]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/hyperv.h
Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / include / linux / hyperv.h
1 /*
2 *
3 * Copyright (c) 2011, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
24
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27
28 #include <uapi/linux/hyperv.h>
29 #include <uapi/asm/hyperv.h>
30
31 #include <linux/types.h>
32 #include <linux/scatterlist.h>
33 #include <linux/list.h>
34 #include <linux/timer.h>
35 #include <linux/workqueue.h>
36 #include <linux/completion.h>
37 #include <linux/device.h>
38 #include <linux/mod_devicetable.h>
39
40
41 #define MAX_PAGE_BUFFER_COUNT 32
42 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
43
44 #pragma pack(push, 1)
45
46 /* Single-page buffer */
47 struct hv_page_buffer {
48 u32 len;
49 u32 offset;
50 u64 pfn;
51 };
52
53 /* Multiple-page buffer */
54 struct hv_multipage_buffer {
55 /* Length and Offset determines the # of pfns in the array */
56 u32 len;
57 u32 offset;
58 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
59 };
60
61 /*
62 * Multiple-page buffer array; the pfn array is variable size:
63 * The number of entries in the PFN array is determined by
64 * "len" and "offset".
65 */
66 struct hv_mpb_array {
67 /* Length and Offset determines the # of pfns in the array */
68 u32 len;
69 u32 offset;
70 u64 pfn_array[];
71 };
72
73 /* 0x18 includes the proprietary packet header */
74 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
75 (sizeof(struct hv_page_buffer) * \
76 MAX_PAGE_BUFFER_COUNT))
77 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
78 sizeof(struct hv_multipage_buffer))
79
80
81 #pragma pack(pop)
82
83 struct hv_ring_buffer {
84 /* Offset in bytes from the start of ring data below */
85 u32 write_index;
86
87 /* Offset in bytes from the start of ring data below */
88 u32 read_index;
89
90 u32 interrupt_mask;
91
92 /*
93 * Win8 uses some of the reserved bits to implement
94 * interrupt driven flow management. On the send side
95 * we can request that the receiver interrupt the sender
96 * when the ring transitions from being full to being able
97 * to handle a message of size "pending_send_sz".
98 *
99 * Add necessary state for this enhancement.
100 */
101 u32 pending_send_sz;
102
103 u32 reserved1[12];
104
105 union {
106 struct {
107 u32 feat_pending_send_sz:1;
108 };
109 u32 value;
110 } feature_bits;
111
112 /* Pad it to PAGE_SIZE so that data starts on page boundary */
113 u8 reserved2[4028];
114
115 /*
116 * Ring data starts here + RingDataStartOffset
117 * !!! DO NOT place any fields below this !!!
118 */
119 u8 buffer[0];
120 } __packed;
121
122 struct hv_ring_buffer_info {
123 struct hv_ring_buffer *ring_buffer;
124 u32 ring_size; /* Include the shared header */
125 spinlock_t ring_lock;
126
127 u32 ring_datasize; /* < ring_size */
128 u32 ring_data_startoffset;
129 u32 priv_write_index;
130 u32 priv_read_index;
131 };
132
133 /*
134 *
135 * hv_get_ringbuffer_availbytes()
136 *
137 * Get number of bytes available to read and to write to
138 * for the specified ring buffer
139 */
140 static inline void
141 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
142 u32 *read, u32 *write)
143 {
144 u32 read_loc, write_loc, dsize;
145
146 /* Capture the read/write indices before they changed */
147 read_loc = rbi->ring_buffer->read_index;
148 write_loc = rbi->ring_buffer->write_index;
149 dsize = rbi->ring_datasize;
150
151 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
152 read_loc - write_loc;
153 *read = dsize - *write;
154 }
155
156 static inline u32 hv_get_bytes_to_read(struct hv_ring_buffer_info *rbi)
157 {
158 u32 read_loc, write_loc, dsize, read;
159
160 dsize = rbi->ring_datasize;
161 read_loc = rbi->ring_buffer->read_index;
162 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
163
164 read = write_loc >= read_loc ? (write_loc - read_loc) :
165 (dsize - read_loc) + write_loc;
166
167 return read;
168 }
169
170 static inline u32 hv_get_bytes_to_write(struct hv_ring_buffer_info *rbi)
171 {
172 u32 read_loc, write_loc, dsize, write;
173
174 dsize = rbi->ring_datasize;
175 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
176 write_loc = rbi->ring_buffer->write_index;
177
178 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
179 read_loc - write_loc;
180 return write;
181 }
182
183 /*
184 * VMBUS version is 32 bit entity broken up into
185 * two 16 bit quantities: major_number. minor_number.
186 *
187 * 0 . 13 (Windows Server 2008)
188 * 1 . 1 (Windows 7)
189 * 2 . 4 (Windows 8)
190 * 3 . 0 (Windows 8 R2)
191 * 4 . 0 (Windows 10)
192 */
193
194 #define VERSION_WS2008 ((0 << 16) | (13))
195 #define VERSION_WIN7 ((1 << 16) | (1))
196 #define VERSION_WIN8 ((2 << 16) | (4))
197 #define VERSION_WIN8_1 ((3 << 16) | (0))
198 #define VERSION_WIN10 ((4 << 16) | (0))
199
200 #define VERSION_INVAL -1
201
202 #define VERSION_CURRENT VERSION_WIN10
203
204 /* Make maximum size of pipe payload of 16K */
205 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
206
207 /* Define PipeMode values. */
208 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
209 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
210
211 /* The size of the user defined data buffer for non-pipe offers. */
212 #define MAX_USER_DEFINED_BYTES 120
213
214 /* The size of the user defined data buffer for pipe offers. */
215 #define MAX_PIPE_USER_DEFINED_BYTES 116
216
217 /*
218 * At the center of the Channel Management library is the Channel Offer. This
219 * struct contains the fundamental information about an offer.
220 */
221 struct vmbus_channel_offer {
222 uuid_le if_type;
223 uuid_le if_instance;
224
225 /*
226 * These two fields are not currently used.
227 */
228 u64 reserved1;
229 u64 reserved2;
230
231 u16 chn_flags;
232 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
233
234 union {
235 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
236 struct {
237 unsigned char user_def[MAX_USER_DEFINED_BYTES];
238 } std;
239
240 /*
241 * Pipes:
242 * The following sructure is an integrated pipe protocol, which
243 * is implemented on top of standard user-defined data. Pipe
244 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
245 * use.
246 */
247 struct {
248 u32 pipe_mode;
249 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
250 } pipe;
251 } u;
252 /*
253 * The sub_channel_index is defined in win8.
254 */
255 u16 sub_channel_index;
256 u16 reserved3;
257 } __packed;
258
259 /* Server Flags */
260 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
261 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
262 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
263 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
264 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
265 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
266 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
267 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
268
269 struct vmpacket_descriptor {
270 u16 type;
271 u16 offset8;
272 u16 len8;
273 u16 flags;
274 u64 trans_id;
275 } __packed;
276
277 struct vmpacket_header {
278 u32 prev_pkt_start_offset;
279 struct vmpacket_descriptor descriptor;
280 } __packed;
281
282 struct vmtransfer_page_range {
283 u32 byte_count;
284 u32 byte_offset;
285 } __packed;
286
287 struct vmtransfer_page_packet_header {
288 struct vmpacket_descriptor d;
289 u16 xfer_pageset_id;
290 u8 sender_owns_set;
291 u8 reserved;
292 u32 range_cnt;
293 struct vmtransfer_page_range ranges[1];
294 } __packed;
295
296 struct vmgpadl_packet_header {
297 struct vmpacket_descriptor d;
298 u32 gpadl;
299 u32 reserved;
300 } __packed;
301
302 struct vmadd_remove_transfer_page_set {
303 struct vmpacket_descriptor d;
304 u32 gpadl;
305 u16 xfer_pageset_id;
306 u16 reserved;
307 } __packed;
308
309 /*
310 * This structure defines a range in guest physical space that can be made to
311 * look virtually contiguous.
312 */
313 struct gpa_range {
314 u32 byte_count;
315 u32 byte_offset;
316 u64 pfn_array[0];
317 };
318
319 /*
320 * This is the format for an Establish Gpadl packet, which contains a handle by
321 * which this GPADL will be known and a set of GPA ranges associated with it.
322 * This can be converted to a MDL by the guest OS. If there are multiple GPA
323 * ranges, then the resulting MDL will be "chained," representing multiple VA
324 * ranges.
325 */
326 struct vmestablish_gpadl {
327 struct vmpacket_descriptor d;
328 u32 gpadl;
329 u32 range_cnt;
330 struct gpa_range range[1];
331 } __packed;
332
333 /*
334 * This is the format for a Teardown Gpadl packet, which indicates that the
335 * GPADL handle in the Establish Gpadl packet will never be referenced again.
336 */
337 struct vmteardown_gpadl {
338 struct vmpacket_descriptor d;
339 u32 gpadl;
340 u32 reserved; /* for alignment to a 8-byte boundary */
341 } __packed;
342
343 /*
344 * This is the format for a GPA-Direct packet, which contains a set of GPA
345 * ranges, in addition to commands and/or data.
346 */
347 struct vmdata_gpa_direct {
348 struct vmpacket_descriptor d;
349 u32 reserved;
350 u32 range_cnt;
351 struct gpa_range range[1];
352 } __packed;
353
354 /* This is the format for a Additional Data Packet. */
355 struct vmadditional_data {
356 struct vmpacket_descriptor d;
357 u64 total_bytes;
358 u32 offset;
359 u32 byte_cnt;
360 unsigned char data[1];
361 } __packed;
362
363 union vmpacket_largest_possible_header {
364 struct vmpacket_descriptor simple_hdr;
365 struct vmtransfer_page_packet_header xfer_page_hdr;
366 struct vmgpadl_packet_header gpadl_hdr;
367 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
368 struct vmestablish_gpadl establish_gpadl_hdr;
369 struct vmteardown_gpadl teardown_gpadl_hdr;
370 struct vmdata_gpa_direct data_gpa_direct_hdr;
371 };
372
373 #define VMPACKET_DATA_START_ADDRESS(__packet) \
374 (void *)(((unsigned char *)__packet) + \
375 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
376
377 #define VMPACKET_DATA_LENGTH(__packet) \
378 ((((struct vmpacket_descriptor)__packet)->len8 - \
379 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
380
381 #define VMPACKET_TRANSFER_MODE(__packet) \
382 (((struct IMPACT)__packet)->type)
383
384 enum vmbus_packet_type {
385 VM_PKT_INVALID = 0x0,
386 VM_PKT_SYNCH = 0x1,
387 VM_PKT_ADD_XFER_PAGESET = 0x2,
388 VM_PKT_RM_XFER_PAGESET = 0x3,
389 VM_PKT_ESTABLISH_GPADL = 0x4,
390 VM_PKT_TEARDOWN_GPADL = 0x5,
391 VM_PKT_DATA_INBAND = 0x6,
392 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
393 VM_PKT_DATA_USING_GPADL = 0x8,
394 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
395 VM_PKT_CANCEL_REQUEST = 0xa,
396 VM_PKT_COMP = 0xb,
397 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
398 VM_PKT_ADDITIONAL_DATA = 0xd
399 };
400
401 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
402
403
404 /* Version 1 messages */
405 enum vmbus_channel_message_type {
406 CHANNELMSG_INVALID = 0,
407 CHANNELMSG_OFFERCHANNEL = 1,
408 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
409 CHANNELMSG_REQUESTOFFERS = 3,
410 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
411 CHANNELMSG_OPENCHANNEL = 5,
412 CHANNELMSG_OPENCHANNEL_RESULT = 6,
413 CHANNELMSG_CLOSECHANNEL = 7,
414 CHANNELMSG_GPADL_HEADER = 8,
415 CHANNELMSG_GPADL_BODY = 9,
416 CHANNELMSG_GPADL_CREATED = 10,
417 CHANNELMSG_GPADL_TEARDOWN = 11,
418 CHANNELMSG_GPADL_TORNDOWN = 12,
419 CHANNELMSG_RELID_RELEASED = 13,
420 CHANNELMSG_INITIATE_CONTACT = 14,
421 CHANNELMSG_VERSION_RESPONSE = 15,
422 CHANNELMSG_UNLOAD = 16,
423 CHANNELMSG_UNLOAD_RESPONSE = 17,
424 CHANNELMSG_18 = 18,
425 CHANNELMSG_19 = 19,
426 CHANNELMSG_20 = 20,
427 CHANNELMSG_TL_CONNECT_REQUEST = 21,
428 CHANNELMSG_COUNT
429 };
430
431 struct vmbus_channel_message_header {
432 enum vmbus_channel_message_type msgtype;
433 u32 padding;
434 } __packed;
435
436 /* Query VMBus Version parameters */
437 struct vmbus_channel_query_vmbus_version {
438 struct vmbus_channel_message_header header;
439 u32 version;
440 } __packed;
441
442 /* VMBus Version Supported parameters */
443 struct vmbus_channel_version_supported {
444 struct vmbus_channel_message_header header;
445 u8 version_supported;
446 } __packed;
447
448 /* Offer Channel parameters */
449 struct vmbus_channel_offer_channel {
450 struct vmbus_channel_message_header header;
451 struct vmbus_channel_offer offer;
452 u32 child_relid;
453 u8 monitorid;
454 /*
455 * win7 and beyond splits this field into a bit field.
456 */
457 u8 monitor_allocated:1;
458 u8 reserved:7;
459 /*
460 * These are new fields added in win7 and later.
461 * Do not access these fields without checking the
462 * negotiated protocol.
463 *
464 * If "is_dedicated_interrupt" is set, we must not set the
465 * associated bit in the channel bitmap while sending the
466 * interrupt to the host.
467 *
468 * connection_id is to be used in signaling the host.
469 */
470 u16 is_dedicated_interrupt:1;
471 u16 reserved1:15;
472 u32 connection_id;
473 } __packed;
474
475 /* Rescind Offer parameters */
476 struct vmbus_channel_rescind_offer {
477 struct vmbus_channel_message_header header;
478 u32 child_relid;
479 } __packed;
480
481 /*
482 * Request Offer -- no parameters, SynIC message contains the partition ID
483 * Set Snoop -- no parameters, SynIC message contains the partition ID
484 * Clear Snoop -- no parameters, SynIC message contains the partition ID
485 * All Offers Delivered -- no parameters, SynIC message contains the partition
486 * ID
487 * Flush Client -- no parameters, SynIC message contains the partition ID
488 */
489
490 /* Open Channel parameters */
491 struct vmbus_channel_open_channel {
492 struct vmbus_channel_message_header header;
493
494 /* Identifies the specific VMBus channel that is being opened. */
495 u32 child_relid;
496
497 /* ID making a particular open request at a channel offer unique. */
498 u32 openid;
499
500 /* GPADL for the channel's ring buffer. */
501 u32 ringbuffer_gpadlhandle;
502
503 /*
504 * Starting with win8, this field will be used to specify
505 * the target virtual processor on which to deliver the interrupt for
506 * the host to guest communication.
507 * Prior to win8, incoming channel interrupts would only
508 * be delivered on cpu 0. Setting this value to 0 would
509 * preserve the earlier behavior.
510 */
511 u32 target_vp;
512
513 /*
514 * The upstream ring buffer begins at offset zero in the memory
515 * described by RingBufferGpadlHandle. The downstream ring buffer
516 * follows it at this offset (in pages).
517 */
518 u32 downstream_ringbuffer_pageoffset;
519
520 /* User-specific data to be passed along to the server endpoint. */
521 unsigned char userdata[MAX_USER_DEFINED_BYTES];
522 } __packed;
523
524 /* Open Channel Result parameters */
525 struct vmbus_channel_open_result {
526 struct vmbus_channel_message_header header;
527 u32 child_relid;
528 u32 openid;
529 u32 status;
530 } __packed;
531
532 /* Close channel parameters; */
533 struct vmbus_channel_close_channel {
534 struct vmbus_channel_message_header header;
535 u32 child_relid;
536 } __packed;
537
538 /* Channel Message GPADL */
539 #define GPADL_TYPE_RING_BUFFER 1
540 #define GPADL_TYPE_SERVER_SAVE_AREA 2
541 #define GPADL_TYPE_TRANSACTION 8
542
543 /*
544 * The number of PFNs in a GPADL message is defined by the number of
545 * pages that would be spanned by ByteCount and ByteOffset. If the
546 * implied number of PFNs won't fit in this packet, there will be a
547 * follow-up packet that contains more.
548 */
549 struct vmbus_channel_gpadl_header {
550 struct vmbus_channel_message_header header;
551 u32 child_relid;
552 u32 gpadl;
553 u16 range_buflen;
554 u16 rangecount;
555 struct gpa_range range[0];
556 } __packed;
557
558 /* This is the followup packet that contains more PFNs. */
559 struct vmbus_channel_gpadl_body {
560 struct vmbus_channel_message_header header;
561 u32 msgnumber;
562 u32 gpadl;
563 u64 pfn[0];
564 } __packed;
565
566 struct vmbus_channel_gpadl_created {
567 struct vmbus_channel_message_header header;
568 u32 child_relid;
569 u32 gpadl;
570 u32 creation_status;
571 } __packed;
572
573 struct vmbus_channel_gpadl_teardown {
574 struct vmbus_channel_message_header header;
575 u32 child_relid;
576 u32 gpadl;
577 } __packed;
578
579 struct vmbus_channel_gpadl_torndown {
580 struct vmbus_channel_message_header header;
581 u32 gpadl;
582 } __packed;
583
584 struct vmbus_channel_relid_released {
585 struct vmbus_channel_message_header header;
586 u32 child_relid;
587 } __packed;
588
589 struct vmbus_channel_initiate_contact {
590 struct vmbus_channel_message_header header;
591 u32 vmbus_version_requested;
592 u32 target_vcpu; /* The VCPU the host should respond to */
593 u64 interrupt_page;
594 u64 monitor_page1;
595 u64 monitor_page2;
596 } __packed;
597
598 /* Hyper-V socket: guest's connect()-ing to host */
599 struct vmbus_channel_tl_connect_request {
600 struct vmbus_channel_message_header header;
601 uuid_le guest_endpoint_id;
602 uuid_le host_service_id;
603 } __packed;
604
605 struct vmbus_channel_version_response {
606 struct vmbus_channel_message_header header;
607 u8 version_supported;
608 } __packed;
609
610 enum vmbus_channel_state {
611 CHANNEL_OFFER_STATE,
612 CHANNEL_OPENING_STATE,
613 CHANNEL_OPEN_STATE,
614 CHANNEL_OPENED_STATE,
615 };
616
617 /*
618 * Represents each channel msg on the vmbus connection This is a
619 * variable-size data structure depending on the msg type itself
620 */
621 struct vmbus_channel_msginfo {
622 /* Bookkeeping stuff */
623 struct list_head msglistentry;
624
625 /* So far, this is only used to handle gpadl body message */
626 struct list_head submsglist;
627
628 /* Synchronize the request/response if needed */
629 struct completion waitevent;
630 union {
631 struct vmbus_channel_version_supported version_supported;
632 struct vmbus_channel_open_result open_result;
633 struct vmbus_channel_gpadl_torndown gpadl_torndown;
634 struct vmbus_channel_gpadl_created gpadl_created;
635 struct vmbus_channel_version_response version_response;
636 } response;
637
638 u32 msgsize;
639 /*
640 * The channel message that goes out on the "wire".
641 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
642 */
643 unsigned char msg[0];
644 };
645
646 struct vmbus_close_msg {
647 struct vmbus_channel_msginfo info;
648 struct vmbus_channel_close_channel msg;
649 };
650
651 /* Define connection identifier type. */
652 union hv_connection_id {
653 u32 asu32;
654 struct {
655 u32 id:24;
656 u32 reserved:8;
657 } u;
658 };
659
660 /* Definition of the hv_signal_event hypercall input structure. */
661 struct hv_input_signal_event {
662 union hv_connection_id connectionid;
663 u16 flag_number;
664 u16 rsvdz;
665 };
666
667 struct hv_input_signal_event_buffer {
668 u64 align8;
669 struct hv_input_signal_event event;
670 };
671
672 enum hv_signal_policy {
673 HV_SIGNAL_POLICY_DEFAULT = 0,
674 HV_SIGNAL_POLICY_EXPLICIT,
675 };
676
677 enum hv_numa_policy {
678 HV_BALANCED = 0,
679 HV_LOCALIZED,
680 };
681
682 enum vmbus_device_type {
683 HV_IDE = 0,
684 HV_SCSI,
685 HV_FC,
686 HV_NIC,
687 HV_ND,
688 HV_PCIE,
689 HV_FB,
690 HV_KBD,
691 HV_MOUSE,
692 HV_KVP,
693 HV_TS,
694 HV_HB,
695 HV_SHUTDOWN,
696 HV_FCOPY,
697 HV_BACKUP,
698 HV_DM,
699 HV_UNKOWN,
700 };
701
702 struct vmbus_device {
703 u16 dev_type;
704 uuid_le guid;
705 bool perf_device;
706 };
707
708 struct vmbus_channel {
709 struct list_head listentry;
710
711 struct hv_device *device_obj;
712
713 enum vmbus_channel_state state;
714
715 struct vmbus_channel_offer_channel offermsg;
716 /*
717 * These are based on the OfferMsg.MonitorId.
718 * Save it here for easy access.
719 */
720 u8 monitor_grp;
721 u8 monitor_bit;
722
723 bool rescind; /* got rescind msg */
724
725 u32 ringbuffer_gpadlhandle;
726
727 /* Allocated memory for ring buffer */
728 void *ringbuffer_pages;
729 u32 ringbuffer_pagecount;
730 struct hv_ring_buffer_info outbound; /* send to parent */
731 struct hv_ring_buffer_info inbound; /* receive from parent */
732 spinlock_t inbound_lock;
733
734 struct vmbus_close_msg close_msg;
735
736 /* Channel callback are invoked in this workqueue context */
737 /* HANDLE dataWorkQueue; */
738
739 void (*onchannel_callback)(void *context);
740 void *channel_callback_context;
741
742 /*
743 * A channel can be marked for efficient (batched)
744 * reading:
745 * If batched_reading is set to "true", we read until the
746 * channel is empty and hold off interrupts from the host
747 * during the entire read process.
748 * If batched_reading is set to "false", the client is not
749 * going to perform batched reading.
750 *
751 * By default we will enable batched reading; specific
752 * drivers that don't want this behavior can turn it off.
753 */
754
755 bool batched_reading;
756
757 bool is_dedicated_interrupt;
758 struct hv_input_signal_event_buffer sig_buf;
759 struct hv_input_signal_event *sig_event;
760
761 /*
762 * Starting with win8, this field will be used to specify
763 * the target virtual processor on which to deliver the interrupt for
764 * the host to guest communication.
765 * Prior to win8, incoming channel interrupts would only
766 * be delivered on cpu 0. Setting this value to 0 would
767 * preserve the earlier behavior.
768 */
769 u32 target_vp;
770 /* The corresponding CPUID in the guest */
771 u32 target_cpu;
772 /*
773 * State to manage the CPU affiliation of channels.
774 */
775 struct cpumask alloced_cpus_in_node;
776 int numa_node;
777 /*
778 * Support for sub-channels. For high performance devices,
779 * it will be useful to have multiple sub-channels to support
780 * a scalable communication infrastructure with the host.
781 * The support for sub-channels is implemented as an extention
782 * to the current infrastructure.
783 * The initial offer is considered the primary channel and this
784 * offer message will indicate if the host supports sub-channels.
785 * The guest is free to ask for sub-channels to be offerred and can
786 * open these sub-channels as a normal "primary" channel. However,
787 * all sub-channels will have the same type and instance guids as the
788 * primary channel. Requests sent on a given channel will result in a
789 * response on the same channel.
790 */
791
792 /*
793 * Sub-channel creation callback. This callback will be called in
794 * process context when a sub-channel offer is received from the host.
795 * The guest can open the sub-channel in the context of this callback.
796 */
797 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
798
799 /*
800 * Channel rescind callback. Some channels (the hvsock ones), need to
801 * register a callback which is invoked in vmbus_onoffer_rescind().
802 */
803 void (*chn_rescind_callback)(struct vmbus_channel *channel);
804
805 /*
806 * The spinlock to protect the structure. It is being used to protect
807 * test-and-set access to various attributes of the structure as well
808 * as all sc_list operations.
809 */
810 spinlock_t lock;
811 /*
812 * All Sub-channels of a primary channel are linked here.
813 */
814 struct list_head sc_list;
815 /*
816 * Current number of sub-channels.
817 */
818 int num_sc;
819 /*
820 * Number of a sub-channel (position within sc_list) which is supposed
821 * to be used as the next outgoing channel.
822 */
823 int next_oc;
824 /*
825 * The primary channel this sub-channel belongs to.
826 * This will be NULL for the primary channel.
827 */
828 struct vmbus_channel *primary_channel;
829 /*
830 * Support per-channel state for use by vmbus drivers.
831 */
832 void *per_channel_state;
833 /*
834 * To support per-cpu lookup mapping of relid to channel,
835 * link up channels based on their CPU affinity.
836 */
837 struct list_head percpu_list;
838 /*
839 * Host signaling policy: The default policy will be
840 * based on the ring buffer state. We will also support
841 * a policy where the client driver can have explicit
842 * signaling control.
843 */
844 enum hv_signal_policy signal_policy;
845 /*
846 * On the channel send side, many of the VMBUS
847 * device drivers explicity serialize access to the
848 * outgoing ring buffer. Give more control to the
849 * VMBUS device drivers in terms how to serialize
850 * accesss to the outgoing ring buffer.
851 * The default behavior will be to aquire the
852 * ring lock to preserve the current behavior.
853 */
854 bool acquire_ring_lock;
855 /*
856 * For performance critical channels (storage, networking
857 * etc,), Hyper-V has a mechanism to enhance the throughput
858 * at the expense of latency:
859 * When the host is to be signaled, we just set a bit in a shared page
860 * and this bit will be inspected by the hypervisor within a certain
861 * window and if the bit is set, the host will be signaled. The window
862 * of time is the monitor latency - currently around 100 usecs. This
863 * mechanism improves throughput by:
864 *
865 * A) Making the host more efficient - each time it wakes up,
866 * potentially it will process morev number of packets. The
867 * monitor latency allows a batch to build up.
868 * B) By deferring the hypercall to signal, we will also minimize
869 * the interrupts.
870 *
871 * Clearly, these optimizations improve throughput at the expense of
872 * latency. Furthermore, since the channel is shared for both
873 * control and data messages, control messages currently suffer
874 * unnecessary latency adversley impacting performance and boot
875 * time. To fix this issue, permit tagging the channel as being
876 * in "low latency" mode. In this mode, we will bypass the monitor
877 * mechanism.
878 */
879 bool low_latency;
880
881 /*
882 * NUMA distribution policy:
883 * We support teo policies:
884 * 1) Balanced: Here all performance critical channels are
885 * distributed evenly amongst all the NUMA nodes.
886 * This policy will be the default policy.
887 * 2) Localized: All channels of a given instance of a
888 * performance critical service will be assigned CPUs
889 * within a selected NUMA node.
890 */
891 enum hv_numa_policy affinity_policy;
892
893 };
894
895 static inline void set_channel_lock_state(struct vmbus_channel *c, bool state)
896 {
897 c->acquire_ring_lock = state;
898 }
899
900 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
901 {
902 return !!(c->offermsg.offer.chn_flags &
903 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
904 }
905
906 static inline void set_channel_signal_state(struct vmbus_channel *c,
907 enum hv_signal_policy policy)
908 {
909 c->signal_policy = policy;
910 }
911
912 static inline void set_channel_affinity_state(struct vmbus_channel *c,
913 enum hv_numa_policy policy)
914 {
915 c->affinity_policy = policy;
916 }
917
918 static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
919 {
920 c->batched_reading = state;
921 }
922
923 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
924 {
925 c->per_channel_state = s;
926 }
927
928 static inline void *get_per_channel_state(struct vmbus_channel *c)
929 {
930 return c->per_channel_state;
931 }
932
933 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
934 u32 size)
935 {
936 c->outbound.ring_buffer->pending_send_sz = size;
937 }
938
939 static inline void set_low_latency_mode(struct vmbus_channel *c)
940 {
941 c->low_latency = true;
942 }
943
944 static inline void clear_low_latency_mode(struct vmbus_channel *c)
945 {
946 c->low_latency = false;
947 }
948
949 void vmbus_onmessage(void *context);
950
951 int vmbus_request_offers(void);
952
953 /*
954 * APIs for managing sub-channels.
955 */
956
957 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
958 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
959
960 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
961 void (*chn_rescind_cb)(struct vmbus_channel *));
962
963 /*
964 * Retrieve the (sub) channel on which to send an outgoing request.
965 * When a primary channel has multiple sub-channels, we choose a
966 * channel whose VCPU binding is closest to the VCPU on which
967 * this call is being made.
968 */
969 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
970
971 /*
972 * Check if sub-channels have already been offerred. This API will be useful
973 * when the driver is unloaded after establishing sub-channels. In this case,
974 * when the driver is re-loaded, the driver would have to check if the
975 * subchannels have already been established before attempting to request
976 * the creation of sub-channels.
977 * This function returns TRUE to indicate that subchannels have already been
978 * created.
979 * This function should be invoked after setting the callback function for
980 * sub-channel creation.
981 */
982 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
983
984 /* The format must be the same as struct vmdata_gpa_direct */
985 struct vmbus_channel_packet_page_buffer {
986 u16 type;
987 u16 dataoffset8;
988 u16 length8;
989 u16 flags;
990 u64 transactionid;
991 u32 reserved;
992 u32 rangecount;
993 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
994 } __packed;
995
996 /* The format must be the same as struct vmdata_gpa_direct */
997 struct vmbus_channel_packet_multipage_buffer {
998 u16 type;
999 u16 dataoffset8;
1000 u16 length8;
1001 u16 flags;
1002 u64 transactionid;
1003 u32 reserved;
1004 u32 rangecount; /* Always 1 in this case */
1005 struct hv_multipage_buffer range;
1006 } __packed;
1007
1008 /* The format must be the same as struct vmdata_gpa_direct */
1009 struct vmbus_packet_mpb_array {
1010 u16 type;
1011 u16 dataoffset8;
1012 u16 length8;
1013 u16 flags;
1014 u64 transactionid;
1015 u32 reserved;
1016 u32 rangecount; /* Always 1 in this case */
1017 struct hv_mpb_array range;
1018 } __packed;
1019
1020
1021 extern int vmbus_open(struct vmbus_channel *channel,
1022 u32 send_ringbuffersize,
1023 u32 recv_ringbuffersize,
1024 void *userdata,
1025 u32 userdatalen,
1026 void(*onchannel_callback)(void *context),
1027 void *context);
1028
1029 extern void vmbus_close(struct vmbus_channel *channel);
1030
1031 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1032 void *buffer,
1033 u32 bufferLen,
1034 u64 requestid,
1035 enum vmbus_packet_type type,
1036 u32 flags);
1037
1038 extern int vmbus_sendpacket_ctl(struct vmbus_channel *channel,
1039 void *buffer,
1040 u32 bufferLen,
1041 u64 requestid,
1042 enum vmbus_packet_type type,
1043 u32 flags,
1044 bool kick_q);
1045
1046 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1047 struct hv_page_buffer pagebuffers[],
1048 u32 pagecount,
1049 void *buffer,
1050 u32 bufferlen,
1051 u64 requestid);
1052
1053 extern int vmbus_sendpacket_pagebuffer_ctl(struct vmbus_channel *channel,
1054 struct hv_page_buffer pagebuffers[],
1055 u32 pagecount,
1056 void *buffer,
1057 u32 bufferlen,
1058 u64 requestid,
1059 u32 flags,
1060 bool kick_q);
1061
1062 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1063 struct hv_multipage_buffer *mpb,
1064 void *buffer,
1065 u32 bufferlen,
1066 u64 requestid);
1067
1068 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1069 struct vmbus_packet_mpb_array *mpb,
1070 u32 desc_size,
1071 void *buffer,
1072 u32 bufferlen,
1073 u64 requestid);
1074
1075 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1076 void *kbuffer,
1077 u32 size,
1078 u32 *gpadl_handle);
1079
1080 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1081 u32 gpadl_handle);
1082
1083 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1084 void *buffer,
1085 u32 bufferlen,
1086 u32 *buffer_actual_len,
1087 u64 *requestid);
1088
1089 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1090 void *buffer,
1091 u32 bufferlen,
1092 u32 *buffer_actual_len,
1093 u64 *requestid);
1094
1095
1096 extern void vmbus_ontimer(unsigned long data);
1097
1098 /* Base driver object */
1099 struct hv_driver {
1100 const char *name;
1101
1102 /*
1103 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1104 * channel flag, actually doesn't mean a synthetic device because the
1105 * offer's if_type/if_instance can change for every new hvsock
1106 * connection.
1107 *
1108 * However, to facilitate the notification of new-offer/rescind-offer
1109 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1110 * a special vmbus device, and hence we need the below flag to
1111 * indicate if the driver is the hvsock driver or not: we need to
1112 * specially treat the hvosck offer & driver in vmbus_match().
1113 */
1114 bool hvsock;
1115
1116 /* the device type supported by this driver */
1117 uuid_le dev_type;
1118 const struct hv_vmbus_device_id *id_table;
1119
1120 struct device_driver driver;
1121
1122 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1123 int (*remove)(struct hv_device *);
1124 void (*shutdown)(struct hv_device *);
1125
1126 };
1127
1128 /* Base device object */
1129 struct hv_device {
1130 /* the device type id of this device */
1131 uuid_le dev_type;
1132
1133 /* the device instance id of this device */
1134 uuid_le dev_instance;
1135 u16 vendor_id;
1136 u16 device_id;
1137
1138 struct device device;
1139
1140 struct vmbus_channel *channel;
1141 };
1142
1143
1144 static inline struct hv_device *device_to_hv_device(struct device *d)
1145 {
1146 return container_of(d, struct hv_device, device);
1147 }
1148
1149 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1150 {
1151 return container_of(d, struct hv_driver, driver);
1152 }
1153
1154 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1155 {
1156 dev_set_drvdata(&dev->device, data);
1157 }
1158
1159 static inline void *hv_get_drvdata(struct hv_device *dev)
1160 {
1161 return dev_get_drvdata(&dev->device);
1162 }
1163
1164 /* Vmbus interface */
1165 #define vmbus_driver_register(driver) \
1166 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1167 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1168 struct module *owner,
1169 const char *mod_name);
1170 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1171
1172 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1173
1174 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1175 resource_size_t min, resource_size_t max,
1176 resource_size_t size, resource_size_t align,
1177 bool fb_overlap_ok);
1178 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1179 int vmbus_cpu_number_to_vp_number(int cpu_number);
1180 u64 hv_do_hypercall(u64 control, void *input, void *output);
1181
1182 /*
1183 * GUID definitions of various offer types - services offered to the guest.
1184 */
1185
1186 /*
1187 * Network GUID
1188 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1189 */
1190 #define HV_NIC_GUID \
1191 .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1192 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1193
1194 /*
1195 * IDE GUID
1196 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1197 */
1198 #define HV_IDE_GUID \
1199 .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1200 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1201
1202 /*
1203 * SCSI GUID
1204 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1205 */
1206 #define HV_SCSI_GUID \
1207 .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1208 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1209
1210 /*
1211 * Shutdown GUID
1212 * {0e0b6031-5213-4934-818b-38d90ced39db}
1213 */
1214 #define HV_SHUTDOWN_GUID \
1215 .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1216 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1217
1218 /*
1219 * Time Synch GUID
1220 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1221 */
1222 #define HV_TS_GUID \
1223 .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1224 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1225
1226 /*
1227 * Heartbeat GUID
1228 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1229 */
1230 #define HV_HEART_BEAT_GUID \
1231 .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1232 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1233
1234 /*
1235 * KVP GUID
1236 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1237 */
1238 #define HV_KVP_GUID \
1239 .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1240 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1241
1242 /*
1243 * Dynamic memory GUID
1244 * {525074dc-8985-46e2-8057-a307dc18a502}
1245 */
1246 #define HV_DM_GUID \
1247 .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1248 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1249
1250 /*
1251 * Mouse GUID
1252 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1253 */
1254 #define HV_MOUSE_GUID \
1255 .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1256 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1257
1258 /*
1259 * Keyboard GUID
1260 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1261 */
1262 #define HV_KBD_GUID \
1263 .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1264 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1265
1266 /*
1267 * VSS (Backup/Restore) GUID
1268 */
1269 #define HV_VSS_GUID \
1270 .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1271 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1272 /*
1273 * Synthetic Video GUID
1274 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1275 */
1276 #define HV_SYNTHVID_GUID \
1277 .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1278 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1279
1280 /*
1281 * Synthetic FC GUID
1282 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1283 */
1284 #define HV_SYNTHFC_GUID \
1285 .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1286 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1287
1288 /*
1289 * Guest File Copy Service
1290 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1291 */
1292
1293 #define HV_FCOPY_GUID \
1294 .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1295 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1296
1297 /*
1298 * NetworkDirect. This is the guest RDMA service.
1299 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1300 */
1301 #define HV_ND_GUID \
1302 .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1303 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1304
1305 /*
1306 * PCI Express Pass Through
1307 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1308 */
1309
1310 #define HV_PCIE_GUID \
1311 .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1312 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1313
1314 /*
1315 * Linux doesn't support the 3 devices: the first two are for
1316 * Automatic Virtual Machine Activation, and the third is for
1317 * Remote Desktop Virtualization.
1318 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1319 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1320 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1321 */
1322
1323 #define HV_AVMA1_GUID \
1324 .guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1325 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1326
1327 #define HV_AVMA2_GUID \
1328 .guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1329 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1330
1331 #define HV_RDV_GUID \
1332 .guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1333 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1334
1335 /*
1336 * Common header for Hyper-V ICs
1337 */
1338
1339 #define ICMSGTYPE_NEGOTIATE 0
1340 #define ICMSGTYPE_HEARTBEAT 1
1341 #define ICMSGTYPE_KVPEXCHANGE 2
1342 #define ICMSGTYPE_SHUTDOWN 3
1343 #define ICMSGTYPE_TIMESYNC 4
1344 #define ICMSGTYPE_VSS 5
1345
1346 #define ICMSGHDRFLAG_TRANSACTION 1
1347 #define ICMSGHDRFLAG_REQUEST 2
1348 #define ICMSGHDRFLAG_RESPONSE 4
1349
1350
1351 /*
1352 * While we want to handle util services as regular devices,
1353 * there is only one instance of each of these services; so
1354 * we statically allocate the service specific state.
1355 */
1356
1357 struct hv_util_service {
1358 u8 *recv_buffer;
1359 void *channel;
1360 void (*util_cb)(void *);
1361 int (*util_init)(struct hv_util_service *);
1362 void (*util_deinit)(void);
1363 };
1364
1365 struct vmbuspipe_hdr {
1366 u32 flags;
1367 u32 msgsize;
1368 } __packed;
1369
1370 struct ic_version {
1371 u16 major;
1372 u16 minor;
1373 } __packed;
1374
1375 struct icmsg_hdr {
1376 struct ic_version icverframe;
1377 u16 icmsgtype;
1378 struct ic_version icvermsg;
1379 u16 icmsgsize;
1380 u32 status;
1381 u8 ictransaction_id;
1382 u8 icflags;
1383 u8 reserved[2];
1384 } __packed;
1385
1386 struct icmsg_negotiate {
1387 u16 icframe_vercnt;
1388 u16 icmsg_vercnt;
1389 u32 reserved;
1390 struct ic_version icversion_data[1]; /* any size array */
1391 } __packed;
1392
1393 struct shutdown_msg_data {
1394 u32 reason_code;
1395 u32 timeout_seconds;
1396 u32 flags;
1397 u8 display_message[2048];
1398 } __packed;
1399
1400 struct heartbeat_msg_data {
1401 u64 seq_num;
1402 u32 reserved[8];
1403 } __packed;
1404
1405 /* Time Sync IC defs */
1406 #define ICTIMESYNCFLAG_PROBE 0
1407 #define ICTIMESYNCFLAG_SYNC 1
1408 #define ICTIMESYNCFLAG_SAMPLE 2
1409
1410 #ifdef __x86_64__
1411 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1412 #else
1413 #define WLTIMEDELTA 116444736000000000LL
1414 #endif
1415
1416 struct ictimesync_data {
1417 u64 parenttime;
1418 u64 childtime;
1419 u64 roundtriptime;
1420 u8 flags;
1421 } __packed;
1422
1423 struct ictimesync_ref_data {
1424 u64 parenttime;
1425 u64 vmreferencetime;
1426 u8 flags;
1427 char leapflags;
1428 char stratum;
1429 u8 reserved[3];
1430 } __packed;
1431
1432 struct hyperv_service_callback {
1433 u8 msg_type;
1434 char *log_msg;
1435 uuid_le data;
1436 struct vmbus_channel *channel;
1437 void (*callback) (void *context);
1438 };
1439
1440 #define MAX_SRV_VER 0x7ffffff
1441 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1442 struct icmsg_negotiate *, u8 *, int,
1443 int);
1444
1445 void hv_event_tasklet_disable(struct vmbus_channel *channel);
1446 void hv_event_tasklet_enable(struct vmbus_channel *channel);
1447
1448 void hv_process_channel_removal(struct vmbus_channel *channel, u32 relid);
1449
1450 /*
1451 * Negotiated version with the Host.
1452 */
1453
1454 extern __u32 vmbus_proto_version;
1455
1456 int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id,
1457 const uuid_le *shv_host_servie_id);
1458 void vmbus_set_event(struct vmbus_channel *channel);
1459
1460 /* Get the start of the ring buffer. */
1461 static inline void *
1462 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
1463 {
1464 return (void *)ring_info->ring_buffer->buffer;
1465 }
1466
1467 /*
1468 * To optimize the flow management on the send-side,
1469 * when the sender is blocked because of lack of
1470 * sufficient space in the ring buffer, potential the
1471 * consumer of the ring buffer can signal the producer.
1472 * This is controlled by the following parameters:
1473 *
1474 * 1. pending_send_sz: This is the size in bytes that the
1475 * producer is trying to send.
1476 * 2. The feature bit feat_pending_send_sz set to indicate if
1477 * the consumer of the ring will signal when the ring
1478 * state transitions from being full to a state where
1479 * there is room for the producer to send the pending packet.
1480 */
1481
1482 static inline bool hv_need_to_signal_on_read(struct hv_ring_buffer_info *rbi)
1483 {
1484 u32 cur_write_sz;
1485 u32 pending_sz;
1486
1487 /*
1488 * Issue a full memory barrier before making the signaling decision.
1489 * Here is the reason for having this barrier:
1490 * If the reading of the pend_sz (in this function)
1491 * were to be reordered and read before we commit the new read
1492 * index (in the calling function) we could
1493 * have a problem. If the host were to set the pending_sz after we
1494 * have sampled pending_sz and go to sleep before we commit the
1495 * read index, we could miss sending the interrupt. Issue a full
1496 * memory barrier to address this.
1497 */
1498 virt_mb();
1499
1500 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
1501 /* If the other end is not blocked on write don't bother. */
1502 if (pending_sz == 0)
1503 return false;
1504
1505 cur_write_sz = hv_get_bytes_to_write(rbi);
1506
1507 if (cur_write_sz >= pending_sz)
1508 return true;
1509
1510 return false;
1511 }
1512
1513 /*
1514 * An API to support in-place processing of incoming VMBUS packets.
1515 */
1516 #define VMBUS_PKT_TRAILER 8
1517
1518 static inline struct vmpacket_descriptor *
1519 get_next_pkt_raw(struct vmbus_channel *channel)
1520 {
1521 struct hv_ring_buffer_info *ring_info = &channel->inbound;
1522 u32 read_loc = ring_info->priv_read_index;
1523 void *ring_buffer = hv_get_ring_buffer(ring_info);
1524 struct vmpacket_descriptor *cur_desc;
1525 u32 packetlen;
1526 u32 dsize = ring_info->ring_datasize;
1527 u32 delta = read_loc - ring_info->ring_buffer->read_index;
1528 u32 bytes_avail_toread = (hv_get_bytes_to_read(ring_info) - delta);
1529
1530 if (bytes_avail_toread < sizeof(struct vmpacket_descriptor))
1531 return NULL;
1532
1533 if ((read_loc + sizeof(*cur_desc)) > dsize)
1534 return NULL;
1535
1536 cur_desc = ring_buffer + read_loc;
1537 packetlen = cur_desc->len8 << 3;
1538
1539 /*
1540 * If the packet under consideration is wrapping around,
1541 * return failure.
1542 */
1543 if ((read_loc + packetlen + VMBUS_PKT_TRAILER) > (dsize - 1))
1544 return NULL;
1545
1546 return cur_desc;
1547 }
1548
1549 /*
1550 * A helper function to step through packets "in-place"
1551 * This API is to be called after each successful call
1552 * get_next_pkt_raw().
1553 */
1554 static inline void put_pkt_raw(struct vmbus_channel *channel,
1555 struct vmpacket_descriptor *desc)
1556 {
1557 struct hv_ring_buffer_info *ring_info = &channel->inbound;
1558 u32 read_loc = ring_info->priv_read_index;
1559 u32 packetlen = desc->len8 << 3;
1560 u32 dsize = ring_info->ring_datasize;
1561
1562 if ((read_loc + packetlen + VMBUS_PKT_TRAILER) > dsize)
1563 BUG();
1564 /*
1565 * Include the packet trailer.
1566 */
1567 ring_info->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
1568 }
1569
1570 /*
1571 * This call commits the read index and potentially signals the host.
1572 * Here is the pattern for using the "in-place" consumption APIs:
1573 *
1574 * while (get_next_pkt_raw() {
1575 * process the packet "in-place";
1576 * put_pkt_raw();
1577 * }
1578 * if (packets processed in place)
1579 * commit_rd_index();
1580 */
1581 static inline void commit_rd_index(struct vmbus_channel *channel)
1582 {
1583 struct hv_ring_buffer_info *ring_info = &channel->inbound;
1584 /*
1585 * Make sure all reads are done before we update the read index since
1586 * the writer may start writing to the read area once the read index
1587 * is updated.
1588 */
1589 virt_rmb();
1590 ring_info->ring_buffer->read_index = ring_info->priv_read_index;
1591
1592 if (hv_need_to_signal_on_read(ring_info))
1593 vmbus_set_event(channel);
1594 }
1595
1596
1597 #endif /* _HYPERV_H */