]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/hyperv.h
ftrace: Fix debug preempt config name in stack_tracer_{en,dis}able
[mirror_ubuntu-artful-kernel.git] / include / linux / hyperv.h
1 /*
2 *
3 * Copyright (c) 2011, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
24
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27
28 #include <uapi/linux/hyperv.h>
29 #include <uapi/asm/hyperv.h>
30
31 #include <linux/types.h>
32 #include <linux/scatterlist.h>
33 #include <linux/list.h>
34 #include <linux/timer.h>
35 #include <linux/completion.h>
36 #include <linux/device.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/interrupt.h>
39
40 #define MAX_PAGE_BUFFER_COUNT 32
41 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
42
43 #pragma pack(push, 1)
44
45 /* Single-page buffer */
46 struct hv_page_buffer {
47 u32 len;
48 u32 offset;
49 u64 pfn;
50 };
51
52 /* Multiple-page buffer */
53 struct hv_multipage_buffer {
54 /* Length and Offset determines the # of pfns in the array */
55 u32 len;
56 u32 offset;
57 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
58 };
59
60 /*
61 * Multiple-page buffer array; the pfn array is variable size:
62 * The number of entries in the PFN array is determined by
63 * "len" and "offset".
64 */
65 struct hv_mpb_array {
66 /* Length and Offset determines the # of pfns in the array */
67 u32 len;
68 u32 offset;
69 u64 pfn_array[];
70 };
71
72 /* 0x18 includes the proprietary packet header */
73 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
74 (sizeof(struct hv_page_buffer) * \
75 MAX_PAGE_BUFFER_COUNT))
76 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
77 sizeof(struct hv_multipage_buffer))
78
79
80 #pragma pack(pop)
81
82 struct hv_ring_buffer {
83 /* Offset in bytes from the start of ring data below */
84 u32 write_index;
85
86 /* Offset in bytes from the start of ring data below */
87 u32 read_index;
88
89 u32 interrupt_mask;
90
91 /*
92 * Win8 uses some of the reserved bits to implement
93 * interrupt driven flow management. On the send side
94 * we can request that the receiver interrupt the sender
95 * when the ring transitions from being full to being able
96 * to handle a message of size "pending_send_sz".
97 *
98 * Add necessary state for this enhancement.
99 */
100 u32 pending_send_sz;
101
102 u32 reserved1[12];
103
104 union {
105 struct {
106 u32 feat_pending_send_sz:1;
107 };
108 u32 value;
109 } feature_bits;
110
111 /* Pad it to PAGE_SIZE so that data starts on page boundary */
112 u8 reserved2[4028];
113
114 /*
115 * Ring data starts here + RingDataStartOffset
116 * !!! DO NOT place any fields below this !!!
117 */
118 u8 buffer[0];
119 } __packed;
120
121 struct hv_ring_buffer_info {
122 struct hv_ring_buffer *ring_buffer;
123 u32 ring_size; /* Include the shared header */
124 spinlock_t ring_lock;
125
126 u32 ring_datasize; /* < ring_size */
127 u32 ring_data_startoffset;
128 u32 priv_write_index;
129 u32 priv_read_index;
130 u32 cached_read_index;
131 };
132
133 /*
134 *
135 * hv_get_ringbuffer_availbytes()
136 *
137 * Get number of bytes available to read and to write to
138 * for the specified ring buffer
139 */
140 static inline void
141 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
142 u32 *read, u32 *write)
143 {
144 u32 read_loc, write_loc, dsize;
145
146 /* Capture the read/write indices before they changed */
147 read_loc = rbi->ring_buffer->read_index;
148 write_loc = rbi->ring_buffer->write_index;
149 dsize = rbi->ring_datasize;
150
151 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
152 read_loc - write_loc;
153 *read = dsize - *write;
154 }
155
156 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
157 {
158 u32 read_loc, write_loc, dsize, read;
159
160 dsize = rbi->ring_datasize;
161 read_loc = rbi->ring_buffer->read_index;
162 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
163
164 read = write_loc >= read_loc ? (write_loc - read_loc) :
165 (dsize - read_loc) + write_loc;
166
167 return read;
168 }
169
170 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
171 {
172 u32 read_loc, write_loc, dsize, write;
173
174 dsize = rbi->ring_datasize;
175 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
176 write_loc = rbi->ring_buffer->write_index;
177
178 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
179 read_loc - write_loc;
180 return write;
181 }
182
183 static inline u32 hv_get_cached_bytes_to_write(
184 const struct hv_ring_buffer_info *rbi)
185 {
186 u32 read_loc, write_loc, dsize, write;
187
188 dsize = rbi->ring_datasize;
189 read_loc = rbi->cached_read_index;
190 write_loc = rbi->ring_buffer->write_index;
191
192 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
193 read_loc - write_loc;
194 return write;
195 }
196 /*
197 * VMBUS version is 32 bit entity broken up into
198 * two 16 bit quantities: major_number. minor_number.
199 *
200 * 0 . 13 (Windows Server 2008)
201 * 1 . 1 (Windows 7)
202 * 2 . 4 (Windows 8)
203 * 3 . 0 (Windows 8 R2)
204 * 4 . 0 (Windows 10)
205 */
206
207 #define VERSION_WS2008 ((0 << 16) | (13))
208 #define VERSION_WIN7 ((1 << 16) | (1))
209 #define VERSION_WIN8 ((2 << 16) | (4))
210 #define VERSION_WIN8_1 ((3 << 16) | (0))
211 #define VERSION_WIN10 ((4 << 16) | (0))
212
213 #define VERSION_INVAL -1
214
215 #define VERSION_CURRENT VERSION_WIN10
216
217 /* Make maximum size of pipe payload of 16K */
218 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
219
220 /* Define PipeMode values. */
221 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
222 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
223
224 /* The size of the user defined data buffer for non-pipe offers. */
225 #define MAX_USER_DEFINED_BYTES 120
226
227 /* The size of the user defined data buffer for pipe offers. */
228 #define MAX_PIPE_USER_DEFINED_BYTES 116
229
230 /*
231 * At the center of the Channel Management library is the Channel Offer. This
232 * struct contains the fundamental information about an offer.
233 */
234 struct vmbus_channel_offer {
235 uuid_le if_type;
236 uuid_le if_instance;
237
238 /*
239 * These two fields are not currently used.
240 */
241 u64 reserved1;
242 u64 reserved2;
243
244 u16 chn_flags;
245 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
246
247 union {
248 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
249 struct {
250 unsigned char user_def[MAX_USER_DEFINED_BYTES];
251 } std;
252
253 /*
254 * Pipes:
255 * The following sructure is an integrated pipe protocol, which
256 * is implemented on top of standard user-defined data. Pipe
257 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
258 * use.
259 */
260 struct {
261 u32 pipe_mode;
262 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
263 } pipe;
264 } u;
265 /*
266 * The sub_channel_index is defined in win8.
267 */
268 u16 sub_channel_index;
269 u16 reserved3;
270 } __packed;
271
272 /* Server Flags */
273 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
274 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
275 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
276 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
277 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
278 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
279 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
280 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
281
282 struct vmpacket_descriptor {
283 u16 type;
284 u16 offset8;
285 u16 len8;
286 u16 flags;
287 u64 trans_id;
288 } __packed;
289
290 struct vmpacket_header {
291 u32 prev_pkt_start_offset;
292 struct vmpacket_descriptor descriptor;
293 } __packed;
294
295 struct vmtransfer_page_range {
296 u32 byte_count;
297 u32 byte_offset;
298 } __packed;
299
300 struct vmtransfer_page_packet_header {
301 struct vmpacket_descriptor d;
302 u16 xfer_pageset_id;
303 u8 sender_owns_set;
304 u8 reserved;
305 u32 range_cnt;
306 struct vmtransfer_page_range ranges[1];
307 } __packed;
308
309 struct vmgpadl_packet_header {
310 struct vmpacket_descriptor d;
311 u32 gpadl;
312 u32 reserved;
313 } __packed;
314
315 struct vmadd_remove_transfer_page_set {
316 struct vmpacket_descriptor d;
317 u32 gpadl;
318 u16 xfer_pageset_id;
319 u16 reserved;
320 } __packed;
321
322 /*
323 * This structure defines a range in guest physical space that can be made to
324 * look virtually contiguous.
325 */
326 struct gpa_range {
327 u32 byte_count;
328 u32 byte_offset;
329 u64 pfn_array[0];
330 };
331
332 /*
333 * This is the format for an Establish Gpadl packet, which contains a handle by
334 * which this GPADL will be known and a set of GPA ranges associated with it.
335 * This can be converted to a MDL by the guest OS. If there are multiple GPA
336 * ranges, then the resulting MDL will be "chained," representing multiple VA
337 * ranges.
338 */
339 struct vmestablish_gpadl {
340 struct vmpacket_descriptor d;
341 u32 gpadl;
342 u32 range_cnt;
343 struct gpa_range range[1];
344 } __packed;
345
346 /*
347 * This is the format for a Teardown Gpadl packet, which indicates that the
348 * GPADL handle in the Establish Gpadl packet will never be referenced again.
349 */
350 struct vmteardown_gpadl {
351 struct vmpacket_descriptor d;
352 u32 gpadl;
353 u32 reserved; /* for alignment to a 8-byte boundary */
354 } __packed;
355
356 /*
357 * This is the format for a GPA-Direct packet, which contains a set of GPA
358 * ranges, in addition to commands and/or data.
359 */
360 struct vmdata_gpa_direct {
361 struct vmpacket_descriptor d;
362 u32 reserved;
363 u32 range_cnt;
364 struct gpa_range range[1];
365 } __packed;
366
367 /* This is the format for a Additional Data Packet. */
368 struct vmadditional_data {
369 struct vmpacket_descriptor d;
370 u64 total_bytes;
371 u32 offset;
372 u32 byte_cnt;
373 unsigned char data[1];
374 } __packed;
375
376 union vmpacket_largest_possible_header {
377 struct vmpacket_descriptor simple_hdr;
378 struct vmtransfer_page_packet_header xfer_page_hdr;
379 struct vmgpadl_packet_header gpadl_hdr;
380 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
381 struct vmestablish_gpadl establish_gpadl_hdr;
382 struct vmteardown_gpadl teardown_gpadl_hdr;
383 struct vmdata_gpa_direct data_gpa_direct_hdr;
384 };
385
386 #define VMPACKET_DATA_START_ADDRESS(__packet) \
387 (void *)(((unsigned char *)__packet) + \
388 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
389
390 #define VMPACKET_DATA_LENGTH(__packet) \
391 ((((struct vmpacket_descriptor)__packet)->len8 - \
392 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
393
394 #define VMPACKET_TRANSFER_MODE(__packet) \
395 (((struct IMPACT)__packet)->type)
396
397 enum vmbus_packet_type {
398 VM_PKT_INVALID = 0x0,
399 VM_PKT_SYNCH = 0x1,
400 VM_PKT_ADD_XFER_PAGESET = 0x2,
401 VM_PKT_RM_XFER_PAGESET = 0x3,
402 VM_PKT_ESTABLISH_GPADL = 0x4,
403 VM_PKT_TEARDOWN_GPADL = 0x5,
404 VM_PKT_DATA_INBAND = 0x6,
405 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
406 VM_PKT_DATA_USING_GPADL = 0x8,
407 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
408 VM_PKT_CANCEL_REQUEST = 0xa,
409 VM_PKT_COMP = 0xb,
410 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
411 VM_PKT_ADDITIONAL_DATA = 0xd
412 };
413
414 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
415
416
417 /* Version 1 messages */
418 enum vmbus_channel_message_type {
419 CHANNELMSG_INVALID = 0,
420 CHANNELMSG_OFFERCHANNEL = 1,
421 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
422 CHANNELMSG_REQUESTOFFERS = 3,
423 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
424 CHANNELMSG_OPENCHANNEL = 5,
425 CHANNELMSG_OPENCHANNEL_RESULT = 6,
426 CHANNELMSG_CLOSECHANNEL = 7,
427 CHANNELMSG_GPADL_HEADER = 8,
428 CHANNELMSG_GPADL_BODY = 9,
429 CHANNELMSG_GPADL_CREATED = 10,
430 CHANNELMSG_GPADL_TEARDOWN = 11,
431 CHANNELMSG_GPADL_TORNDOWN = 12,
432 CHANNELMSG_RELID_RELEASED = 13,
433 CHANNELMSG_INITIATE_CONTACT = 14,
434 CHANNELMSG_VERSION_RESPONSE = 15,
435 CHANNELMSG_UNLOAD = 16,
436 CHANNELMSG_UNLOAD_RESPONSE = 17,
437 CHANNELMSG_18 = 18,
438 CHANNELMSG_19 = 19,
439 CHANNELMSG_20 = 20,
440 CHANNELMSG_TL_CONNECT_REQUEST = 21,
441 CHANNELMSG_COUNT
442 };
443
444 struct vmbus_channel_message_header {
445 enum vmbus_channel_message_type msgtype;
446 u32 padding;
447 } __packed;
448
449 /* Query VMBus Version parameters */
450 struct vmbus_channel_query_vmbus_version {
451 struct vmbus_channel_message_header header;
452 u32 version;
453 } __packed;
454
455 /* VMBus Version Supported parameters */
456 struct vmbus_channel_version_supported {
457 struct vmbus_channel_message_header header;
458 u8 version_supported;
459 } __packed;
460
461 /* Offer Channel parameters */
462 struct vmbus_channel_offer_channel {
463 struct vmbus_channel_message_header header;
464 struct vmbus_channel_offer offer;
465 u32 child_relid;
466 u8 monitorid;
467 /*
468 * win7 and beyond splits this field into a bit field.
469 */
470 u8 monitor_allocated:1;
471 u8 reserved:7;
472 /*
473 * These are new fields added in win7 and later.
474 * Do not access these fields without checking the
475 * negotiated protocol.
476 *
477 * If "is_dedicated_interrupt" is set, we must not set the
478 * associated bit in the channel bitmap while sending the
479 * interrupt to the host.
480 *
481 * connection_id is to be used in signaling the host.
482 */
483 u16 is_dedicated_interrupt:1;
484 u16 reserved1:15;
485 u32 connection_id;
486 } __packed;
487
488 /* Rescind Offer parameters */
489 struct vmbus_channel_rescind_offer {
490 struct vmbus_channel_message_header header;
491 u32 child_relid;
492 } __packed;
493
494 static inline u32
495 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
496 {
497 return rbi->ring_buffer->pending_send_sz;
498 }
499
500 /*
501 * Request Offer -- no parameters, SynIC message contains the partition ID
502 * Set Snoop -- no parameters, SynIC message contains the partition ID
503 * Clear Snoop -- no parameters, SynIC message contains the partition ID
504 * All Offers Delivered -- no parameters, SynIC message contains the partition
505 * ID
506 * Flush Client -- no parameters, SynIC message contains the partition ID
507 */
508
509 /* Open Channel parameters */
510 struct vmbus_channel_open_channel {
511 struct vmbus_channel_message_header header;
512
513 /* Identifies the specific VMBus channel that is being opened. */
514 u32 child_relid;
515
516 /* ID making a particular open request at a channel offer unique. */
517 u32 openid;
518
519 /* GPADL for the channel's ring buffer. */
520 u32 ringbuffer_gpadlhandle;
521
522 /*
523 * Starting with win8, this field will be used to specify
524 * the target virtual processor on which to deliver the interrupt for
525 * the host to guest communication.
526 * Prior to win8, incoming channel interrupts would only
527 * be delivered on cpu 0. Setting this value to 0 would
528 * preserve the earlier behavior.
529 */
530 u32 target_vp;
531
532 /*
533 * The upstream ring buffer begins at offset zero in the memory
534 * described by RingBufferGpadlHandle. The downstream ring buffer
535 * follows it at this offset (in pages).
536 */
537 u32 downstream_ringbuffer_pageoffset;
538
539 /* User-specific data to be passed along to the server endpoint. */
540 unsigned char userdata[MAX_USER_DEFINED_BYTES];
541 } __packed;
542
543 /* Open Channel Result parameters */
544 struct vmbus_channel_open_result {
545 struct vmbus_channel_message_header header;
546 u32 child_relid;
547 u32 openid;
548 u32 status;
549 } __packed;
550
551 /* Close channel parameters; */
552 struct vmbus_channel_close_channel {
553 struct vmbus_channel_message_header header;
554 u32 child_relid;
555 } __packed;
556
557 /* Channel Message GPADL */
558 #define GPADL_TYPE_RING_BUFFER 1
559 #define GPADL_TYPE_SERVER_SAVE_AREA 2
560 #define GPADL_TYPE_TRANSACTION 8
561
562 /*
563 * The number of PFNs in a GPADL message is defined by the number of
564 * pages that would be spanned by ByteCount and ByteOffset. If the
565 * implied number of PFNs won't fit in this packet, there will be a
566 * follow-up packet that contains more.
567 */
568 struct vmbus_channel_gpadl_header {
569 struct vmbus_channel_message_header header;
570 u32 child_relid;
571 u32 gpadl;
572 u16 range_buflen;
573 u16 rangecount;
574 struct gpa_range range[0];
575 } __packed;
576
577 /* This is the followup packet that contains more PFNs. */
578 struct vmbus_channel_gpadl_body {
579 struct vmbus_channel_message_header header;
580 u32 msgnumber;
581 u32 gpadl;
582 u64 pfn[0];
583 } __packed;
584
585 struct vmbus_channel_gpadl_created {
586 struct vmbus_channel_message_header header;
587 u32 child_relid;
588 u32 gpadl;
589 u32 creation_status;
590 } __packed;
591
592 struct vmbus_channel_gpadl_teardown {
593 struct vmbus_channel_message_header header;
594 u32 child_relid;
595 u32 gpadl;
596 } __packed;
597
598 struct vmbus_channel_gpadl_torndown {
599 struct vmbus_channel_message_header header;
600 u32 gpadl;
601 } __packed;
602
603 struct vmbus_channel_relid_released {
604 struct vmbus_channel_message_header header;
605 u32 child_relid;
606 } __packed;
607
608 struct vmbus_channel_initiate_contact {
609 struct vmbus_channel_message_header header;
610 u32 vmbus_version_requested;
611 u32 target_vcpu; /* The VCPU the host should respond to */
612 u64 interrupt_page;
613 u64 monitor_page1;
614 u64 monitor_page2;
615 } __packed;
616
617 /* Hyper-V socket: guest's connect()-ing to host */
618 struct vmbus_channel_tl_connect_request {
619 struct vmbus_channel_message_header header;
620 uuid_le guest_endpoint_id;
621 uuid_le host_service_id;
622 } __packed;
623
624 struct vmbus_channel_version_response {
625 struct vmbus_channel_message_header header;
626 u8 version_supported;
627 } __packed;
628
629 enum vmbus_channel_state {
630 CHANNEL_OFFER_STATE,
631 CHANNEL_OPENING_STATE,
632 CHANNEL_OPEN_STATE,
633 CHANNEL_OPENED_STATE,
634 };
635
636 /*
637 * Represents each channel msg on the vmbus connection This is a
638 * variable-size data structure depending on the msg type itself
639 */
640 struct vmbus_channel_msginfo {
641 /* Bookkeeping stuff */
642 struct list_head msglistentry;
643
644 /* So far, this is only used to handle gpadl body message */
645 struct list_head submsglist;
646
647 /* Synchronize the request/response if needed */
648 struct completion waitevent;
649 struct vmbus_channel *waiting_channel;
650 union {
651 struct vmbus_channel_version_supported version_supported;
652 struct vmbus_channel_open_result open_result;
653 struct vmbus_channel_gpadl_torndown gpadl_torndown;
654 struct vmbus_channel_gpadl_created gpadl_created;
655 struct vmbus_channel_version_response version_response;
656 } response;
657
658 u32 msgsize;
659 /*
660 * The channel message that goes out on the "wire".
661 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
662 */
663 unsigned char msg[0];
664 };
665
666 struct vmbus_close_msg {
667 struct vmbus_channel_msginfo info;
668 struct vmbus_channel_close_channel msg;
669 };
670
671 /* Define connection identifier type. */
672 union hv_connection_id {
673 u32 asu32;
674 struct {
675 u32 id:24;
676 u32 reserved:8;
677 } u;
678 };
679
680 /* Definition of the hv_signal_event hypercall input structure. */
681 struct hv_input_signal_event {
682 union hv_connection_id connectionid;
683 u16 flag_number;
684 u16 rsvdz;
685 };
686
687 struct hv_input_signal_event_buffer {
688 u64 align8;
689 struct hv_input_signal_event event;
690 };
691
692 enum hv_numa_policy {
693 HV_BALANCED = 0,
694 HV_LOCALIZED,
695 };
696
697 enum vmbus_device_type {
698 HV_IDE = 0,
699 HV_SCSI,
700 HV_FC,
701 HV_NIC,
702 HV_ND,
703 HV_PCIE,
704 HV_FB,
705 HV_KBD,
706 HV_MOUSE,
707 HV_KVP,
708 HV_TS,
709 HV_HB,
710 HV_SHUTDOWN,
711 HV_FCOPY,
712 HV_BACKUP,
713 HV_DM,
714 HV_UNKNOWN,
715 };
716
717 struct vmbus_device {
718 u16 dev_type;
719 uuid_le guid;
720 bool perf_device;
721 };
722
723 struct vmbus_channel {
724 struct list_head listentry;
725
726 struct hv_device *device_obj;
727
728 enum vmbus_channel_state state;
729
730 struct vmbus_channel_offer_channel offermsg;
731 /*
732 * These are based on the OfferMsg.MonitorId.
733 * Save it here for easy access.
734 */
735 u8 monitor_grp;
736 u8 monitor_bit;
737
738 bool rescind; /* got rescind msg */
739
740 u32 ringbuffer_gpadlhandle;
741
742 /* Allocated memory for ring buffer */
743 void *ringbuffer_pages;
744 u32 ringbuffer_pagecount;
745 struct hv_ring_buffer_info outbound; /* send to parent */
746 struct hv_ring_buffer_info inbound; /* receive from parent */
747
748 struct vmbus_close_msg close_msg;
749
750 /* Channel callback's invoked in softirq context */
751 struct tasklet_struct callback_event;
752 void (*onchannel_callback)(void *context);
753 void *channel_callback_context;
754
755 /*
756 * A channel can be marked for one of three modes of reading:
757 * BATCHED - callback called from taslket and should read
758 * channel until empty. Interrupts from the host
759 * are masked while read is in process (default).
760 * DIRECT - callback called from tasklet (softirq).
761 * ISR - callback called in interrupt context and must
762 * invoke its own deferred processing.
763 * Host interrupts are disabled and must be re-enabled
764 * when ring is empty.
765 */
766 enum hv_callback_mode {
767 HV_CALL_BATCHED,
768 HV_CALL_DIRECT,
769 HV_CALL_ISR
770 } callback_mode;
771
772 bool is_dedicated_interrupt;
773 struct hv_input_signal_event_buffer sig_buf;
774 struct hv_input_signal_event *sig_event;
775
776 /*
777 * Starting with win8, this field will be used to specify
778 * the target virtual processor on which to deliver the interrupt for
779 * the host to guest communication.
780 * Prior to win8, incoming channel interrupts would only
781 * be delivered on cpu 0. Setting this value to 0 would
782 * preserve the earlier behavior.
783 */
784 u32 target_vp;
785 /* The corresponding CPUID in the guest */
786 u32 target_cpu;
787 /*
788 * State to manage the CPU affiliation of channels.
789 */
790 struct cpumask alloced_cpus_in_node;
791 int numa_node;
792 /*
793 * Support for sub-channels. For high performance devices,
794 * it will be useful to have multiple sub-channels to support
795 * a scalable communication infrastructure with the host.
796 * The support for sub-channels is implemented as an extention
797 * to the current infrastructure.
798 * The initial offer is considered the primary channel and this
799 * offer message will indicate if the host supports sub-channels.
800 * The guest is free to ask for sub-channels to be offerred and can
801 * open these sub-channels as a normal "primary" channel. However,
802 * all sub-channels will have the same type and instance guids as the
803 * primary channel. Requests sent on a given channel will result in a
804 * response on the same channel.
805 */
806
807 /*
808 * Sub-channel creation callback. This callback will be called in
809 * process context when a sub-channel offer is received from the host.
810 * The guest can open the sub-channel in the context of this callback.
811 */
812 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
813
814 /*
815 * Channel rescind callback. Some channels (the hvsock ones), need to
816 * register a callback which is invoked in vmbus_onoffer_rescind().
817 */
818 void (*chn_rescind_callback)(struct vmbus_channel *channel);
819
820 /*
821 * The spinlock to protect the structure. It is being used to protect
822 * test-and-set access to various attributes of the structure as well
823 * as all sc_list operations.
824 */
825 spinlock_t lock;
826 /*
827 * All Sub-channels of a primary channel are linked here.
828 */
829 struct list_head sc_list;
830 /*
831 * Current number of sub-channels.
832 */
833 int num_sc;
834 /*
835 * Number of a sub-channel (position within sc_list) which is supposed
836 * to be used as the next outgoing channel.
837 */
838 int next_oc;
839 /*
840 * The primary channel this sub-channel belongs to.
841 * This will be NULL for the primary channel.
842 */
843 struct vmbus_channel *primary_channel;
844 /*
845 * Support per-channel state for use by vmbus drivers.
846 */
847 void *per_channel_state;
848 /*
849 * To support per-cpu lookup mapping of relid to channel,
850 * link up channels based on their CPU affinity.
851 */
852 struct list_head percpu_list;
853
854 /*
855 * Defer freeing channel until after all cpu's have
856 * gone through grace period.
857 */
858 struct rcu_head rcu;
859
860 /*
861 * For performance critical channels (storage, networking
862 * etc,), Hyper-V has a mechanism to enhance the throughput
863 * at the expense of latency:
864 * When the host is to be signaled, we just set a bit in a shared page
865 * and this bit will be inspected by the hypervisor within a certain
866 * window and if the bit is set, the host will be signaled. The window
867 * of time is the monitor latency - currently around 100 usecs. This
868 * mechanism improves throughput by:
869 *
870 * A) Making the host more efficient - each time it wakes up,
871 * potentially it will process morev number of packets. The
872 * monitor latency allows a batch to build up.
873 * B) By deferring the hypercall to signal, we will also minimize
874 * the interrupts.
875 *
876 * Clearly, these optimizations improve throughput at the expense of
877 * latency. Furthermore, since the channel is shared for both
878 * control and data messages, control messages currently suffer
879 * unnecessary latency adversley impacting performance and boot
880 * time. To fix this issue, permit tagging the channel as being
881 * in "low latency" mode. In this mode, we will bypass the monitor
882 * mechanism.
883 */
884 bool low_latency;
885
886 /*
887 * NUMA distribution policy:
888 * We support teo policies:
889 * 1) Balanced: Here all performance critical channels are
890 * distributed evenly amongst all the NUMA nodes.
891 * This policy will be the default policy.
892 * 2) Localized: All channels of a given instance of a
893 * performance critical service will be assigned CPUs
894 * within a selected NUMA node.
895 */
896 enum hv_numa_policy affinity_policy;
897
898 };
899
900 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
901 {
902 return !!(c->offermsg.offer.chn_flags &
903 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
904 }
905
906 static inline void set_channel_affinity_state(struct vmbus_channel *c,
907 enum hv_numa_policy policy)
908 {
909 c->affinity_policy = policy;
910 }
911
912 static inline void set_channel_read_mode(struct vmbus_channel *c,
913 enum hv_callback_mode mode)
914 {
915 c->callback_mode = mode;
916 }
917
918 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
919 {
920 c->per_channel_state = s;
921 }
922
923 static inline void *get_per_channel_state(struct vmbus_channel *c)
924 {
925 return c->per_channel_state;
926 }
927
928 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
929 u32 size)
930 {
931 c->outbound.ring_buffer->pending_send_sz = size;
932 }
933
934 static inline void set_low_latency_mode(struct vmbus_channel *c)
935 {
936 c->low_latency = true;
937 }
938
939 static inline void clear_low_latency_mode(struct vmbus_channel *c)
940 {
941 c->low_latency = false;
942 }
943
944 void vmbus_onmessage(void *context);
945
946 int vmbus_request_offers(void);
947
948 /*
949 * APIs for managing sub-channels.
950 */
951
952 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
953 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
954
955 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
956 void (*chn_rescind_cb)(struct vmbus_channel *));
957
958 /*
959 * Retrieve the (sub) channel on which to send an outgoing request.
960 * When a primary channel has multiple sub-channels, we choose a
961 * channel whose VCPU binding is closest to the VCPU on which
962 * this call is being made.
963 */
964 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
965
966 /*
967 * Check if sub-channels have already been offerred. This API will be useful
968 * when the driver is unloaded after establishing sub-channels. In this case,
969 * when the driver is re-loaded, the driver would have to check if the
970 * subchannels have already been established before attempting to request
971 * the creation of sub-channels.
972 * This function returns TRUE to indicate that subchannels have already been
973 * created.
974 * This function should be invoked after setting the callback function for
975 * sub-channel creation.
976 */
977 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
978
979 /* The format must be the same as struct vmdata_gpa_direct */
980 struct vmbus_channel_packet_page_buffer {
981 u16 type;
982 u16 dataoffset8;
983 u16 length8;
984 u16 flags;
985 u64 transactionid;
986 u32 reserved;
987 u32 rangecount;
988 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
989 } __packed;
990
991 /* The format must be the same as struct vmdata_gpa_direct */
992 struct vmbus_channel_packet_multipage_buffer {
993 u16 type;
994 u16 dataoffset8;
995 u16 length8;
996 u16 flags;
997 u64 transactionid;
998 u32 reserved;
999 u32 rangecount; /* Always 1 in this case */
1000 struct hv_multipage_buffer range;
1001 } __packed;
1002
1003 /* The format must be the same as struct vmdata_gpa_direct */
1004 struct vmbus_packet_mpb_array {
1005 u16 type;
1006 u16 dataoffset8;
1007 u16 length8;
1008 u16 flags;
1009 u64 transactionid;
1010 u32 reserved;
1011 u32 rangecount; /* Always 1 in this case */
1012 struct hv_mpb_array range;
1013 } __packed;
1014
1015
1016 extern int vmbus_open(struct vmbus_channel *channel,
1017 u32 send_ringbuffersize,
1018 u32 recv_ringbuffersize,
1019 void *userdata,
1020 u32 userdatalen,
1021 void (*onchannel_callback)(void *context),
1022 void *context);
1023
1024 extern void vmbus_close(struct vmbus_channel *channel);
1025
1026 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1027 void *buffer,
1028 u32 bufferLen,
1029 u64 requestid,
1030 enum vmbus_packet_type type,
1031 u32 flags);
1032
1033 extern int vmbus_sendpacket_ctl(struct vmbus_channel *channel,
1034 void *buffer,
1035 u32 bufferLen,
1036 u64 requestid,
1037 enum vmbus_packet_type type,
1038 u32 flags);
1039
1040 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1041 struct hv_page_buffer pagebuffers[],
1042 u32 pagecount,
1043 void *buffer,
1044 u32 bufferlen,
1045 u64 requestid);
1046
1047 extern int vmbus_sendpacket_pagebuffer_ctl(struct vmbus_channel *channel,
1048 struct hv_page_buffer pagebuffers[],
1049 u32 pagecount,
1050 void *buffer,
1051 u32 bufferlen,
1052 u64 requestid,
1053 u32 flags);
1054
1055 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1056 struct hv_multipage_buffer *mpb,
1057 void *buffer,
1058 u32 bufferlen,
1059 u64 requestid);
1060
1061 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1062 struct vmbus_packet_mpb_array *mpb,
1063 u32 desc_size,
1064 void *buffer,
1065 u32 bufferlen,
1066 u64 requestid);
1067
1068 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1069 void *kbuffer,
1070 u32 size,
1071 u32 *gpadl_handle);
1072
1073 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1074 u32 gpadl_handle);
1075
1076 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1077 void *buffer,
1078 u32 bufferlen,
1079 u32 *buffer_actual_len,
1080 u64 *requestid);
1081
1082 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1083 void *buffer,
1084 u32 bufferlen,
1085 u32 *buffer_actual_len,
1086 u64 *requestid);
1087
1088
1089 extern void vmbus_ontimer(unsigned long data);
1090
1091 /* Base driver object */
1092 struct hv_driver {
1093 const char *name;
1094
1095 /*
1096 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1097 * channel flag, actually doesn't mean a synthetic device because the
1098 * offer's if_type/if_instance can change for every new hvsock
1099 * connection.
1100 *
1101 * However, to facilitate the notification of new-offer/rescind-offer
1102 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1103 * a special vmbus device, and hence we need the below flag to
1104 * indicate if the driver is the hvsock driver or not: we need to
1105 * specially treat the hvosck offer & driver in vmbus_match().
1106 */
1107 bool hvsock;
1108
1109 /* the device type supported by this driver */
1110 uuid_le dev_type;
1111 const struct hv_vmbus_device_id *id_table;
1112
1113 struct device_driver driver;
1114
1115 /* dynamic device GUID's */
1116 struct {
1117 spinlock_t lock;
1118 struct list_head list;
1119 } dynids;
1120
1121 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1122 int (*remove)(struct hv_device *);
1123 void (*shutdown)(struct hv_device *);
1124
1125 };
1126
1127 /* Base device object */
1128 struct hv_device {
1129 /* the device type id of this device */
1130 uuid_le dev_type;
1131
1132 /* the device instance id of this device */
1133 uuid_le dev_instance;
1134 u16 vendor_id;
1135 u16 device_id;
1136
1137 struct device device;
1138
1139 struct vmbus_channel *channel;
1140 };
1141
1142
1143 static inline struct hv_device *device_to_hv_device(struct device *d)
1144 {
1145 return container_of(d, struct hv_device, device);
1146 }
1147
1148 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1149 {
1150 return container_of(d, struct hv_driver, driver);
1151 }
1152
1153 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1154 {
1155 dev_set_drvdata(&dev->device, data);
1156 }
1157
1158 static inline void *hv_get_drvdata(struct hv_device *dev)
1159 {
1160 return dev_get_drvdata(&dev->device);
1161 }
1162
1163 struct hv_ring_buffer_debug_info {
1164 u32 current_interrupt_mask;
1165 u32 current_read_index;
1166 u32 current_write_index;
1167 u32 bytes_avail_toread;
1168 u32 bytes_avail_towrite;
1169 };
1170
1171 void hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info *ring_info,
1172 struct hv_ring_buffer_debug_info *debug_info);
1173
1174 /* Vmbus interface */
1175 #define vmbus_driver_register(driver) \
1176 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1177 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1178 struct module *owner,
1179 const char *mod_name);
1180 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1181
1182 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1183
1184 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1185 resource_size_t min, resource_size_t max,
1186 resource_size_t size, resource_size_t align,
1187 bool fb_overlap_ok);
1188 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1189 int vmbus_cpu_number_to_vp_number(int cpu_number);
1190 u64 hv_do_hypercall(u64 control, void *input, void *output);
1191
1192 /*
1193 * GUID definitions of various offer types - services offered to the guest.
1194 */
1195
1196 /*
1197 * Network GUID
1198 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1199 */
1200 #define HV_NIC_GUID \
1201 .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1202 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1203
1204 /*
1205 * IDE GUID
1206 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1207 */
1208 #define HV_IDE_GUID \
1209 .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1210 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1211
1212 /*
1213 * SCSI GUID
1214 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1215 */
1216 #define HV_SCSI_GUID \
1217 .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1218 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1219
1220 /*
1221 * Shutdown GUID
1222 * {0e0b6031-5213-4934-818b-38d90ced39db}
1223 */
1224 #define HV_SHUTDOWN_GUID \
1225 .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1226 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1227
1228 /*
1229 * Time Synch GUID
1230 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1231 */
1232 #define HV_TS_GUID \
1233 .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1234 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1235
1236 /*
1237 * Heartbeat GUID
1238 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1239 */
1240 #define HV_HEART_BEAT_GUID \
1241 .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1242 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1243
1244 /*
1245 * KVP GUID
1246 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1247 */
1248 #define HV_KVP_GUID \
1249 .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1250 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1251
1252 /*
1253 * Dynamic memory GUID
1254 * {525074dc-8985-46e2-8057-a307dc18a502}
1255 */
1256 #define HV_DM_GUID \
1257 .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1258 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1259
1260 /*
1261 * Mouse GUID
1262 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1263 */
1264 #define HV_MOUSE_GUID \
1265 .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1266 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1267
1268 /*
1269 * Keyboard GUID
1270 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1271 */
1272 #define HV_KBD_GUID \
1273 .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1274 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1275
1276 /*
1277 * VSS (Backup/Restore) GUID
1278 */
1279 #define HV_VSS_GUID \
1280 .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1281 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1282 /*
1283 * Synthetic Video GUID
1284 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1285 */
1286 #define HV_SYNTHVID_GUID \
1287 .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1288 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1289
1290 /*
1291 * Synthetic FC GUID
1292 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1293 */
1294 #define HV_SYNTHFC_GUID \
1295 .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1296 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1297
1298 /*
1299 * Guest File Copy Service
1300 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1301 */
1302
1303 #define HV_FCOPY_GUID \
1304 .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1305 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1306
1307 /*
1308 * NetworkDirect. This is the guest RDMA service.
1309 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1310 */
1311 #define HV_ND_GUID \
1312 .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1313 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1314
1315 /*
1316 * PCI Express Pass Through
1317 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1318 */
1319
1320 #define HV_PCIE_GUID \
1321 .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1322 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1323
1324 /*
1325 * Linux doesn't support the 3 devices: the first two are for
1326 * Automatic Virtual Machine Activation, and the third is for
1327 * Remote Desktop Virtualization.
1328 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1329 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1330 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1331 */
1332
1333 #define HV_AVMA1_GUID \
1334 .guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1335 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1336
1337 #define HV_AVMA2_GUID \
1338 .guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1339 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1340
1341 #define HV_RDV_GUID \
1342 .guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1343 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1344
1345 /*
1346 * Common header for Hyper-V ICs
1347 */
1348
1349 #define ICMSGTYPE_NEGOTIATE 0
1350 #define ICMSGTYPE_HEARTBEAT 1
1351 #define ICMSGTYPE_KVPEXCHANGE 2
1352 #define ICMSGTYPE_SHUTDOWN 3
1353 #define ICMSGTYPE_TIMESYNC 4
1354 #define ICMSGTYPE_VSS 5
1355
1356 #define ICMSGHDRFLAG_TRANSACTION 1
1357 #define ICMSGHDRFLAG_REQUEST 2
1358 #define ICMSGHDRFLAG_RESPONSE 4
1359
1360
1361 /*
1362 * While we want to handle util services as regular devices,
1363 * there is only one instance of each of these services; so
1364 * we statically allocate the service specific state.
1365 */
1366
1367 struct hv_util_service {
1368 u8 *recv_buffer;
1369 void *channel;
1370 void (*util_cb)(void *);
1371 int (*util_init)(struct hv_util_service *);
1372 void (*util_deinit)(void);
1373 };
1374
1375 struct vmbuspipe_hdr {
1376 u32 flags;
1377 u32 msgsize;
1378 } __packed;
1379
1380 struct ic_version {
1381 u16 major;
1382 u16 minor;
1383 } __packed;
1384
1385 struct icmsg_hdr {
1386 struct ic_version icverframe;
1387 u16 icmsgtype;
1388 struct ic_version icvermsg;
1389 u16 icmsgsize;
1390 u32 status;
1391 u8 ictransaction_id;
1392 u8 icflags;
1393 u8 reserved[2];
1394 } __packed;
1395
1396 struct icmsg_negotiate {
1397 u16 icframe_vercnt;
1398 u16 icmsg_vercnt;
1399 u32 reserved;
1400 struct ic_version icversion_data[1]; /* any size array */
1401 } __packed;
1402
1403 struct shutdown_msg_data {
1404 u32 reason_code;
1405 u32 timeout_seconds;
1406 u32 flags;
1407 u8 display_message[2048];
1408 } __packed;
1409
1410 struct heartbeat_msg_data {
1411 u64 seq_num;
1412 u32 reserved[8];
1413 } __packed;
1414
1415 /* Time Sync IC defs */
1416 #define ICTIMESYNCFLAG_PROBE 0
1417 #define ICTIMESYNCFLAG_SYNC 1
1418 #define ICTIMESYNCFLAG_SAMPLE 2
1419
1420 #ifdef __x86_64__
1421 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1422 #else
1423 #define WLTIMEDELTA 116444736000000000LL
1424 #endif
1425
1426 struct ictimesync_data {
1427 u64 parenttime;
1428 u64 childtime;
1429 u64 roundtriptime;
1430 u8 flags;
1431 } __packed;
1432
1433 struct ictimesync_ref_data {
1434 u64 parenttime;
1435 u64 vmreferencetime;
1436 u8 flags;
1437 char leapflags;
1438 char stratum;
1439 u8 reserved[3];
1440 } __packed;
1441
1442 struct hyperv_service_callback {
1443 u8 msg_type;
1444 char *log_msg;
1445 uuid_le data;
1446 struct vmbus_channel *channel;
1447 void (*callback)(void *context);
1448 };
1449
1450 #define MAX_SRV_VER 0x7ffffff
1451 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1452 const int *fw_version, int fw_vercnt,
1453 const int *srv_version, int srv_vercnt,
1454 int *nego_fw_version, int *nego_srv_version);
1455
1456 void hv_process_channel_removal(struct vmbus_channel *channel, u32 relid);
1457
1458 void vmbus_setevent(struct vmbus_channel *channel);
1459 /*
1460 * Negotiated version with the Host.
1461 */
1462
1463 extern __u32 vmbus_proto_version;
1464
1465 int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id,
1466 const uuid_le *shv_host_servie_id);
1467 void vmbus_set_event(struct vmbus_channel *channel);
1468
1469 /* Get the start of the ring buffer. */
1470 static inline void *
1471 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1472 {
1473 return ring_info->ring_buffer->buffer;
1474 }
1475
1476 /*
1477 * To optimize the flow management on the send-side,
1478 * when the sender is blocked because of lack of
1479 * sufficient space in the ring buffer, potential the
1480 * consumer of the ring buffer can signal the producer.
1481 * This is controlled by the following parameters:
1482 *
1483 * 1. pending_send_sz: This is the size in bytes that the
1484 * producer is trying to send.
1485 * 2. The feature bit feat_pending_send_sz set to indicate if
1486 * the consumer of the ring will signal when the ring
1487 * state transitions from being full to a state where
1488 * there is room for the producer to send the pending packet.
1489 */
1490
1491 static inline void hv_signal_on_read(struct vmbus_channel *channel)
1492 {
1493 u32 cur_write_sz, cached_write_sz;
1494 u32 pending_sz;
1495 struct hv_ring_buffer_info *rbi = &channel->inbound;
1496
1497 /*
1498 * Issue a full memory barrier before making the signaling decision.
1499 * Here is the reason for having this barrier:
1500 * If the reading of the pend_sz (in this function)
1501 * were to be reordered and read before we commit the new read
1502 * index (in the calling function) we could
1503 * have a problem. If the host were to set the pending_sz after we
1504 * have sampled pending_sz and go to sleep before we commit the
1505 * read index, we could miss sending the interrupt. Issue a full
1506 * memory barrier to address this.
1507 */
1508 virt_mb();
1509
1510 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
1511 /* If the other end is not blocked on write don't bother. */
1512 if (pending_sz == 0)
1513 return;
1514
1515 cur_write_sz = hv_get_bytes_to_write(rbi);
1516
1517 if (cur_write_sz < pending_sz)
1518 return;
1519
1520 cached_write_sz = hv_get_cached_bytes_to_write(rbi);
1521 if (cached_write_sz < pending_sz)
1522 vmbus_setevent(channel);
1523 }
1524
1525 /*
1526 * Mask off host interrupt callback notifications
1527 */
1528 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1529 {
1530 rbi->ring_buffer->interrupt_mask = 1;
1531
1532 /* make sure mask update is not reordered */
1533 virt_mb();
1534 }
1535
1536 /*
1537 * Re-enable host callback and return number of outstanding bytes
1538 */
1539 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1540 {
1541
1542 rbi->ring_buffer->interrupt_mask = 0;
1543
1544 /* make sure mask update is not reordered */
1545 virt_mb();
1546
1547 /*
1548 * Now check to see if the ring buffer is still empty.
1549 * If it is not, we raced and we need to process new
1550 * incoming messages.
1551 */
1552 return hv_get_bytes_to_read(rbi);
1553 }
1554
1555 /*
1556 * An API to support in-place processing of incoming VMBUS packets.
1557 */
1558
1559 /* Get data payload associated with descriptor */
1560 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1561 {
1562 return (void *)((unsigned long)desc + (desc->offset8 << 3));
1563 }
1564
1565 /* Get data size associated with descriptor */
1566 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1567 {
1568 return (desc->len8 << 3) - (desc->offset8 << 3);
1569 }
1570
1571
1572 struct vmpacket_descriptor *
1573 hv_pkt_iter_first(struct vmbus_channel *channel);
1574
1575 struct vmpacket_descriptor *
1576 __hv_pkt_iter_next(struct vmbus_channel *channel,
1577 const struct vmpacket_descriptor *pkt);
1578
1579 void hv_pkt_iter_close(struct vmbus_channel *channel);
1580
1581 /*
1582 * Get next packet descriptor from iterator
1583 * If at end of list, return NULL and update host.
1584 */
1585 static inline struct vmpacket_descriptor *
1586 hv_pkt_iter_next(struct vmbus_channel *channel,
1587 const struct vmpacket_descriptor *pkt)
1588 {
1589 struct vmpacket_descriptor *nxt;
1590
1591 nxt = __hv_pkt_iter_next(channel, pkt);
1592 if (!nxt)
1593 hv_pkt_iter_close(channel);
1594
1595 return nxt;
1596 }
1597
1598 #define foreach_vmbus_pkt(pkt, channel) \
1599 for (pkt = hv_pkt_iter_first(channel); pkt; \
1600 pkt = hv_pkt_iter_next(channel, pkt))
1601
1602 #endif /* _HYPERV_H */