1052
1053 struct device_driver driver;
1054
1055 /* dynamic device GUID's */
1056 struct {
1057 spinlock_t lock;
1058 struct list_head list;
1059 } dynids;
1060
1061 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1062 int (*remove)(struct hv_device *);
1063 void (*shutdown)(struct hv_device *);
1064
1065 };
1066
1067 /* Base device object */
1068 struct hv_device {
1069 /* the device type id of this device */
1070 uuid_le dev_type;
1071
1072 /* the device instance id of this device */
1073 uuid_le dev_instance;
1074 u16 vendor_id;
1075 u16 device_id;
1076
1077 struct device device;
1078
1079 struct vmbus_channel *channel;
1080 struct kset *channels_kset;
1081 };
1082
1083
1084 static inline struct hv_device *device_to_hv_device(struct device *d)
1085 {
1086 return container_of(d, struct hv_device, device);
1087 }
1088
1089 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1090 {
1091 return container_of(d, struct hv_driver, driver);
1092 }
1093
1094 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1095 {
1096 dev_set_drvdata(&dev->device, data);
1097 }
1098
1099 static inline void *hv_get_drvdata(struct hv_device *dev)
1100 {
1101 return dev_get_drvdata(&dev->device);
1102 }
1103
1104 struct hv_ring_buffer_debug_info {
1105 u32 current_interrupt_mask;
1106 u32 current_read_index;
1107 u32 current_write_index;
1108 u32 bytes_avail_toread;
1109 u32 bytes_avail_towrite;
1110 };
1111
1112 void hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info *ring_info,
1113 struct hv_ring_buffer_debug_info *debug_info);
1114
1115 /* Vmbus interface */
1116 #define vmbus_driver_register(driver) \
1117 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1118 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1119 struct module *owner,
1120 const char *mod_name);
1121 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1122
1123 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1124
1125 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1126 resource_size_t min, resource_size_t max,
1127 resource_size_t size, resource_size_t align,
1128 bool fb_overlap_ok);
1129 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1130
1131 /*
1132 * GUID definitions of various offer types - services offered to the guest.
1133 */
1134
1135 /*
1136 * Network GUID
1137 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1138 */
1139 #define HV_NIC_GUID \
1140 .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1141 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1142
1143 /*
1144 * IDE GUID
1145 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1146 */
1147 #define HV_IDE_GUID \
1148 .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1149 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1150
1151 /*
1152 * SCSI GUID
1153 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1154 */
1155 #define HV_SCSI_GUID \
1156 .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1157 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1158
1159 /*
1160 * Shutdown GUID
1161 * {0e0b6031-5213-4934-818b-38d90ced39db}
1162 */
1163 #define HV_SHUTDOWN_GUID \
1164 .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1165 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1166
1167 /*
1168 * Time Synch GUID
1169 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1170 */
1171 #define HV_TS_GUID \
1172 .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1173 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1174
1175 /*
1176 * Heartbeat GUID
1177 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1178 */
1179 #define HV_HEART_BEAT_GUID \
1180 .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1181 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1182
1183 /*
1184 * KVP GUID
1185 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1186 */
1187 #define HV_KVP_GUID \
1188 .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1189 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1190
1191 /*
1192 * Dynamic memory GUID
1193 * {525074dc-8985-46e2-8057-a307dc18a502}
1194 */
1195 #define HV_DM_GUID \
1196 .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1197 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1198
1199 /*
1200 * Mouse GUID
1201 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1202 */
1203 #define HV_MOUSE_GUID \
1204 .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1205 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1206
1207 /*
1208 * Keyboard GUID
1209 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1210 */
1211 #define HV_KBD_GUID \
1212 .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1213 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1214
1215 /*
1216 * VSS (Backup/Restore) GUID
1217 */
1218 #define HV_VSS_GUID \
1219 .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1220 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1221 /*
1222 * Synthetic Video GUID
1223 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1224 */
1225 #define HV_SYNTHVID_GUID \
1226 .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1227 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1228
1229 /*
1230 * Synthetic FC GUID
1231 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1232 */
1233 #define HV_SYNTHFC_GUID \
1234 .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1235 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1236
1237 /*
1238 * Guest File Copy Service
1239 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1240 */
1241
1242 #define HV_FCOPY_GUID \
1243 .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1244 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1245
1246 /*
1247 * NetworkDirect. This is the guest RDMA service.
1248 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1249 */
1250 #define HV_ND_GUID \
1251 .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1252 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1253
1254 /*
1255 * PCI Express Pass Through
1256 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1257 */
1258
1259 #define HV_PCIE_GUID \
1260 .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1261 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1262
1263 /*
1264 * Linux doesn't support the 3 devices: the first two are for
1265 * Automatic Virtual Machine Activation, and the third is for
1266 * Remote Desktop Virtualization.
1267 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1268 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1269 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1270 */
1271
1272 #define HV_AVMA1_GUID \
1273 .guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1274 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1275
1276 #define HV_AVMA2_GUID \
1277 .guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1278 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1279
1280 #define HV_RDV_GUID \
1281 .guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1282 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1283
1284 /*
1285 * Common header for Hyper-V ICs
1286 */
1287
1288 #define ICMSGTYPE_NEGOTIATE 0
1289 #define ICMSGTYPE_HEARTBEAT 1
1290 #define ICMSGTYPE_KVPEXCHANGE 2
1291 #define ICMSGTYPE_SHUTDOWN 3
1292 #define ICMSGTYPE_TIMESYNC 4
1293 #define ICMSGTYPE_VSS 5
1294
1295 #define ICMSGHDRFLAG_TRANSACTION 1
1296 #define ICMSGHDRFLAG_REQUEST 2
1297 #define ICMSGHDRFLAG_RESPONSE 4
1298
1299
1300 /*
1301 * While we want to handle util services as regular devices,
1302 * there is only one instance of each of these services; so
1303 * we statically allocate the service specific state.
1304 */
1305
1306 struct hv_util_service {
1307 u8 *recv_buffer;
1308 void *channel;
1309 void (*util_cb)(void *);
1310 int (*util_init)(struct hv_util_service *);
1311 void (*util_deinit)(void);
1312 };
1313
1314 struct vmbuspipe_hdr {
1315 u32 flags;
1316 u32 msgsize;
1317 } __packed;
1318
1319 struct ic_version {
1320 u16 major;
1321 u16 minor;
1322 } __packed;
1323
1324 struct icmsg_hdr {
1325 struct ic_version icverframe;
1326 u16 icmsgtype;
1327 struct ic_version icvermsg;
1328 u16 icmsgsize;
1329 u32 status;
1330 u8 ictransaction_id;
1331 u8 icflags;
1332 u8 reserved[2];
1333 } __packed;
1334
1335 struct icmsg_negotiate {
1336 u16 icframe_vercnt;
1337 u16 icmsg_vercnt;
1338 u32 reserved;
1339 struct ic_version icversion_data[1]; /* any size array */
1340 } __packed;
1341
1342 struct shutdown_msg_data {
1343 u32 reason_code;
1344 u32 timeout_seconds;
1345 u32 flags;
1346 u8 display_message[2048];
1347 } __packed;
1348
1349 struct heartbeat_msg_data {
1350 u64 seq_num;
1351 u32 reserved[8];
1352 } __packed;
1353
1354 /* Time Sync IC defs */
1355 #define ICTIMESYNCFLAG_PROBE 0
1356 #define ICTIMESYNCFLAG_SYNC 1
1357 #define ICTIMESYNCFLAG_SAMPLE 2
1358
1359 #ifdef __x86_64__
1360 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1361 #else
1362 #define WLTIMEDELTA 116444736000000000LL
1363 #endif
1364
1365 struct ictimesync_data {
1366 u64 parenttime;
1367 u64 childtime;
1368 u64 roundtriptime;
1369 u8 flags;
1370 } __packed;
1371
1372 struct ictimesync_ref_data {
1373 u64 parenttime;
1374 u64 vmreferencetime;
1375 u8 flags;
1376 char leapflags;
1377 char stratum;
1378 u8 reserved[3];
1379 } __packed;
1380
1381 struct hyperv_service_callback {
1382 u8 msg_type;
1383 char *log_msg;
1384 uuid_le data;
1385 struct vmbus_channel *channel;
1386 void (*callback)(void *context);
1387 };
1388
1389 #define MAX_SRV_VER 0x7ffffff
1390 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1391 const int *fw_version, int fw_vercnt,
1392 const int *srv_version, int srv_vercnt,
1393 int *nego_fw_version, int *nego_srv_version);
1394
1395 void hv_process_channel_removal(u32 relid);
1396
1397 void vmbus_setevent(struct vmbus_channel *channel);
1398 /*
1399 * Negotiated version with the Host.
1400 */
1401
1402 extern __u32 vmbus_proto_version;
1403
1404 int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id,
1405 const uuid_le *shv_host_servie_id);
1406 void vmbus_set_event(struct vmbus_channel *channel);
1407
1408 /* Get the start of the ring buffer. */
1409 static inline void *
1410 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1411 {
1412 return ring_info->ring_buffer->buffer;
1413 }
1414
1415 /*
1416 * Mask off host interrupt callback notifications
1417 */
1418 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1419 {
1420 rbi->ring_buffer->interrupt_mask = 1;
1421
1422 /* make sure mask update is not reordered */
1423 virt_mb();
1424 }
1425
1426 /*
1427 * Re-enable host callback and return number of outstanding bytes
1428 */
1429 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1430 {
1431
1432 rbi->ring_buffer->interrupt_mask = 0;
1433
1434 /* make sure mask update is not reordered */
1435 virt_mb();
1436
1437 /*
1438 * Now check to see if the ring buffer is still empty.
1439 * If it is not, we raced and we need to process new
1440 * incoming messages.
1441 */
1442 return hv_get_bytes_to_read(rbi);
1443 }
1444
1445 /*
1446 * An API to support in-place processing of incoming VMBUS packets.
1447 */
1448
1449 /* Get data payload associated with descriptor */
1450 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1451 {
1452 return (void *)((unsigned long)desc + (desc->offset8 << 3));
1453 }
1454
1455 /* Get data size associated with descriptor */
1456 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1457 {
1458 return (desc->len8 << 3) - (desc->offset8 << 3);
1459 }
1460
1461
1462 struct vmpacket_descriptor *
1463 hv_pkt_iter_first(struct vmbus_channel *channel);
1464
1465 struct vmpacket_descriptor *
1466 __hv_pkt_iter_next(struct vmbus_channel *channel,
1467 const struct vmpacket_descriptor *pkt);
1468
1469 void hv_pkt_iter_close(struct vmbus_channel *channel);
1470
1471 /*
1472 * Get next packet descriptor from iterator
1473 * If at end of list, return NULL and update host.
1474 */
1475 static inline struct vmpacket_descriptor *
1476 hv_pkt_iter_next(struct vmbus_channel *channel,
1477 const struct vmpacket_descriptor *pkt)
1478 {
1479 struct vmpacket_descriptor *nxt;
1480
1481 nxt = __hv_pkt_iter_next(channel, pkt);
1482 if (!nxt)
1483 hv_pkt_iter_close(channel);
1484
1485 return nxt;
1486 }
1487
1488 #define foreach_vmbus_pkt(pkt, channel) \
1489 for (pkt = hv_pkt_iter_first(channel); pkt; \
1490 pkt = hv_pkt_iter_next(channel, pkt))
1491
1492 #endif /* _HYPERV_H */