]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/hyperv.h
Merge branch 'tip/perf/urgent-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / include / linux / hyperv.h
1 /*
2 *
3 * Copyright (c) 2011, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
24
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27
28 #include <linux/types.h>
29
30 /*
31 * An implementation of HyperV key value pair (KVP) functionality for Linux.
32 *
33 *
34 * Copyright (C) 2010, Novell, Inc.
35 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
36 *
37 */
38
39 /*
40 * Maximum value size - used for both key names and value data, and includes
41 * any applicable NULL terminators.
42 *
43 * Note: This limit is somewhat arbitrary, but falls easily within what is
44 * supported for all native guests (back to Win 2000) and what is reasonable
45 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are
46 * limited to 255 character key names.
47 *
48 * MSDN recommends not storing data values larger than 2048 bytes in the
49 * registry.
50 *
51 * Note: This value is used in defining the KVP exchange message - this value
52 * cannot be modified without affecting the message size and compatibility.
53 */
54
55 /*
56 * bytes, including any null terminators
57 */
58 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048)
59
60
61 /*
62 * Maximum key size - the registry limit for the length of an entry name
63 * is 256 characters, including the null terminator
64 */
65
66 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512)
67
68 /*
69 * In Linux, we implement the KVP functionality in two components:
70 * 1) The kernel component which is packaged as part of the hv_utils driver
71 * is responsible for communicating with the host and responsible for
72 * implementing the host/guest protocol. 2) A user level daemon that is
73 * responsible for data gathering.
74 *
75 * Host/Guest Protocol: The host iterates over an index and expects the guest
76 * to assign a key name to the index and also return the value corresponding to
77 * the key. The host will have atmost one KVP transaction outstanding at any
78 * given point in time. The host side iteration stops when the guest returns
79 * an error. Microsoft has specified the following mapping of key names to
80 * host specified index:
81 *
82 * Index Key Name
83 * 0 FullyQualifiedDomainName
84 * 1 IntegrationServicesVersion
85 * 2 NetworkAddressIPv4
86 * 3 NetworkAddressIPv6
87 * 4 OSBuildNumber
88 * 5 OSName
89 * 6 OSMajorVersion
90 * 7 OSMinorVersion
91 * 8 OSVersion
92 * 9 ProcessorArchitecture
93 *
94 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
95 *
96 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
97 * data gathering functionality in a user mode daemon. The user level daemon
98 * is also responsible for binding the key name to the index as well. The
99 * kernel and user-level daemon communicate using a connector channel.
100 *
101 * The user mode component first registers with the
102 * the kernel component. Subsequently, the kernel component requests, data
103 * for the specified keys. In response to this message the user mode component
104 * fills in the value corresponding to the specified key. We overload the
105 * sequence field in the cn_msg header to define our KVP message types.
106 *
107 *
108 * The kernel component simply acts as a conduit for communication between the
109 * Windows host and the user-level daemon. The kernel component passes up the
110 * index received from the Host to the user-level daemon. If the index is
111 * valid (supported), the corresponding key as well as its
112 * value (both are strings) is returned. If the index is invalid
113 * (not supported), a NULL key string is returned.
114 */
115
116
117 /*
118 * Registry value types.
119 */
120
121 #define REG_SZ 1
122 #define REG_U32 4
123 #define REG_U64 8
124
125 /*
126 * As we look at expanding the KVP functionality to include
127 * IP injection functionality, we need to maintain binary
128 * compatibility with older daemons.
129 *
130 * The KVP opcodes are defined by the host and it was unfortunate
131 * that I chose to treat the registration operation as part of the
132 * KVP operations defined by the host.
133 * Here is the level of compatibility
134 * (between the user level daemon and the kernel KVP driver) that we
135 * will implement:
136 *
137 * An older daemon will always be supported on a newer driver.
138 * A given user level daemon will require a minimal version of the
139 * kernel driver.
140 * If we cannot handle the version differences, we will fail gracefully
141 * (this can happen when we have a user level daemon that is more
142 * advanced than the KVP driver.
143 *
144 * We will use values used in this handshake for determining if we have
145 * workable user level daemon and the kernel driver. We begin by taking the
146 * registration opcode out of the KVP opcode namespace. We will however,
147 * maintain compatibility with the existing user-level daemon code.
148 */
149
150 /*
151 * Daemon code not supporting IP injection (legacy daemon).
152 */
153
154 #define KVP_OP_REGISTER 4
155
156 /*
157 * Daemon code supporting IP injection.
158 * The KVP opcode field is used to communicate the
159 * registration information; so define a namespace that
160 * will be distinct from the host defined KVP opcode.
161 */
162
163 #define KVP_OP_REGISTER1 100
164
165 enum hv_kvp_exchg_op {
166 KVP_OP_GET = 0,
167 KVP_OP_SET,
168 KVP_OP_DELETE,
169 KVP_OP_ENUMERATE,
170 KVP_OP_GET_IP_INFO,
171 KVP_OP_SET_IP_INFO,
172 KVP_OP_COUNT /* Number of operations, must be last. */
173 };
174
175 enum hv_kvp_exchg_pool {
176 KVP_POOL_EXTERNAL = 0,
177 KVP_POOL_GUEST,
178 KVP_POOL_AUTO,
179 KVP_POOL_AUTO_EXTERNAL,
180 KVP_POOL_AUTO_INTERNAL,
181 KVP_POOL_COUNT /* Number of pools, must be last. */
182 };
183
184 /*
185 * Some Hyper-V status codes.
186 */
187
188 #define HV_S_OK 0x00000000
189 #define HV_E_FAIL 0x80004005
190 #define HV_S_CONT 0x80070103
191 #define HV_ERROR_NOT_SUPPORTED 0x80070032
192 #define HV_ERROR_MACHINE_LOCKED 0x800704F7
193 #define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F
194 #define HV_INVALIDARG 0x80070057
195 #define HV_GUID_NOTFOUND 0x80041002
196
197 #define ADDR_FAMILY_NONE 0x00
198 #define ADDR_FAMILY_IPV4 0x01
199 #define ADDR_FAMILY_IPV6 0x02
200
201 #define MAX_ADAPTER_ID_SIZE 128
202 #define MAX_IP_ADDR_SIZE 1024
203 #define MAX_GATEWAY_SIZE 512
204
205
206 struct hv_kvp_ipaddr_value {
207 __u16 adapter_id[MAX_ADAPTER_ID_SIZE];
208 __u8 addr_family;
209 __u8 dhcp_enabled;
210 __u16 ip_addr[MAX_IP_ADDR_SIZE];
211 __u16 sub_net[MAX_IP_ADDR_SIZE];
212 __u16 gate_way[MAX_GATEWAY_SIZE];
213 __u16 dns_addr[MAX_IP_ADDR_SIZE];
214 } __attribute__((packed));
215
216
217 struct hv_kvp_hdr {
218 __u8 operation;
219 __u8 pool;
220 __u16 pad;
221 } __attribute__((packed));
222
223 struct hv_kvp_exchg_msg_value {
224 __u32 value_type;
225 __u32 key_size;
226 __u32 value_size;
227 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
228 union {
229 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
230 __u32 value_u32;
231 __u64 value_u64;
232 };
233 } __attribute__((packed));
234
235 struct hv_kvp_msg_enumerate {
236 __u32 index;
237 struct hv_kvp_exchg_msg_value data;
238 } __attribute__((packed));
239
240 struct hv_kvp_msg_get {
241 struct hv_kvp_exchg_msg_value data;
242 };
243
244 struct hv_kvp_msg_set {
245 struct hv_kvp_exchg_msg_value data;
246 };
247
248 struct hv_kvp_msg_delete {
249 __u32 key_size;
250 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
251 };
252
253 struct hv_kvp_register {
254 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
255 };
256
257 struct hv_kvp_msg {
258 union {
259 struct hv_kvp_hdr kvp_hdr;
260 int error;
261 };
262 union {
263 struct hv_kvp_msg_get kvp_get;
264 struct hv_kvp_msg_set kvp_set;
265 struct hv_kvp_msg_delete kvp_delete;
266 struct hv_kvp_msg_enumerate kvp_enum_data;
267 struct hv_kvp_ipaddr_value kvp_ip_val;
268 struct hv_kvp_register kvp_register;
269 } body;
270 } __attribute__((packed));
271
272 struct hv_kvp_ip_msg {
273 __u8 operation;
274 __u8 pool;
275 struct hv_kvp_ipaddr_value kvp_ip_val;
276 } __attribute__((packed));
277
278 #ifdef __KERNEL__
279 #include <linux/scatterlist.h>
280 #include <linux/list.h>
281 #include <linux/uuid.h>
282 #include <linux/timer.h>
283 #include <linux/workqueue.h>
284 #include <linux/completion.h>
285 #include <linux/device.h>
286 #include <linux/mod_devicetable.h>
287
288
289 #define MAX_PAGE_BUFFER_COUNT 19
290 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
291
292 #pragma pack(push, 1)
293
294 /* Single-page buffer */
295 struct hv_page_buffer {
296 u32 len;
297 u32 offset;
298 u64 pfn;
299 };
300
301 /* Multiple-page buffer */
302 struct hv_multipage_buffer {
303 /* Length and Offset determines the # of pfns in the array */
304 u32 len;
305 u32 offset;
306 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
307 };
308
309 /* 0x18 includes the proprietary packet header */
310 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
311 (sizeof(struct hv_page_buffer) * \
312 MAX_PAGE_BUFFER_COUNT))
313 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
314 sizeof(struct hv_multipage_buffer))
315
316
317 #pragma pack(pop)
318
319 struct hv_ring_buffer {
320 /* Offset in bytes from the start of ring data below */
321 u32 write_index;
322
323 /* Offset in bytes from the start of ring data below */
324 u32 read_index;
325
326 u32 interrupt_mask;
327
328 /*
329 * Win8 uses some of the reserved bits to implement
330 * interrupt driven flow management. On the send side
331 * we can request that the receiver interrupt the sender
332 * when the ring transitions from being full to being able
333 * to handle a message of size "pending_send_sz".
334 *
335 * Add necessary state for this enhancement.
336 */
337 u32 pending_send_sz;
338
339 u32 reserved1[12];
340
341 union {
342 struct {
343 u32 feat_pending_send_sz:1;
344 };
345 u32 value;
346 } feature_bits;
347
348 /* Pad it to PAGE_SIZE so that data starts on page boundary */
349 u8 reserved2[4028];
350
351 /*
352 * Ring data starts here + RingDataStartOffset
353 * !!! DO NOT place any fields below this !!!
354 */
355 u8 buffer[0];
356 } __packed;
357
358 struct hv_ring_buffer_info {
359 struct hv_ring_buffer *ring_buffer;
360 u32 ring_size; /* Include the shared header */
361 spinlock_t ring_lock;
362
363 u32 ring_datasize; /* < ring_size */
364 u32 ring_data_startoffset;
365 };
366
367 struct hv_ring_buffer_debug_info {
368 u32 current_interrupt_mask;
369 u32 current_read_index;
370 u32 current_write_index;
371 u32 bytes_avail_toread;
372 u32 bytes_avail_towrite;
373 };
374
375
376 /*
377 *
378 * hv_get_ringbuffer_availbytes()
379 *
380 * Get number of bytes available to read and to write to
381 * for the specified ring buffer
382 */
383 static inline void
384 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
385 u32 *read, u32 *write)
386 {
387 u32 read_loc, write_loc, dsize;
388
389 smp_read_barrier_depends();
390
391 /* Capture the read/write indices before they changed */
392 read_loc = rbi->ring_buffer->read_index;
393 write_loc = rbi->ring_buffer->write_index;
394 dsize = rbi->ring_datasize;
395
396 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
397 read_loc - write_loc;
398 *read = dsize - *write;
399 }
400
401
402 /*
403 * We use the same version numbering for all Hyper-V modules.
404 *
405 * Definition of versioning is as follows;
406 *
407 * Major Number Changes for these scenarios;
408 * 1. When a new version of Windows Hyper-V
409 * is released.
410 * 2. A Major change has occurred in the
411 * Linux IC's.
412 * (For example the merge for the first time
413 * into the kernel) Every time the Major Number
414 * changes, the Revision number is reset to 0.
415 * Minor Number Changes when new functionality is added
416 * to the Linux IC's that is not a bug fix.
417 *
418 * 3.1 - Added completed hv_utils driver. Shutdown/Heartbeat/Timesync
419 */
420 #define HV_DRV_VERSION "3.1"
421
422 /*
423 * VMBUS version is 32 bit entity broken up into
424 * two 16 bit quantities: major_number. minor_number.
425 *
426 * 0 . 13 (Windows Server 2008)
427 * 1 . 1 (Windows 7)
428 * 2 . 4 (Windows 8)
429 */
430
431 #define VERSION_WS2008 ((0 << 16) | (13))
432 #define VERSION_WIN7 ((1 << 16) | (1))
433 #define VERSION_WIN8 ((2 << 16) | (4))
434
435 #define VERSION_INVAL -1
436
437 #define VERSION_CURRENT VERSION_WIN8
438
439 /* Make maximum size of pipe payload of 16K */
440 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
441
442 /* Define PipeMode values. */
443 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
444 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
445
446 /* The size of the user defined data buffer for non-pipe offers. */
447 #define MAX_USER_DEFINED_BYTES 120
448
449 /* The size of the user defined data buffer for pipe offers. */
450 #define MAX_PIPE_USER_DEFINED_BYTES 116
451
452 /*
453 * At the center of the Channel Management library is the Channel Offer. This
454 * struct contains the fundamental information about an offer.
455 */
456 struct vmbus_channel_offer {
457 uuid_le if_type;
458 uuid_le if_instance;
459
460 /*
461 * These two fields are not currently used.
462 */
463 u64 reserved1;
464 u64 reserved2;
465
466 u16 chn_flags;
467 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
468
469 union {
470 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
471 struct {
472 unsigned char user_def[MAX_USER_DEFINED_BYTES];
473 } std;
474
475 /*
476 * Pipes:
477 * The following sructure is an integrated pipe protocol, which
478 * is implemented on top of standard user-defined data. Pipe
479 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
480 * use.
481 */
482 struct {
483 u32 pipe_mode;
484 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
485 } pipe;
486 } u;
487 /*
488 * The sub_channel_index is defined in win8.
489 */
490 u16 sub_channel_index;
491 u16 reserved3;
492 } __packed;
493
494 /* Server Flags */
495 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
496 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
497 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
498 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
499 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
500 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
501 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
502
503 struct vmpacket_descriptor {
504 u16 type;
505 u16 offset8;
506 u16 len8;
507 u16 flags;
508 u64 trans_id;
509 } __packed;
510
511 struct vmpacket_header {
512 u32 prev_pkt_start_offset;
513 struct vmpacket_descriptor descriptor;
514 } __packed;
515
516 struct vmtransfer_page_range {
517 u32 byte_count;
518 u32 byte_offset;
519 } __packed;
520
521 struct vmtransfer_page_packet_header {
522 struct vmpacket_descriptor d;
523 u16 xfer_pageset_id;
524 u8 sender_owns_set;
525 u8 reserved;
526 u32 range_cnt;
527 struct vmtransfer_page_range ranges[1];
528 } __packed;
529
530 struct vmgpadl_packet_header {
531 struct vmpacket_descriptor d;
532 u32 gpadl;
533 u32 reserved;
534 } __packed;
535
536 struct vmadd_remove_transfer_page_set {
537 struct vmpacket_descriptor d;
538 u32 gpadl;
539 u16 xfer_pageset_id;
540 u16 reserved;
541 } __packed;
542
543 /*
544 * This structure defines a range in guest physical space that can be made to
545 * look virtually contiguous.
546 */
547 struct gpa_range {
548 u32 byte_count;
549 u32 byte_offset;
550 u64 pfn_array[0];
551 };
552
553 /*
554 * This is the format for an Establish Gpadl packet, which contains a handle by
555 * which this GPADL will be known and a set of GPA ranges associated with it.
556 * This can be converted to a MDL by the guest OS. If there are multiple GPA
557 * ranges, then the resulting MDL will be "chained," representing multiple VA
558 * ranges.
559 */
560 struct vmestablish_gpadl {
561 struct vmpacket_descriptor d;
562 u32 gpadl;
563 u32 range_cnt;
564 struct gpa_range range[1];
565 } __packed;
566
567 /*
568 * This is the format for a Teardown Gpadl packet, which indicates that the
569 * GPADL handle in the Establish Gpadl packet will never be referenced again.
570 */
571 struct vmteardown_gpadl {
572 struct vmpacket_descriptor d;
573 u32 gpadl;
574 u32 reserved; /* for alignment to a 8-byte boundary */
575 } __packed;
576
577 /*
578 * This is the format for a GPA-Direct packet, which contains a set of GPA
579 * ranges, in addition to commands and/or data.
580 */
581 struct vmdata_gpa_direct {
582 struct vmpacket_descriptor d;
583 u32 reserved;
584 u32 range_cnt;
585 struct gpa_range range[1];
586 } __packed;
587
588 /* This is the format for a Additional Data Packet. */
589 struct vmadditional_data {
590 struct vmpacket_descriptor d;
591 u64 total_bytes;
592 u32 offset;
593 u32 byte_cnt;
594 unsigned char data[1];
595 } __packed;
596
597 union vmpacket_largest_possible_header {
598 struct vmpacket_descriptor simple_hdr;
599 struct vmtransfer_page_packet_header xfer_page_hdr;
600 struct vmgpadl_packet_header gpadl_hdr;
601 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
602 struct vmestablish_gpadl establish_gpadl_hdr;
603 struct vmteardown_gpadl teardown_gpadl_hdr;
604 struct vmdata_gpa_direct data_gpa_direct_hdr;
605 };
606
607 #define VMPACKET_DATA_START_ADDRESS(__packet) \
608 (void *)(((unsigned char *)__packet) + \
609 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
610
611 #define VMPACKET_DATA_LENGTH(__packet) \
612 ((((struct vmpacket_descriptor)__packet)->len8 - \
613 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
614
615 #define VMPACKET_TRANSFER_MODE(__packet) \
616 (((struct IMPACT)__packet)->type)
617
618 enum vmbus_packet_type {
619 VM_PKT_INVALID = 0x0,
620 VM_PKT_SYNCH = 0x1,
621 VM_PKT_ADD_XFER_PAGESET = 0x2,
622 VM_PKT_RM_XFER_PAGESET = 0x3,
623 VM_PKT_ESTABLISH_GPADL = 0x4,
624 VM_PKT_TEARDOWN_GPADL = 0x5,
625 VM_PKT_DATA_INBAND = 0x6,
626 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
627 VM_PKT_DATA_USING_GPADL = 0x8,
628 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
629 VM_PKT_CANCEL_REQUEST = 0xa,
630 VM_PKT_COMP = 0xb,
631 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
632 VM_PKT_ADDITIONAL_DATA = 0xd
633 };
634
635 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
636
637
638 /* Version 1 messages */
639 enum vmbus_channel_message_type {
640 CHANNELMSG_INVALID = 0,
641 CHANNELMSG_OFFERCHANNEL = 1,
642 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
643 CHANNELMSG_REQUESTOFFERS = 3,
644 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
645 CHANNELMSG_OPENCHANNEL = 5,
646 CHANNELMSG_OPENCHANNEL_RESULT = 6,
647 CHANNELMSG_CLOSECHANNEL = 7,
648 CHANNELMSG_GPADL_HEADER = 8,
649 CHANNELMSG_GPADL_BODY = 9,
650 CHANNELMSG_GPADL_CREATED = 10,
651 CHANNELMSG_GPADL_TEARDOWN = 11,
652 CHANNELMSG_GPADL_TORNDOWN = 12,
653 CHANNELMSG_RELID_RELEASED = 13,
654 CHANNELMSG_INITIATE_CONTACT = 14,
655 CHANNELMSG_VERSION_RESPONSE = 15,
656 CHANNELMSG_UNLOAD = 16,
657 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
658 CHANNELMSG_VIEWRANGE_ADD = 17,
659 CHANNELMSG_VIEWRANGE_REMOVE = 18,
660 #endif
661 CHANNELMSG_COUNT
662 };
663
664 struct vmbus_channel_message_header {
665 enum vmbus_channel_message_type msgtype;
666 u32 padding;
667 } __packed;
668
669 /* Query VMBus Version parameters */
670 struct vmbus_channel_query_vmbus_version {
671 struct vmbus_channel_message_header header;
672 u32 version;
673 } __packed;
674
675 /* VMBus Version Supported parameters */
676 struct vmbus_channel_version_supported {
677 struct vmbus_channel_message_header header;
678 u8 version_supported;
679 } __packed;
680
681 /* Offer Channel parameters */
682 struct vmbus_channel_offer_channel {
683 struct vmbus_channel_message_header header;
684 struct vmbus_channel_offer offer;
685 u32 child_relid;
686 u8 monitorid;
687 /*
688 * win7 and beyond splits this field into a bit field.
689 */
690 u8 monitor_allocated:1;
691 u8 reserved:7;
692 /*
693 * These are new fields added in win7 and later.
694 * Do not access these fields without checking the
695 * negotiated protocol.
696 *
697 * If "is_dedicated_interrupt" is set, we must not set the
698 * associated bit in the channel bitmap while sending the
699 * interrupt to the host.
700 *
701 * connection_id is to be used in signaling the host.
702 */
703 u16 is_dedicated_interrupt:1;
704 u16 reserved1:15;
705 u32 connection_id;
706 } __packed;
707
708 /* Rescind Offer parameters */
709 struct vmbus_channel_rescind_offer {
710 struct vmbus_channel_message_header header;
711 u32 child_relid;
712 } __packed;
713
714 /*
715 * Request Offer -- no parameters, SynIC message contains the partition ID
716 * Set Snoop -- no parameters, SynIC message contains the partition ID
717 * Clear Snoop -- no parameters, SynIC message contains the partition ID
718 * All Offers Delivered -- no parameters, SynIC message contains the partition
719 * ID
720 * Flush Client -- no parameters, SynIC message contains the partition ID
721 */
722
723 /* Open Channel parameters */
724 struct vmbus_channel_open_channel {
725 struct vmbus_channel_message_header header;
726
727 /* Identifies the specific VMBus channel that is being opened. */
728 u32 child_relid;
729
730 /* ID making a particular open request at a channel offer unique. */
731 u32 openid;
732
733 /* GPADL for the channel's ring buffer. */
734 u32 ringbuffer_gpadlhandle;
735
736 /*
737 * Starting with win8, this field will be used to specify
738 * the target virtual processor on which to deliver the interrupt for
739 * the host to guest communication.
740 * Prior to win8, incoming channel interrupts would only
741 * be delivered on cpu 0. Setting this value to 0 would
742 * preserve the earlier behavior.
743 */
744 u32 target_vp;
745
746 /*
747 * The upstream ring buffer begins at offset zero in the memory
748 * described by RingBufferGpadlHandle. The downstream ring buffer
749 * follows it at this offset (in pages).
750 */
751 u32 downstream_ringbuffer_pageoffset;
752
753 /* User-specific data to be passed along to the server endpoint. */
754 unsigned char userdata[MAX_USER_DEFINED_BYTES];
755 } __packed;
756
757 /* Open Channel Result parameters */
758 struct vmbus_channel_open_result {
759 struct vmbus_channel_message_header header;
760 u32 child_relid;
761 u32 openid;
762 u32 status;
763 } __packed;
764
765 /* Close channel parameters; */
766 struct vmbus_channel_close_channel {
767 struct vmbus_channel_message_header header;
768 u32 child_relid;
769 } __packed;
770
771 /* Channel Message GPADL */
772 #define GPADL_TYPE_RING_BUFFER 1
773 #define GPADL_TYPE_SERVER_SAVE_AREA 2
774 #define GPADL_TYPE_TRANSACTION 8
775
776 /*
777 * The number of PFNs in a GPADL message is defined by the number of
778 * pages that would be spanned by ByteCount and ByteOffset. If the
779 * implied number of PFNs won't fit in this packet, there will be a
780 * follow-up packet that contains more.
781 */
782 struct vmbus_channel_gpadl_header {
783 struct vmbus_channel_message_header header;
784 u32 child_relid;
785 u32 gpadl;
786 u16 range_buflen;
787 u16 rangecount;
788 struct gpa_range range[0];
789 } __packed;
790
791 /* This is the followup packet that contains more PFNs. */
792 struct vmbus_channel_gpadl_body {
793 struct vmbus_channel_message_header header;
794 u32 msgnumber;
795 u32 gpadl;
796 u64 pfn[0];
797 } __packed;
798
799 struct vmbus_channel_gpadl_created {
800 struct vmbus_channel_message_header header;
801 u32 child_relid;
802 u32 gpadl;
803 u32 creation_status;
804 } __packed;
805
806 struct vmbus_channel_gpadl_teardown {
807 struct vmbus_channel_message_header header;
808 u32 child_relid;
809 u32 gpadl;
810 } __packed;
811
812 struct vmbus_channel_gpadl_torndown {
813 struct vmbus_channel_message_header header;
814 u32 gpadl;
815 } __packed;
816
817 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
818 struct vmbus_channel_view_range_add {
819 struct vmbus_channel_message_header header;
820 PHYSICAL_ADDRESS viewrange_base;
821 u64 viewrange_length;
822 u32 child_relid;
823 } __packed;
824
825 struct vmbus_channel_view_range_remove {
826 struct vmbus_channel_message_header header;
827 PHYSICAL_ADDRESS viewrange_base;
828 u32 child_relid;
829 } __packed;
830 #endif
831
832 struct vmbus_channel_relid_released {
833 struct vmbus_channel_message_header header;
834 u32 child_relid;
835 } __packed;
836
837 struct vmbus_channel_initiate_contact {
838 struct vmbus_channel_message_header header;
839 u32 vmbus_version_requested;
840 u32 padding2;
841 u64 interrupt_page;
842 u64 monitor_page1;
843 u64 monitor_page2;
844 } __packed;
845
846 struct vmbus_channel_version_response {
847 struct vmbus_channel_message_header header;
848 u8 version_supported;
849 } __packed;
850
851 enum vmbus_channel_state {
852 CHANNEL_OFFER_STATE,
853 CHANNEL_OPENING_STATE,
854 CHANNEL_OPEN_STATE,
855 };
856
857 struct vmbus_channel_debug_info {
858 u32 relid;
859 enum vmbus_channel_state state;
860 uuid_le interfacetype;
861 uuid_le interface_instance;
862 u32 monitorid;
863 u32 servermonitor_pending;
864 u32 servermonitor_latency;
865 u32 servermonitor_connectionid;
866 u32 clientmonitor_pending;
867 u32 clientmonitor_latency;
868 u32 clientmonitor_connectionid;
869
870 struct hv_ring_buffer_debug_info inbound;
871 struct hv_ring_buffer_debug_info outbound;
872 };
873
874 /*
875 * Represents each channel msg on the vmbus connection This is a
876 * variable-size data structure depending on the msg type itself
877 */
878 struct vmbus_channel_msginfo {
879 /* Bookkeeping stuff */
880 struct list_head msglistentry;
881
882 /* So far, this is only used to handle gpadl body message */
883 struct list_head submsglist;
884
885 /* Synchronize the request/response if needed */
886 struct completion waitevent;
887 union {
888 struct vmbus_channel_version_supported version_supported;
889 struct vmbus_channel_open_result open_result;
890 struct vmbus_channel_gpadl_torndown gpadl_torndown;
891 struct vmbus_channel_gpadl_created gpadl_created;
892 struct vmbus_channel_version_response version_response;
893 } response;
894
895 u32 msgsize;
896 /*
897 * The channel message that goes out on the "wire".
898 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
899 */
900 unsigned char msg[0];
901 };
902
903 struct vmbus_close_msg {
904 struct vmbus_channel_msginfo info;
905 struct vmbus_channel_close_channel msg;
906 };
907
908 /* Define connection identifier type. */
909 union hv_connection_id {
910 u32 asu32;
911 struct {
912 u32 id:24;
913 u32 reserved:8;
914 } u;
915 };
916
917 /* Definition of the hv_signal_event hypercall input structure. */
918 struct hv_input_signal_event {
919 union hv_connection_id connectionid;
920 u16 flag_number;
921 u16 rsvdz;
922 };
923
924 struct hv_input_signal_event_buffer {
925 u64 align8;
926 struct hv_input_signal_event event;
927 };
928
929 struct vmbus_channel {
930 struct list_head listentry;
931
932 struct hv_device *device_obj;
933
934 struct work_struct work;
935
936 enum vmbus_channel_state state;
937
938 struct vmbus_channel_offer_channel offermsg;
939 /*
940 * These are based on the OfferMsg.MonitorId.
941 * Save it here for easy access.
942 */
943 u8 monitor_grp;
944 u8 monitor_bit;
945
946 u32 ringbuffer_gpadlhandle;
947
948 /* Allocated memory for ring buffer */
949 void *ringbuffer_pages;
950 u32 ringbuffer_pagecount;
951 struct hv_ring_buffer_info outbound; /* send to parent */
952 struct hv_ring_buffer_info inbound; /* receive from parent */
953 spinlock_t inbound_lock;
954 struct workqueue_struct *controlwq;
955
956 struct vmbus_close_msg close_msg;
957
958 /* Channel callback are invoked in this workqueue context */
959 /* HANDLE dataWorkQueue; */
960
961 void (*onchannel_callback)(void *context);
962 void *channel_callback_context;
963
964 /*
965 * A channel can be marked for efficient (batched)
966 * reading:
967 * If batched_reading is set to "true", we read until the
968 * channel is empty and hold off interrupts from the host
969 * during the entire read process.
970 * If batched_reading is set to "false", the client is not
971 * going to perform batched reading.
972 *
973 * By default we will enable batched reading; specific
974 * drivers that don't want this behavior can turn it off.
975 */
976
977 bool batched_reading;
978
979 bool is_dedicated_interrupt;
980 struct hv_input_signal_event_buffer sig_buf;
981 struct hv_input_signal_event *sig_event;
982
983 /*
984 * Starting with win8, this field will be used to specify
985 * the target virtual processor on which to deliver the interrupt for
986 * the host to guest communication.
987 * Prior to win8, incoming channel interrupts would only
988 * be delivered on cpu 0. Setting this value to 0 would
989 * preserve the earlier behavior.
990 */
991 u32 target_vp;
992 };
993
994 static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
995 {
996 c->batched_reading = state;
997 }
998
999 void vmbus_onmessage(void *context);
1000
1001 int vmbus_request_offers(void);
1002
1003 /* The format must be the same as struct vmdata_gpa_direct */
1004 struct vmbus_channel_packet_page_buffer {
1005 u16 type;
1006 u16 dataoffset8;
1007 u16 length8;
1008 u16 flags;
1009 u64 transactionid;
1010 u32 reserved;
1011 u32 rangecount;
1012 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1013 } __packed;
1014
1015 /* The format must be the same as struct vmdata_gpa_direct */
1016 struct vmbus_channel_packet_multipage_buffer {
1017 u16 type;
1018 u16 dataoffset8;
1019 u16 length8;
1020 u16 flags;
1021 u64 transactionid;
1022 u32 reserved;
1023 u32 rangecount; /* Always 1 in this case */
1024 struct hv_multipage_buffer range;
1025 } __packed;
1026
1027
1028 extern int vmbus_open(struct vmbus_channel *channel,
1029 u32 send_ringbuffersize,
1030 u32 recv_ringbuffersize,
1031 void *userdata,
1032 u32 userdatalen,
1033 void(*onchannel_callback)(void *context),
1034 void *context);
1035
1036 extern void vmbus_close(struct vmbus_channel *channel);
1037
1038 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1039 const void *buffer,
1040 u32 bufferLen,
1041 u64 requestid,
1042 enum vmbus_packet_type type,
1043 u32 flags);
1044
1045 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1046 struct hv_page_buffer pagebuffers[],
1047 u32 pagecount,
1048 void *buffer,
1049 u32 bufferlen,
1050 u64 requestid);
1051
1052 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1053 struct hv_multipage_buffer *mpb,
1054 void *buffer,
1055 u32 bufferlen,
1056 u64 requestid);
1057
1058 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1059 void *kbuffer,
1060 u32 size,
1061 u32 *gpadl_handle);
1062
1063 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1064 u32 gpadl_handle);
1065
1066 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1067 void *buffer,
1068 u32 bufferlen,
1069 u32 *buffer_actual_len,
1070 u64 *requestid);
1071
1072 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1073 void *buffer,
1074 u32 bufferlen,
1075 u32 *buffer_actual_len,
1076 u64 *requestid);
1077
1078
1079 extern void vmbus_get_debug_info(struct vmbus_channel *channel,
1080 struct vmbus_channel_debug_info *debug);
1081
1082 extern void vmbus_ontimer(unsigned long data);
1083
1084 struct hv_dev_port_info {
1085 u32 int_mask;
1086 u32 read_idx;
1087 u32 write_idx;
1088 u32 bytes_avail_toread;
1089 u32 bytes_avail_towrite;
1090 };
1091
1092 /* Base driver object */
1093 struct hv_driver {
1094 const char *name;
1095
1096 /* the device type supported by this driver */
1097 uuid_le dev_type;
1098 const struct hv_vmbus_device_id *id_table;
1099
1100 struct device_driver driver;
1101
1102 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1103 int (*remove)(struct hv_device *);
1104 void (*shutdown)(struct hv_device *);
1105
1106 };
1107
1108 /* Base device object */
1109 struct hv_device {
1110 /* the device type id of this device */
1111 uuid_le dev_type;
1112
1113 /* the device instance id of this device */
1114 uuid_le dev_instance;
1115
1116 struct device device;
1117
1118 struct vmbus_channel *channel;
1119 };
1120
1121
1122 static inline struct hv_device *device_to_hv_device(struct device *d)
1123 {
1124 return container_of(d, struct hv_device, device);
1125 }
1126
1127 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1128 {
1129 return container_of(d, struct hv_driver, driver);
1130 }
1131
1132 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1133 {
1134 dev_set_drvdata(&dev->device, data);
1135 }
1136
1137 static inline void *hv_get_drvdata(struct hv_device *dev)
1138 {
1139 return dev_get_drvdata(&dev->device);
1140 }
1141
1142 /* Vmbus interface */
1143 #define vmbus_driver_register(driver) \
1144 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1145 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1146 struct module *owner,
1147 const char *mod_name);
1148 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1149
1150 /**
1151 * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device
1152 *
1153 * This macro is used to create a struct hv_vmbus_device_id that matches a
1154 * specific device.
1155 */
1156 #define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7, \
1157 g8, g9, ga, gb, gc, gd, ge, gf) \
1158 .guid = { g0, g1, g2, g3, g4, g5, g6, g7, \
1159 g8, g9, ga, gb, gc, gd, ge, gf },
1160
1161 /*
1162 * GUID definitions of various offer types - services offered to the guest.
1163 */
1164
1165 /*
1166 * Network GUID
1167 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1168 */
1169 #define HV_NIC_GUID \
1170 .guid = { \
1171 0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46, \
1172 0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e \
1173 }
1174
1175 /*
1176 * IDE GUID
1177 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1178 */
1179 #define HV_IDE_GUID \
1180 .guid = { \
1181 0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44, \
1182 0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5 \
1183 }
1184
1185 /*
1186 * SCSI GUID
1187 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1188 */
1189 #define HV_SCSI_GUID \
1190 .guid = { \
1191 0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d, \
1192 0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f \
1193 }
1194
1195 /*
1196 * Shutdown GUID
1197 * {0e0b6031-5213-4934-818b-38d90ced39db}
1198 */
1199 #define HV_SHUTDOWN_GUID \
1200 .guid = { \
1201 0x31, 0x60, 0x0b, 0x0e, 0x13, 0x52, 0x34, 0x49, \
1202 0x81, 0x8b, 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb \
1203 }
1204
1205 /*
1206 * Time Synch GUID
1207 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1208 */
1209 #define HV_TS_GUID \
1210 .guid = { \
1211 0x30, 0xe6, 0x27, 0x95, 0xae, 0xd0, 0x7b, 0x49, \
1212 0xad, 0xce, 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf \
1213 }
1214
1215 /*
1216 * Heartbeat GUID
1217 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1218 */
1219 #define HV_HEART_BEAT_GUID \
1220 .guid = { \
1221 0x39, 0x4f, 0x16, 0x57, 0x15, 0x91, 0x78, 0x4e, \
1222 0xab, 0x55, 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d \
1223 }
1224
1225 /*
1226 * KVP GUID
1227 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1228 */
1229 #define HV_KVP_GUID \
1230 .guid = { \
1231 0xe7, 0xf4, 0xa0, 0xa9, 0x45, 0x5a, 0x96, 0x4d, \
1232 0xb8, 0x27, 0x8a, 0x84, 0x1e, 0x8c, 0x3, 0xe6 \
1233 }
1234
1235 /*
1236 * Dynamic memory GUID
1237 * {525074dc-8985-46e2-8057-a307dc18a502}
1238 */
1239 #define HV_DM_GUID \
1240 .guid = { \
1241 0xdc, 0x74, 0x50, 0X52, 0x85, 0x89, 0xe2, 0x46, \
1242 0x80, 0x57, 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02 \
1243 }
1244
1245 /*
1246 * Mouse GUID
1247 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1248 */
1249 #define HV_MOUSE_GUID \
1250 .guid = { \
1251 0x9e, 0xb6, 0xa8, 0xcf, 0x4a, 0x5b, 0xc0, 0x4c, \
1252 0xb9, 0x8b, 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a \
1253 }
1254
1255 /*
1256 * Common header for Hyper-V ICs
1257 */
1258
1259 #define ICMSGTYPE_NEGOTIATE 0
1260 #define ICMSGTYPE_HEARTBEAT 1
1261 #define ICMSGTYPE_KVPEXCHANGE 2
1262 #define ICMSGTYPE_SHUTDOWN 3
1263 #define ICMSGTYPE_TIMESYNC 4
1264 #define ICMSGTYPE_VSS 5
1265
1266 #define ICMSGHDRFLAG_TRANSACTION 1
1267 #define ICMSGHDRFLAG_REQUEST 2
1268 #define ICMSGHDRFLAG_RESPONSE 4
1269
1270
1271 /*
1272 * While we want to handle util services as regular devices,
1273 * there is only one instance of each of these services; so
1274 * we statically allocate the service specific state.
1275 */
1276
1277 struct hv_util_service {
1278 u8 *recv_buffer;
1279 void (*util_cb)(void *);
1280 int (*util_init)(struct hv_util_service *);
1281 void (*util_deinit)(void);
1282 };
1283
1284 struct vmbuspipe_hdr {
1285 u32 flags;
1286 u32 msgsize;
1287 } __packed;
1288
1289 struct ic_version {
1290 u16 major;
1291 u16 minor;
1292 } __packed;
1293
1294 struct icmsg_hdr {
1295 struct ic_version icverframe;
1296 u16 icmsgtype;
1297 struct ic_version icvermsg;
1298 u16 icmsgsize;
1299 u32 status;
1300 u8 ictransaction_id;
1301 u8 icflags;
1302 u8 reserved[2];
1303 } __packed;
1304
1305 struct icmsg_negotiate {
1306 u16 icframe_vercnt;
1307 u16 icmsg_vercnt;
1308 u32 reserved;
1309 struct ic_version icversion_data[1]; /* any size array */
1310 } __packed;
1311
1312 struct shutdown_msg_data {
1313 u32 reason_code;
1314 u32 timeout_seconds;
1315 u32 flags;
1316 u8 display_message[2048];
1317 } __packed;
1318
1319 struct heartbeat_msg_data {
1320 u64 seq_num;
1321 u32 reserved[8];
1322 } __packed;
1323
1324 /* Time Sync IC defs */
1325 #define ICTIMESYNCFLAG_PROBE 0
1326 #define ICTIMESYNCFLAG_SYNC 1
1327 #define ICTIMESYNCFLAG_SAMPLE 2
1328
1329 #ifdef __x86_64__
1330 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1331 #else
1332 #define WLTIMEDELTA 116444736000000000LL
1333 #endif
1334
1335 struct ictimesync_data {
1336 u64 parenttime;
1337 u64 childtime;
1338 u64 roundtriptime;
1339 u8 flags;
1340 } __packed;
1341
1342 struct hyperv_service_callback {
1343 u8 msg_type;
1344 char *log_msg;
1345 uuid_le data;
1346 struct vmbus_channel *channel;
1347 void (*callback) (void *context);
1348 };
1349
1350 #define MAX_SRV_VER 0x7ffffff
1351 extern void vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1352 struct icmsg_negotiate *, u8 *, int,
1353 int);
1354
1355 int hv_kvp_init(struct hv_util_service *);
1356 void hv_kvp_deinit(void);
1357 void hv_kvp_onchannelcallback(void *);
1358
1359 /*
1360 * Negotiated version with the Host.
1361 */
1362
1363 extern __u32 vmbus_proto_version;
1364
1365 #endif /* __KERNEL__ */
1366 #endif /* _HYPERV_H */