]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/hyperv.h
Merge branch 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / include / linux / hyperv.h
1 /*
2 *
3 * Copyright (c) 2011, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
24
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27
28 #include <uapi/linux/hyperv.h>
29 #include <uapi/asm/hyperv.h>
30
31 #include <linux/types.h>
32 #include <linux/scatterlist.h>
33 #include <linux/list.h>
34 #include <linux/timer.h>
35 #include <linux/completion.h>
36 #include <linux/device.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/interrupt.h>
39
40 #define MAX_PAGE_BUFFER_COUNT 32
41 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
42
43 #pragma pack(push, 1)
44
45 /* Single-page buffer */
46 struct hv_page_buffer {
47 u32 len;
48 u32 offset;
49 u64 pfn;
50 };
51
52 /* Multiple-page buffer */
53 struct hv_multipage_buffer {
54 /* Length and Offset determines the # of pfns in the array */
55 u32 len;
56 u32 offset;
57 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
58 };
59
60 /*
61 * Multiple-page buffer array; the pfn array is variable size:
62 * The number of entries in the PFN array is determined by
63 * "len" and "offset".
64 */
65 struct hv_mpb_array {
66 /* Length and Offset determines the # of pfns in the array */
67 u32 len;
68 u32 offset;
69 u64 pfn_array[];
70 };
71
72 /* 0x18 includes the proprietary packet header */
73 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
74 (sizeof(struct hv_page_buffer) * \
75 MAX_PAGE_BUFFER_COUNT))
76 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
77 sizeof(struct hv_multipage_buffer))
78
79
80 #pragma pack(pop)
81
82 struct hv_ring_buffer {
83 /* Offset in bytes from the start of ring data below */
84 u32 write_index;
85
86 /* Offset in bytes from the start of ring data below */
87 u32 read_index;
88
89 u32 interrupt_mask;
90
91 /*
92 * Win8 uses some of the reserved bits to implement
93 * interrupt driven flow management. On the send side
94 * we can request that the receiver interrupt the sender
95 * when the ring transitions from being full to being able
96 * to handle a message of size "pending_send_sz".
97 *
98 * Add necessary state for this enhancement.
99 */
100 u32 pending_send_sz;
101
102 u32 reserved1[12];
103
104 union {
105 struct {
106 u32 feat_pending_send_sz:1;
107 };
108 u32 value;
109 } feature_bits;
110
111 /* Pad it to PAGE_SIZE so that data starts on page boundary */
112 u8 reserved2[4028];
113
114 /*
115 * Ring data starts here + RingDataStartOffset
116 * !!! DO NOT place any fields below this !!!
117 */
118 u8 buffer[0];
119 } __packed;
120
121 struct hv_ring_buffer_info {
122 struct hv_ring_buffer *ring_buffer;
123 u32 ring_size; /* Include the shared header */
124 spinlock_t ring_lock;
125
126 u32 ring_datasize; /* < ring_size */
127 u32 priv_read_index;
128 };
129
130 /*
131 *
132 * hv_get_ringbuffer_availbytes()
133 *
134 * Get number of bytes available to read and to write to
135 * for the specified ring buffer
136 */
137 static inline void
138 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
139 u32 *read, u32 *write)
140 {
141 u32 read_loc, write_loc, dsize;
142
143 /* Capture the read/write indices before they changed */
144 read_loc = rbi->ring_buffer->read_index;
145 write_loc = rbi->ring_buffer->write_index;
146 dsize = rbi->ring_datasize;
147
148 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
149 read_loc - write_loc;
150 *read = dsize - *write;
151 }
152
153 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
154 {
155 u32 read_loc, write_loc, dsize, read;
156
157 dsize = rbi->ring_datasize;
158 read_loc = rbi->ring_buffer->read_index;
159 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
160
161 read = write_loc >= read_loc ? (write_loc - read_loc) :
162 (dsize - read_loc) + write_loc;
163
164 return read;
165 }
166
167 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
168 {
169 u32 read_loc, write_loc, dsize, write;
170
171 dsize = rbi->ring_datasize;
172 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
173 write_loc = rbi->ring_buffer->write_index;
174
175 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
176 read_loc - write_loc;
177 return write;
178 }
179
180 /*
181 * VMBUS version is 32 bit entity broken up into
182 * two 16 bit quantities: major_number. minor_number.
183 *
184 * 0 . 13 (Windows Server 2008)
185 * 1 . 1 (Windows 7)
186 * 2 . 4 (Windows 8)
187 * 3 . 0 (Windows 8 R2)
188 * 4 . 0 (Windows 10)
189 */
190
191 #define VERSION_WS2008 ((0 << 16) | (13))
192 #define VERSION_WIN7 ((1 << 16) | (1))
193 #define VERSION_WIN8 ((2 << 16) | (4))
194 #define VERSION_WIN8_1 ((3 << 16) | (0))
195 #define VERSION_WIN10 ((4 << 16) | (0))
196
197 #define VERSION_INVAL -1
198
199 #define VERSION_CURRENT VERSION_WIN10
200
201 /* Make maximum size of pipe payload of 16K */
202 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
203
204 /* Define PipeMode values. */
205 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
206 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
207
208 /* The size of the user defined data buffer for non-pipe offers. */
209 #define MAX_USER_DEFINED_BYTES 120
210
211 /* The size of the user defined data buffer for pipe offers. */
212 #define MAX_PIPE_USER_DEFINED_BYTES 116
213
214 /*
215 * At the center of the Channel Management library is the Channel Offer. This
216 * struct contains the fundamental information about an offer.
217 */
218 struct vmbus_channel_offer {
219 uuid_le if_type;
220 uuid_le if_instance;
221
222 /*
223 * These two fields are not currently used.
224 */
225 u64 reserved1;
226 u64 reserved2;
227
228 u16 chn_flags;
229 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
230
231 union {
232 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
233 struct {
234 unsigned char user_def[MAX_USER_DEFINED_BYTES];
235 } std;
236
237 /*
238 * Pipes:
239 * The following sructure is an integrated pipe protocol, which
240 * is implemented on top of standard user-defined data. Pipe
241 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
242 * use.
243 */
244 struct {
245 u32 pipe_mode;
246 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
247 } pipe;
248 } u;
249 /*
250 * The sub_channel_index is defined in win8.
251 */
252 u16 sub_channel_index;
253 u16 reserved3;
254 } __packed;
255
256 /* Server Flags */
257 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
258 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
259 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
260 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
261 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
262 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
263 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
264 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
265
266 struct vmpacket_descriptor {
267 u16 type;
268 u16 offset8;
269 u16 len8;
270 u16 flags;
271 u64 trans_id;
272 } __packed;
273
274 struct vmpacket_header {
275 u32 prev_pkt_start_offset;
276 struct vmpacket_descriptor descriptor;
277 } __packed;
278
279 struct vmtransfer_page_range {
280 u32 byte_count;
281 u32 byte_offset;
282 } __packed;
283
284 struct vmtransfer_page_packet_header {
285 struct vmpacket_descriptor d;
286 u16 xfer_pageset_id;
287 u8 sender_owns_set;
288 u8 reserved;
289 u32 range_cnt;
290 struct vmtransfer_page_range ranges[1];
291 } __packed;
292
293 struct vmgpadl_packet_header {
294 struct vmpacket_descriptor d;
295 u32 gpadl;
296 u32 reserved;
297 } __packed;
298
299 struct vmadd_remove_transfer_page_set {
300 struct vmpacket_descriptor d;
301 u32 gpadl;
302 u16 xfer_pageset_id;
303 u16 reserved;
304 } __packed;
305
306 /*
307 * This structure defines a range in guest physical space that can be made to
308 * look virtually contiguous.
309 */
310 struct gpa_range {
311 u32 byte_count;
312 u32 byte_offset;
313 u64 pfn_array[0];
314 };
315
316 /*
317 * This is the format for an Establish Gpadl packet, which contains a handle by
318 * which this GPADL will be known and a set of GPA ranges associated with it.
319 * This can be converted to a MDL by the guest OS. If there are multiple GPA
320 * ranges, then the resulting MDL will be "chained," representing multiple VA
321 * ranges.
322 */
323 struct vmestablish_gpadl {
324 struct vmpacket_descriptor d;
325 u32 gpadl;
326 u32 range_cnt;
327 struct gpa_range range[1];
328 } __packed;
329
330 /*
331 * This is the format for a Teardown Gpadl packet, which indicates that the
332 * GPADL handle in the Establish Gpadl packet will never be referenced again.
333 */
334 struct vmteardown_gpadl {
335 struct vmpacket_descriptor d;
336 u32 gpadl;
337 u32 reserved; /* for alignment to a 8-byte boundary */
338 } __packed;
339
340 /*
341 * This is the format for a GPA-Direct packet, which contains a set of GPA
342 * ranges, in addition to commands and/or data.
343 */
344 struct vmdata_gpa_direct {
345 struct vmpacket_descriptor d;
346 u32 reserved;
347 u32 range_cnt;
348 struct gpa_range range[1];
349 } __packed;
350
351 /* This is the format for a Additional Data Packet. */
352 struct vmadditional_data {
353 struct vmpacket_descriptor d;
354 u64 total_bytes;
355 u32 offset;
356 u32 byte_cnt;
357 unsigned char data[1];
358 } __packed;
359
360 union vmpacket_largest_possible_header {
361 struct vmpacket_descriptor simple_hdr;
362 struct vmtransfer_page_packet_header xfer_page_hdr;
363 struct vmgpadl_packet_header gpadl_hdr;
364 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
365 struct vmestablish_gpadl establish_gpadl_hdr;
366 struct vmteardown_gpadl teardown_gpadl_hdr;
367 struct vmdata_gpa_direct data_gpa_direct_hdr;
368 };
369
370 #define VMPACKET_DATA_START_ADDRESS(__packet) \
371 (void *)(((unsigned char *)__packet) + \
372 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
373
374 #define VMPACKET_DATA_LENGTH(__packet) \
375 ((((struct vmpacket_descriptor)__packet)->len8 - \
376 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
377
378 #define VMPACKET_TRANSFER_MODE(__packet) \
379 (((struct IMPACT)__packet)->type)
380
381 enum vmbus_packet_type {
382 VM_PKT_INVALID = 0x0,
383 VM_PKT_SYNCH = 0x1,
384 VM_PKT_ADD_XFER_PAGESET = 0x2,
385 VM_PKT_RM_XFER_PAGESET = 0x3,
386 VM_PKT_ESTABLISH_GPADL = 0x4,
387 VM_PKT_TEARDOWN_GPADL = 0x5,
388 VM_PKT_DATA_INBAND = 0x6,
389 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
390 VM_PKT_DATA_USING_GPADL = 0x8,
391 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
392 VM_PKT_CANCEL_REQUEST = 0xa,
393 VM_PKT_COMP = 0xb,
394 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
395 VM_PKT_ADDITIONAL_DATA = 0xd
396 };
397
398 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
399
400
401 /* Version 1 messages */
402 enum vmbus_channel_message_type {
403 CHANNELMSG_INVALID = 0,
404 CHANNELMSG_OFFERCHANNEL = 1,
405 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
406 CHANNELMSG_REQUESTOFFERS = 3,
407 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
408 CHANNELMSG_OPENCHANNEL = 5,
409 CHANNELMSG_OPENCHANNEL_RESULT = 6,
410 CHANNELMSG_CLOSECHANNEL = 7,
411 CHANNELMSG_GPADL_HEADER = 8,
412 CHANNELMSG_GPADL_BODY = 9,
413 CHANNELMSG_GPADL_CREATED = 10,
414 CHANNELMSG_GPADL_TEARDOWN = 11,
415 CHANNELMSG_GPADL_TORNDOWN = 12,
416 CHANNELMSG_RELID_RELEASED = 13,
417 CHANNELMSG_INITIATE_CONTACT = 14,
418 CHANNELMSG_VERSION_RESPONSE = 15,
419 CHANNELMSG_UNLOAD = 16,
420 CHANNELMSG_UNLOAD_RESPONSE = 17,
421 CHANNELMSG_18 = 18,
422 CHANNELMSG_19 = 19,
423 CHANNELMSG_20 = 20,
424 CHANNELMSG_TL_CONNECT_REQUEST = 21,
425 CHANNELMSG_COUNT
426 };
427
428 struct vmbus_channel_message_header {
429 enum vmbus_channel_message_type msgtype;
430 u32 padding;
431 } __packed;
432
433 /* Query VMBus Version parameters */
434 struct vmbus_channel_query_vmbus_version {
435 struct vmbus_channel_message_header header;
436 u32 version;
437 } __packed;
438
439 /* VMBus Version Supported parameters */
440 struct vmbus_channel_version_supported {
441 struct vmbus_channel_message_header header;
442 u8 version_supported;
443 } __packed;
444
445 /* Offer Channel parameters */
446 struct vmbus_channel_offer_channel {
447 struct vmbus_channel_message_header header;
448 struct vmbus_channel_offer offer;
449 u32 child_relid;
450 u8 monitorid;
451 /*
452 * win7 and beyond splits this field into a bit field.
453 */
454 u8 monitor_allocated:1;
455 u8 reserved:7;
456 /*
457 * These are new fields added in win7 and later.
458 * Do not access these fields without checking the
459 * negotiated protocol.
460 *
461 * If "is_dedicated_interrupt" is set, we must not set the
462 * associated bit in the channel bitmap while sending the
463 * interrupt to the host.
464 *
465 * connection_id is to be used in signaling the host.
466 */
467 u16 is_dedicated_interrupt:1;
468 u16 reserved1:15;
469 u32 connection_id;
470 } __packed;
471
472 /* Rescind Offer parameters */
473 struct vmbus_channel_rescind_offer {
474 struct vmbus_channel_message_header header;
475 u32 child_relid;
476 } __packed;
477
478 static inline u32
479 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
480 {
481 return rbi->ring_buffer->pending_send_sz;
482 }
483
484 /*
485 * Request Offer -- no parameters, SynIC message contains the partition ID
486 * Set Snoop -- no parameters, SynIC message contains the partition ID
487 * Clear Snoop -- no parameters, SynIC message contains the partition ID
488 * All Offers Delivered -- no parameters, SynIC message contains the partition
489 * ID
490 * Flush Client -- no parameters, SynIC message contains the partition ID
491 */
492
493 /* Open Channel parameters */
494 struct vmbus_channel_open_channel {
495 struct vmbus_channel_message_header header;
496
497 /* Identifies the specific VMBus channel that is being opened. */
498 u32 child_relid;
499
500 /* ID making a particular open request at a channel offer unique. */
501 u32 openid;
502
503 /* GPADL for the channel's ring buffer. */
504 u32 ringbuffer_gpadlhandle;
505
506 /*
507 * Starting with win8, this field will be used to specify
508 * the target virtual processor on which to deliver the interrupt for
509 * the host to guest communication.
510 * Prior to win8, incoming channel interrupts would only
511 * be delivered on cpu 0. Setting this value to 0 would
512 * preserve the earlier behavior.
513 */
514 u32 target_vp;
515
516 /*
517 * The upstream ring buffer begins at offset zero in the memory
518 * described by RingBufferGpadlHandle. The downstream ring buffer
519 * follows it at this offset (in pages).
520 */
521 u32 downstream_ringbuffer_pageoffset;
522
523 /* User-specific data to be passed along to the server endpoint. */
524 unsigned char userdata[MAX_USER_DEFINED_BYTES];
525 } __packed;
526
527 /* Open Channel Result parameters */
528 struct vmbus_channel_open_result {
529 struct vmbus_channel_message_header header;
530 u32 child_relid;
531 u32 openid;
532 u32 status;
533 } __packed;
534
535 /* Close channel parameters; */
536 struct vmbus_channel_close_channel {
537 struct vmbus_channel_message_header header;
538 u32 child_relid;
539 } __packed;
540
541 /* Channel Message GPADL */
542 #define GPADL_TYPE_RING_BUFFER 1
543 #define GPADL_TYPE_SERVER_SAVE_AREA 2
544 #define GPADL_TYPE_TRANSACTION 8
545
546 /*
547 * The number of PFNs in a GPADL message is defined by the number of
548 * pages that would be spanned by ByteCount and ByteOffset. If the
549 * implied number of PFNs won't fit in this packet, there will be a
550 * follow-up packet that contains more.
551 */
552 struct vmbus_channel_gpadl_header {
553 struct vmbus_channel_message_header header;
554 u32 child_relid;
555 u32 gpadl;
556 u16 range_buflen;
557 u16 rangecount;
558 struct gpa_range range[0];
559 } __packed;
560
561 /* This is the followup packet that contains more PFNs. */
562 struct vmbus_channel_gpadl_body {
563 struct vmbus_channel_message_header header;
564 u32 msgnumber;
565 u32 gpadl;
566 u64 pfn[0];
567 } __packed;
568
569 struct vmbus_channel_gpadl_created {
570 struct vmbus_channel_message_header header;
571 u32 child_relid;
572 u32 gpadl;
573 u32 creation_status;
574 } __packed;
575
576 struct vmbus_channel_gpadl_teardown {
577 struct vmbus_channel_message_header header;
578 u32 child_relid;
579 u32 gpadl;
580 } __packed;
581
582 struct vmbus_channel_gpadl_torndown {
583 struct vmbus_channel_message_header header;
584 u32 gpadl;
585 } __packed;
586
587 struct vmbus_channel_relid_released {
588 struct vmbus_channel_message_header header;
589 u32 child_relid;
590 } __packed;
591
592 struct vmbus_channel_initiate_contact {
593 struct vmbus_channel_message_header header;
594 u32 vmbus_version_requested;
595 u32 target_vcpu; /* The VCPU the host should respond to */
596 u64 interrupt_page;
597 u64 monitor_page1;
598 u64 monitor_page2;
599 } __packed;
600
601 /* Hyper-V socket: guest's connect()-ing to host */
602 struct vmbus_channel_tl_connect_request {
603 struct vmbus_channel_message_header header;
604 uuid_le guest_endpoint_id;
605 uuid_le host_service_id;
606 } __packed;
607
608 struct vmbus_channel_version_response {
609 struct vmbus_channel_message_header header;
610 u8 version_supported;
611 } __packed;
612
613 enum vmbus_channel_state {
614 CHANNEL_OFFER_STATE,
615 CHANNEL_OPENING_STATE,
616 CHANNEL_OPEN_STATE,
617 CHANNEL_OPENED_STATE,
618 };
619
620 /*
621 * Represents each channel msg on the vmbus connection This is a
622 * variable-size data structure depending on the msg type itself
623 */
624 struct vmbus_channel_msginfo {
625 /* Bookkeeping stuff */
626 struct list_head msglistentry;
627
628 /* So far, this is only used to handle gpadl body message */
629 struct list_head submsglist;
630
631 /* Synchronize the request/response if needed */
632 struct completion waitevent;
633 struct vmbus_channel *waiting_channel;
634 union {
635 struct vmbus_channel_version_supported version_supported;
636 struct vmbus_channel_open_result open_result;
637 struct vmbus_channel_gpadl_torndown gpadl_torndown;
638 struct vmbus_channel_gpadl_created gpadl_created;
639 struct vmbus_channel_version_response version_response;
640 } response;
641
642 u32 msgsize;
643 /*
644 * The channel message that goes out on the "wire".
645 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
646 */
647 unsigned char msg[0];
648 };
649
650 struct vmbus_close_msg {
651 struct vmbus_channel_msginfo info;
652 struct vmbus_channel_close_channel msg;
653 };
654
655 /* Define connection identifier type. */
656 union hv_connection_id {
657 u32 asu32;
658 struct {
659 u32 id:24;
660 u32 reserved:8;
661 } u;
662 };
663
664 enum hv_numa_policy {
665 HV_BALANCED = 0,
666 HV_LOCALIZED,
667 };
668
669 enum vmbus_device_type {
670 HV_IDE = 0,
671 HV_SCSI,
672 HV_FC,
673 HV_NIC,
674 HV_ND,
675 HV_PCIE,
676 HV_FB,
677 HV_KBD,
678 HV_MOUSE,
679 HV_KVP,
680 HV_TS,
681 HV_HB,
682 HV_SHUTDOWN,
683 HV_FCOPY,
684 HV_BACKUP,
685 HV_DM,
686 HV_UNKNOWN,
687 };
688
689 struct vmbus_device {
690 u16 dev_type;
691 uuid_le guid;
692 bool perf_device;
693 };
694
695 struct vmbus_channel {
696 struct list_head listentry;
697
698 struct hv_device *device_obj;
699
700 enum vmbus_channel_state state;
701
702 struct vmbus_channel_offer_channel offermsg;
703 /*
704 * These are based on the OfferMsg.MonitorId.
705 * Save it here for easy access.
706 */
707 u8 monitor_grp;
708 u8 monitor_bit;
709
710 bool rescind; /* got rescind msg */
711
712 u32 ringbuffer_gpadlhandle;
713
714 /* Allocated memory for ring buffer */
715 void *ringbuffer_pages;
716 u32 ringbuffer_pagecount;
717 struct hv_ring_buffer_info outbound; /* send to parent */
718 struct hv_ring_buffer_info inbound; /* receive from parent */
719
720 struct vmbus_close_msg close_msg;
721
722 /* Statistics */
723 u64 interrupts; /* Host to Guest interrupts */
724 u64 sig_events; /* Guest to Host events */
725
726 /* Channel callback's invoked in softirq context */
727 struct tasklet_struct callback_event;
728 void (*onchannel_callback)(void *context);
729 void *channel_callback_context;
730
731 /*
732 * A channel can be marked for one of three modes of reading:
733 * BATCHED - callback called from taslket and should read
734 * channel until empty. Interrupts from the host
735 * are masked while read is in process (default).
736 * DIRECT - callback called from tasklet (softirq).
737 * ISR - callback called in interrupt context and must
738 * invoke its own deferred processing.
739 * Host interrupts are disabled and must be re-enabled
740 * when ring is empty.
741 */
742 enum hv_callback_mode {
743 HV_CALL_BATCHED,
744 HV_CALL_DIRECT,
745 HV_CALL_ISR
746 } callback_mode;
747
748 bool is_dedicated_interrupt;
749 u64 sig_event;
750
751 /*
752 * Starting with win8, this field will be used to specify
753 * the target virtual processor on which to deliver the interrupt for
754 * the host to guest communication.
755 * Prior to win8, incoming channel interrupts would only
756 * be delivered on cpu 0. Setting this value to 0 would
757 * preserve the earlier behavior.
758 */
759 u32 target_vp;
760 /* The corresponding CPUID in the guest */
761 u32 target_cpu;
762 /*
763 * State to manage the CPU affiliation of channels.
764 */
765 struct cpumask alloced_cpus_in_node;
766 int numa_node;
767 /*
768 * Support for sub-channels. For high performance devices,
769 * it will be useful to have multiple sub-channels to support
770 * a scalable communication infrastructure with the host.
771 * The support for sub-channels is implemented as an extention
772 * to the current infrastructure.
773 * The initial offer is considered the primary channel and this
774 * offer message will indicate if the host supports sub-channels.
775 * The guest is free to ask for sub-channels to be offerred and can
776 * open these sub-channels as a normal "primary" channel. However,
777 * all sub-channels will have the same type and instance guids as the
778 * primary channel. Requests sent on a given channel will result in a
779 * response on the same channel.
780 */
781
782 /*
783 * Sub-channel creation callback. This callback will be called in
784 * process context when a sub-channel offer is received from the host.
785 * The guest can open the sub-channel in the context of this callback.
786 */
787 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
788
789 /*
790 * Channel rescind callback. Some channels (the hvsock ones), need to
791 * register a callback which is invoked in vmbus_onoffer_rescind().
792 */
793 void (*chn_rescind_callback)(struct vmbus_channel *channel);
794
795 /*
796 * The spinlock to protect the structure. It is being used to protect
797 * test-and-set access to various attributes of the structure as well
798 * as all sc_list operations.
799 */
800 spinlock_t lock;
801 /*
802 * All Sub-channels of a primary channel are linked here.
803 */
804 struct list_head sc_list;
805 /*
806 * Current number of sub-channels.
807 */
808 int num_sc;
809 /*
810 * Number of a sub-channel (position within sc_list) which is supposed
811 * to be used as the next outgoing channel.
812 */
813 int next_oc;
814 /*
815 * The primary channel this sub-channel belongs to.
816 * This will be NULL for the primary channel.
817 */
818 struct vmbus_channel *primary_channel;
819 /*
820 * Support per-channel state for use by vmbus drivers.
821 */
822 void *per_channel_state;
823 /*
824 * To support per-cpu lookup mapping of relid to channel,
825 * link up channels based on their CPU affinity.
826 */
827 struct list_head percpu_list;
828
829 /*
830 * Defer freeing channel until after all cpu's have
831 * gone through grace period.
832 */
833 struct rcu_head rcu;
834
835 /*
836 * For sysfs per-channel properties.
837 */
838 struct kobject kobj;
839
840 /*
841 * For performance critical channels (storage, networking
842 * etc,), Hyper-V has a mechanism to enhance the throughput
843 * at the expense of latency:
844 * When the host is to be signaled, we just set a bit in a shared page
845 * and this bit will be inspected by the hypervisor within a certain
846 * window and if the bit is set, the host will be signaled. The window
847 * of time is the monitor latency - currently around 100 usecs. This
848 * mechanism improves throughput by:
849 *
850 * A) Making the host more efficient - each time it wakes up,
851 * potentially it will process morev number of packets. The
852 * monitor latency allows a batch to build up.
853 * B) By deferring the hypercall to signal, we will also minimize
854 * the interrupts.
855 *
856 * Clearly, these optimizations improve throughput at the expense of
857 * latency. Furthermore, since the channel is shared for both
858 * control and data messages, control messages currently suffer
859 * unnecessary latency adversley impacting performance and boot
860 * time. To fix this issue, permit tagging the channel as being
861 * in "low latency" mode. In this mode, we will bypass the monitor
862 * mechanism.
863 */
864 bool low_latency;
865
866 /*
867 * NUMA distribution policy:
868 * We support teo policies:
869 * 1) Balanced: Here all performance critical channels are
870 * distributed evenly amongst all the NUMA nodes.
871 * This policy will be the default policy.
872 * 2) Localized: All channels of a given instance of a
873 * performance critical service will be assigned CPUs
874 * within a selected NUMA node.
875 */
876 enum hv_numa_policy affinity_policy;
877
878 bool probe_done;
879
880 };
881
882 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
883 {
884 return !!(c->offermsg.offer.chn_flags &
885 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
886 }
887
888 static inline void set_channel_affinity_state(struct vmbus_channel *c,
889 enum hv_numa_policy policy)
890 {
891 c->affinity_policy = policy;
892 }
893
894 static inline void set_channel_read_mode(struct vmbus_channel *c,
895 enum hv_callback_mode mode)
896 {
897 c->callback_mode = mode;
898 }
899
900 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
901 {
902 c->per_channel_state = s;
903 }
904
905 static inline void *get_per_channel_state(struct vmbus_channel *c)
906 {
907 return c->per_channel_state;
908 }
909
910 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
911 u32 size)
912 {
913 c->outbound.ring_buffer->pending_send_sz = size;
914 }
915
916 static inline void set_low_latency_mode(struct vmbus_channel *c)
917 {
918 c->low_latency = true;
919 }
920
921 static inline void clear_low_latency_mode(struct vmbus_channel *c)
922 {
923 c->low_latency = false;
924 }
925
926 void vmbus_onmessage(void *context);
927
928 int vmbus_request_offers(void);
929
930 /*
931 * APIs for managing sub-channels.
932 */
933
934 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
935 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
936
937 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
938 void (*chn_rescind_cb)(struct vmbus_channel *));
939
940 /*
941 * Retrieve the (sub) channel on which to send an outgoing request.
942 * When a primary channel has multiple sub-channels, we choose a
943 * channel whose VCPU binding is closest to the VCPU on which
944 * this call is being made.
945 */
946 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
947
948 /*
949 * Check if sub-channels have already been offerred. This API will be useful
950 * when the driver is unloaded after establishing sub-channels. In this case,
951 * when the driver is re-loaded, the driver would have to check if the
952 * subchannels have already been established before attempting to request
953 * the creation of sub-channels.
954 * This function returns TRUE to indicate that subchannels have already been
955 * created.
956 * This function should be invoked after setting the callback function for
957 * sub-channel creation.
958 */
959 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
960
961 /* The format must be the same as struct vmdata_gpa_direct */
962 struct vmbus_channel_packet_page_buffer {
963 u16 type;
964 u16 dataoffset8;
965 u16 length8;
966 u16 flags;
967 u64 transactionid;
968 u32 reserved;
969 u32 rangecount;
970 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
971 } __packed;
972
973 /* The format must be the same as struct vmdata_gpa_direct */
974 struct vmbus_channel_packet_multipage_buffer {
975 u16 type;
976 u16 dataoffset8;
977 u16 length8;
978 u16 flags;
979 u64 transactionid;
980 u32 reserved;
981 u32 rangecount; /* Always 1 in this case */
982 struct hv_multipage_buffer range;
983 } __packed;
984
985 /* The format must be the same as struct vmdata_gpa_direct */
986 struct vmbus_packet_mpb_array {
987 u16 type;
988 u16 dataoffset8;
989 u16 length8;
990 u16 flags;
991 u64 transactionid;
992 u32 reserved;
993 u32 rangecount; /* Always 1 in this case */
994 struct hv_mpb_array range;
995 } __packed;
996
997
998 extern int vmbus_open(struct vmbus_channel *channel,
999 u32 send_ringbuffersize,
1000 u32 recv_ringbuffersize,
1001 void *userdata,
1002 u32 userdatalen,
1003 void (*onchannel_callback)(void *context),
1004 void *context);
1005
1006 extern void vmbus_close(struct vmbus_channel *channel);
1007
1008 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1009 void *buffer,
1010 u32 bufferLen,
1011 u64 requestid,
1012 enum vmbus_packet_type type,
1013 u32 flags);
1014
1015 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1016 struct hv_page_buffer pagebuffers[],
1017 u32 pagecount,
1018 void *buffer,
1019 u32 bufferlen,
1020 u64 requestid);
1021
1022 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1023 struct vmbus_packet_mpb_array *mpb,
1024 u32 desc_size,
1025 void *buffer,
1026 u32 bufferlen,
1027 u64 requestid);
1028
1029 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1030 void *kbuffer,
1031 u32 size,
1032 u32 *gpadl_handle);
1033
1034 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1035 u32 gpadl_handle);
1036
1037 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1038 void *buffer,
1039 u32 bufferlen,
1040 u32 *buffer_actual_len,
1041 u64 *requestid);
1042
1043 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1044 void *buffer,
1045 u32 bufferlen,
1046 u32 *buffer_actual_len,
1047 u64 *requestid);
1048
1049
1050 extern void vmbus_ontimer(unsigned long data);
1051
1052 /* Base driver object */
1053 struct hv_driver {
1054 const char *name;
1055
1056 /*
1057 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1058 * channel flag, actually doesn't mean a synthetic device because the
1059 * offer's if_type/if_instance can change for every new hvsock
1060 * connection.
1061 *
1062 * However, to facilitate the notification of new-offer/rescind-offer
1063 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1064 * a special vmbus device, and hence we need the below flag to
1065 * indicate if the driver is the hvsock driver or not: we need to
1066 * specially treat the hvosck offer & driver in vmbus_match().
1067 */
1068 bool hvsock;
1069
1070 /* the device type supported by this driver */
1071 uuid_le dev_type;
1072 const struct hv_vmbus_device_id *id_table;
1073
1074 struct device_driver driver;
1075
1076 /* dynamic device GUID's */
1077 struct {
1078 spinlock_t lock;
1079 struct list_head list;
1080 } dynids;
1081
1082 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1083 int (*remove)(struct hv_device *);
1084 void (*shutdown)(struct hv_device *);
1085
1086 };
1087
1088 /* Base device object */
1089 struct hv_device {
1090 /* the device type id of this device */
1091 uuid_le dev_type;
1092
1093 /* the device instance id of this device */
1094 uuid_le dev_instance;
1095 u16 vendor_id;
1096 u16 device_id;
1097
1098 struct device device;
1099
1100 struct vmbus_channel *channel;
1101 struct kset *channels_kset;
1102 };
1103
1104
1105 static inline struct hv_device *device_to_hv_device(struct device *d)
1106 {
1107 return container_of(d, struct hv_device, device);
1108 }
1109
1110 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1111 {
1112 return container_of(d, struct hv_driver, driver);
1113 }
1114
1115 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1116 {
1117 dev_set_drvdata(&dev->device, data);
1118 }
1119
1120 static inline void *hv_get_drvdata(struct hv_device *dev)
1121 {
1122 return dev_get_drvdata(&dev->device);
1123 }
1124
1125 struct hv_ring_buffer_debug_info {
1126 u32 current_interrupt_mask;
1127 u32 current_read_index;
1128 u32 current_write_index;
1129 u32 bytes_avail_toread;
1130 u32 bytes_avail_towrite;
1131 };
1132
1133 void hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info *ring_info,
1134 struct hv_ring_buffer_debug_info *debug_info);
1135
1136 /* Vmbus interface */
1137 #define vmbus_driver_register(driver) \
1138 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1139 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1140 struct module *owner,
1141 const char *mod_name);
1142 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1143
1144 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1145
1146 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1147 resource_size_t min, resource_size_t max,
1148 resource_size_t size, resource_size_t align,
1149 bool fb_overlap_ok);
1150 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1151
1152 /*
1153 * GUID definitions of various offer types - services offered to the guest.
1154 */
1155
1156 /*
1157 * Network GUID
1158 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1159 */
1160 #define HV_NIC_GUID \
1161 .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1162 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1163
1164 /*
1165 * IDE GUID
1166 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1167 */
1168 #define HV_IDE_GUID \
1169 .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1170 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1171
1172 /*
1173 * SCSI GUID
1174 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1175 */
1176 #define HV_SCSI_GUID \
1177 .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1178 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1179
1180 /*
1181 * Shutdown GUID
1182 * {0e0b6031-5213-4934-818b-38d90ced39db}
1183 */
1184 #define HV_SHUTDOWN_GUID \
1185 .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1186 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1187
1188 /*
1189 * Time Synch GUID
1190 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1191 */
1192 #define HV_TS_GUID \
1193 .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1194 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1195
1196 /*
1197 * Heartbeat GUID
1198 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1199 */
1200 #define HV_HEART_BEAT_GUID \
1201 .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1202 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1203
1204 /*
1205 * KVP GUID
1206 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1207 */
1208 #define HV_KVP_GUID \
1209 .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1210 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1211
1212 /*
1213 * Dynamic memory GUID
1214 * {525074dc-8985-46e2-8057-a307dc18a502}
1215 */
1216 #define HV_DM_GUID \
1217 .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1218 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1219
1220 /*
1221 * Mouse GUID
1222 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1223 */
1224 #define HV_MOUSE_GUID \
1225 .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1226 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1227
1228 /*
1229 * Keyboard GUID
1230 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1231 */
1232 #define HV_KBD_GUID \
1233 .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1234 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1235
1236 /*
1237 * VSS (Backup/Restore) GUID
1238 */
1239 #define HV_VSS_GUID \
1240 .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1241 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1242 /*
1243 * Synthetic Video GUID
1244 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1245 */
1246 #define HV_SYNTHVID_GUID \
1247 .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1248 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1249
1250 /*
1251 * Synthetic FC GUID
1252 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1253 */
1254 #define HV_SYNTHFC_GUID \
1255 .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1256 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1257
1258 /*
1259 * Guest File Copy Service
1260 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1261 */
1262
1263 #define HV_FCOPY_GUID \
1264 .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1265 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1266
1267 /*
1268 * NetworkDirect. This is the guest RDMA service.
1269 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1270 */
1271 #define HV_ND_GUID \
1272 .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1273 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1274
1275 /*
1276 * PCI Express Pass Through
1277 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1278 */
1279
1280 #define HV_PCIE_GUID \
1281 .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1282 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1283
1284 /*
1285 * Linux doesn't support the 3 devices: the first two are for
1286 * Automatic Virtual Machine Activation, and the third is for
1287 * Remote Desktop Virtualization.
1288 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1289 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1290 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1291 */
1292
1293 #define HV_AVMA1_GUID \
1294 .guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1295 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1296
1297 #define HV_AVMA2_GUID \
1298 .guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1299 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1300
1301 #define HV_RDV_GUID \
1302 .guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1303 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1304
1305 /*
1306 * Common header for Hyper-V ICs
1307 */
1308
1309 #define ICMSGTYPE_NEGOTIATE 0
1310 #define ICMSGTYPE_HEARTBEAT 1
1311 #define ICMSGTYPE_KVPEXCHANGE 2
1312 #define ICMSGTYPE_SHUTDOWN 3
1313 #define ICMSGTYPE_TIMESYNC 4
1314 #define ICMSGTYPE_VSS 5
1315
1316 #define ICMSGHDRFLAG_TRANSACTION 1
1317 #define ICMSGHDRFLAG_REQUEST 2
1318 #define ICMSGHDRFLAG_RESPONSE 4
1319
1320
1321 /*
1322 * While we want to handle util services as regular devices,
1323 * there is only one instance of each of these services; so
1324 * we statically allocate the service specific state.
1325 */
1326
1327 struct hv_util_service {
1328 u8 *recv_buffer;
1329 void *channel;
1330 void (*util_cb)(void *);
1331 int (*util_init)(struct hv_util_service *);
1332 void (*util_deinit)(void);
1333 };
1334
1335 struct vmbuspipe_hdr {
1336 u32 flags;
1337 u32 msgsize;
1338 } __packed;
1339
1340 struct ic_version {
1341 u16 major;
1342 u16 minor;
1343 } __packed;
1344
1345 struct icmsg_hdr {
1346 struct ic_version icverframe;
1347 u16 icmsgtype;
1348 struct ic_version icvermsg;
1349 u16 icmsgsize;
1350 u32 status;
1351 u8 ictransaction_id;
1352 u8 icflags;
1353 u8 reserved[2];
1354 } __packed;
1355
1356 struct icmsg_negotiate {
1357 u16 icframe_vercnt;
1358 u16 icmsg_vercnt;
1359 u32 reserved;
1360 struct ic_version icversion_data[1]; /* any size array */
1361 } __packed;
1362
1363 struct shutdown_msg_data {
1364 u32 reason_code;
1365 u32 timeout_seconds;
1366 u32 flags;
1367 u8 display_message[2048];
1368 } __packed;
1369
1370 struct heartbeat_msg_data {
1371 u64 seq_num;
1372 u32 reserved[8];
1373 } __packed;
1374
1375 /* Time Sync IC defs */
1376 #define ICTIMESYNCFLAG_PROBE 0
1377 #define ICTIMESYNCFLAG_SYNC 1
1378 #define ICTIMESYNCFLAG_SAMPLE 2
1379
1380 #ifdef __x86_64__
1381 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1382 #else
1383 #define WLTIMEDELTA 116444736000000000LL
1384 #endif
1385
1386 struct ictimesync_data {
1387 u64 parenttime;
1388 u64 childtime;
1389 u64 roundtriptime;
1390 u8 flags;
1391 } __packed;
1392
1393 struct ictimesync_ref_data {
1394 u64 parenttime;
1395 u64 vmreferencetime;
1396 u8 flags;
1397 char leapflags;
1398 char stratum;
1399 u8 reserved[3];
1400 } __packed;
1401
1402 struct hyperv_service_callback {
1403 u8 msg_type;
1404 char *log_msg;
1405 uuid_le data;
1406 struct vmbus_channel *channel;
1407 void (*callback)(void *context);
1408 };
1409
1410 #define MAX_SRV_VER 0x7ffffff
1411 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1412 const int *fw_version, int fw_vercnt,
1413 const int *srv_version, int srv_vercnt,
1414 int *nego_fw_version, int *nego_srv_version);
1415
1416 void hv_process_channel_removal(u32 relid);
1417
1418 void vmbus_setevent(struct vmbus_channel *channel);
1419 /*
1420 * Negotiated version with the Host.
1421 */
1422
1423 extern __u32 vmbus_proto_version;
1424
1425 int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id,
1426 const uuid_le *shv_host_servie_id);
1427 void vmbus_set_event(struct vmbus_channel *channel);
1428
1429 /* Get the start of the ring buffer. */
1430 static inline void *
1431 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1432 {
1433 return ring_info->ring_buffer->buffer;
1434 }
1435
1436 /*
1437 * Mask off host interrupt callback notifications
1438 */
1439 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1440 {
1441 rbi->ring_buffer->interrupt_mask = 1;
1442
1443 /* make sure mask update is not reordered */
1444 virt_mb();
1445 }
1446
1447 /*
1448 * Re-enable host callback and return number of outstanding bytes
1449 */
1450 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1451 {
1452
1453 rbi->ring_buffer->interrupt_mask = 0;
1454
1455 /* make sure mask update is not reordered */
1456 virt_mb();
1457
1458 /*
1459 * Now check to see if the ring buffer is still empty.
1460 * If it is not, we raced and we need to process new
1461 * incoming messages.
1462 */
1463 return hv_get_bytes_to_read(rbi);
1464 }
1465
1466 /*
1467 * An API to support in-place processing of incoming VMBUS packets.
1468 */
1469
1470 /* Get data payload associated with descriptor */
1471 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1472 {
1473 return (void *)((unsigned long)desc + (desc->offset8 << 3));
1474 }
1475
1476 /* Get data size associated with descriptor */
1477 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1478 {
1479 return (desc->len8 << 3) - (desc->offset8 << 3);
1480 }
1481
1482
1483 struct vmpacket_descriptor *
1484 hv_pkt_iter_first(struct vmbus_channel *channel);
1485
1486 struct vmpacket_descriptor *
1487 __hv_pkt_iter_next(struct vmbus_channel *channel,
1488 const struct vmpacket_descriptor *pkt);
1489
1490 void hv_pkt_iter_close(struct vmbus_channel *channel);
1491
1492 /*
1493 * Get next packet descriptor from iterator
1494 * If at end of list, return NULL and update host.
1495 */
1496 static inline struct vmpacket_descriptor *
1497 hv_pkt_iter_next(struct vmbus_channel *channel,
1498 const struct vmpacket_descriptor *pkt)
1499 {
1500 struct vmpacket_descriptor *nxt;
1501
1502 nxt = __hv_pkt_iter_next(channel, pkt);
1503 if (!nxt)
1504 hv_pkt_iter_close(channel);
1505
1506 return nxt;
1507 }
1508
1509 #define foreach_vmbus_pkt(pkt, channel) \
1510 for (pkt = hv_pkt_iter_first(channel); pkt; \
1511 pkt = hv_pkt_iter_next(channel, pkt))
1512
1513 #endif /* _HYPERV_H */