]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/kernel.h
seccomp: Move speculation migitation control to arch code
[mirror_ubuntu-artful-kernel.git] / include / linux / kernel.h
1 #ifndef _LINUX_KERNEL_H
2 #define _LINUX_KERNEL_H
3
4
5 #include <stdarg.h>
6 #include <linux/linkage.h>
7 #include <linux/stddef.h>
8 #include <linux/types.h>
9 #include <linux/compiler.h>
10 #include <linux/bitops.h>
11 #include <linux/log2.h>
12 #include <linux/typecheck.h>
13 #include <linux/printk.h>
14 #include <linux/build_bug.h>
15 #include <asm/byteorder.h>
16 #include <uapi/linux/kernel.h>
17
18 #define USHRT_MAX ((u16)(~0U))
19 #define SHRT_MAX ((s16)(USHRT_MAX>>1))
20 #define SHRT_MIN ((s16)(-SHRT_MAX - 1))
21 #define INT_MAX ((int)(~0U>>1))
22 #define INT_MIN (-INT_MAX - 1)
23 #define UINT_MAX (~0U)
24 #define LONG_MAX ((long)(~0UL>>1))
25 #define LONG_MIN (-LONG_MAX - 1)
26 #define ULONG_MAX (~0UL)
27 #define LLONG_MAX ((long long)(~0ULL>>1))
28 #define LLONG_MIN (-LLONG_MAX - 1)
29 #define ULLONG_MAX (~0ULL)
30 #define SIZE_MAX (~(size_t)0)
31
32 #define U8_MAX ((u8)~0U)
33 #define S8_MAX ((s8)(U8_MAX>>1))
34 #define S8_MIN ((s8)(-S8_MAX - 1))
35 #define U16_MAX ((u16)~0U)
36 #define S16_MAX ((s16)(U16_MAX>>1))
37 #define S16_MIN ((s16)(-S16_MAX - 1))
38 #define U32_MAX ((u32)~0U)
39 #define S32_MAX ((s32)(U32_MAX>>1))
40 #define S32_MIN ((s32)(-S32_MAX - 1))
41 #define U64_MAX ((u64)~0ULL)
42 #define S64_MAX ((s64)(U64_MAX>>1))
43 #define S64_MIN ((s64)(-S64_MAX - 1))
44
45 #define STACK_MAGIC 0xdeadbeef
46
47 #define REPEAT_BYTE(x) ((~0ul / 0xff) * (x))
48
49 /* @a is a power of 2 value */
50 #define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
51 #define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a))
52 #define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask))
53 #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a)))
54 #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
55
56 /* generic data direction definitions */
57 #define READ 0
58 #define WRITE 1
59
60 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
61
62 #define u64_to_user_ptr(x) ( \
63 { \
64 typecheck(u64, x); \
65 (void __user *)(uintptr_t)x; \
66 } \
67 )
68
69 /*
70 * This looks more complex than it should be. But we need to
71 * get the type for the ~ right in round_down (it needs to be
72 * as wide as the result!), and we want to evaluate the macro
73 * arguments just once each.
74 */
75 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
76 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
77 #define round_down(x, y) ((x) & ~__round_mask(x, y))
78
79 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
80 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
81 #define DIV_ROUND_UP_ULL(ll,d) \
82 ({ unsigned long long _tmp = (ll)+(d)-1; do_div(_tmp, d); _tmp; })
83
84 #if BITS_PER_LONG == 32
85 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
86 #else
87 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
88 #endif
89
90 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
91 #define roundup(x, y) ( \
92 { \
93 const typeof(y) __y = y; \
94 (((x) + (__y - 1)) / __y) * __y; \
95 } \
96 )
97 #define rounddown(x, y) ( \
98 { \
99 typeof(x) __x = (x); \
100 __x - (__x % (y)); \
101 } \
102 )
103
104 /*
105 * Divide positive or negative dividend by positive or negative divisor
106 * and round to closest integer. Result is undefined for negative
107 * divisors if he dividend variable type is unsigned and for negative
108 * dividends if the divisor variable type is unsigned.
109 */
110 #define DIV_ROUND_CLOSEST(x, divisor)( \
111 { \
112 typeof(x) __x = x; \
113 typeof(divisor) __d = divisor; \
114 (((typeof(x))-1) > 0 || \
115 ((typeof(divisor))-1) > 0 || \
116 (((__x) > 0) == ((__d) > 0))) ? \
117 (((__x) + ((__d) / 2)) / (__d)) : \
118 (((__x) - ((__d) / 2)) / (__d)); \
119 } \
120 )
121 /*
122 * Same as above but for u64 dividends. divisor must be a 32-bit
123 * number.
124 */
125 #define DIV_ROUND_CLOSEST_ULL(x, divisor)( \
126 { \
127 typeof(divisor) __d = divisor; \
128 unsigned long long _tmp = (x) + (__d) / 2; \
129 do_div(_tmp, __d); \
130 _tmp; \
131 } \
132 )
133
134 /*
135 * Multiplies an integer by a fraction, while avoiding unnecessary
136 * overflow or loss of precision.
137 */
138 #define mult_frac(x, numer, denom)( \
139 { \
140 typeof(x) quot = (x) / (denom); \
141 typeof(x) rem = (x) % (denom); \
142 (quot * (numer)) + ((rem * (numer)) / (denom)); \
143 } \
144 )
145
146
147 #define _RET_IP_ (unsigned long)__builtin_return_address(0)
148 #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
149
150 #ifdef CONFIG_LBDAF
151 # include <asm/div64.h>
152 # define sector_div(a, b) do_div(a, b)
153 #else
154 # define sector_div(n, b)( \
155 { \
156 int _res; \
157 _res = (n) % (b); \
158 (n) /= (b); \
159 _res; \
160 } \
161 )
162 #endif
163
164 /**
165 * upper_32_bits - return bits 32-63 of a number
166 * @n: the number we're accessing
167 *
168 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
169 * the "right shift count >= width of type" warning when that quantity is
170 * 32-bits.
171 */
172 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
173
174 /**
175 * lower_32_bits - return bits 0-31 of a number
176 * @n: the number we're accessing
177 */
178 #define lower_32_bits(n) ((u32)(n))
179
180 struct completion;
181 struct pt_regs;
182 struct user;
183
184 #ifdef CONFIG_PREEMPT_VOLUNTARY
185 extern int _cond_resched(void);
186 # define might_resched() _cond_resched()
187 #else
188 # define might_resched() do { } while (0)
189 #endif
190
191 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
192 void ___might_sleep(const char *file, int line, int preempt_offset);
193 void __might_sleep(const char *file, int line, int preempt_offset);
194 /**
195 * might_sleep - annotation for functions that can sleep
196 *
197 * this macro will print a stack trace if it is executed in an atomic
198 * context (spinlock, irq-handler, ...).
199 *
200 * This is a useful debugging help to be able to catch problems early and not
201 * be bitten later when the calling function happens to sleep when it is not
202 * supposed to.
203 */
204 # define might_sleep() \
205 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
206 # define sched_annotate_sleep() (current->task_state_change = 0)
207 #else
208 static inline void ___might_sleep(const char *file, int line,
209 int preempt_offset) { }
210 static inline void __might_sleep(const char *file, int line,
211 int preempt_offset) { }
212 # define might_sleep() do { might_resched(); } while (0)
213 # define sched_annotate_sleep() do { } while (0)
214 #endif
215
216 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
217
218 /**
219 * abs - return absolute value of an argument
220 * @x: the value. If it is unsigned type, it is converted to signed type first.
221 * char is treated as if it was signed (regardless of whether it really is)
222 * but the macro's return type is preserved as char.
223 *
224 * Return: an absolute value of x.
225 */
226 #define abs(x) __abs_choose_expr(x, long long, \
227 __abs_choose_expr(x, long, \
228 __abs_choose_expr(x, int, \
229 __abs_choose_expr(x, short, \
230 __abs_choose_expr(x, char, \
231 __builtin_choose_expr( \
232 __builtin_types_compatible_p(typeof(x), char), \
233 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
234 ((void)0)))))))
235
236 #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
237 __builtin_types_compatible_p(typeof(x), signed type) || \
238 __builtin_types_compatible_p(typeof(x), unsigned type), \
239 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
240
241 /**
242 * reciprocal_scale - "scale" a value into range [0, ep_ro)
243 * @val: value
244 * @ep_ro: right open interval endpoint
245 *
246 * Perform a "reciprocal multiplication" in order to "scale" a value into
247 * range [0, ep_ro), where the upper interval endpoint is right-open.
248 * This is useful, e.g. for accessing a index of an array containing
249 * ep_ro elements, for example. Think of it as sort of modulus, only that
250 * the result isn't that of modulo. ;) Note that if initial input is a
251 * small value, then result will return 0.
252 *
253 * Return: a result based on val in interval [0, ep_ro).
254 */
255 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
256 {
257 return (u32)(((u64) val * ep_ro) >> 32);
258 }
259
260 #if defined(CONFIG_MMU) && \
261 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
262 #define might_fault() __might_fault(__FILE__, __LINE__)
263 void __might_fault(const char *file, int line);
264 #else
265 static inline void might_fault(void) { }
266 #endif
267
268 extern struct atomic_notifier_head panic_notifier_list;
269 extern long (*panic_blink)(int state);
270 __printf(1, 2)
271 void panic(const char *fmt, ...) __noreturn __cold;
272 void nmi_panic(struct pt_regs *regs, const char *msg);
273 extern void oops_enter(void);
274 extern void oops_exit(void);
275 void print_oops_end_marker(void);
276 extern int oops_may_print(void);
277 void do_exit(long error_code) __noreturn;
278 void complete_and_exit(struct completion *, long) __noreturn;
279
280 #ifdef CONFIG_LOCK_DOWN_KERNEL
281 extern bool kernel_is_locked_down(void);
282 #else
283 static inline bool kernel_is_locked_down(void)
284 {
285 return false;
286 }
287 #endif
288
289 /* Internal, do not use. */
290 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
291 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
292
293 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
294 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
295
296 /**
297 * kstrtoul - convert a string to an unsigned long
298 * @s: The start of the string. The string must be null-terminated, and may also
299 * include a single newline before its terminating null. The first character
300 * may also be a plus sign, but not a minus sign.
301 * @base: The number base to use. The maximum supported base is 16. If base is
302 * given as 0, then the base of the string is automatically detected with the
303 * conventional semantics - If it begins with 0x the number will be parsed as a
304 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
305 * parsed as an octal number. Otherwise it will be parsed as a decimal.
306 * @res: Where to write the result of the conversion on success.
307 *
308 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
309 * Used as a replacement for the obsolete simple_strtoull. Return code must
310 * be checked.
311 */
312 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
313 {
314 /*
315 * We want to shortcut function call, but
316 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
317 */
318 if (sizeof(unsigned long) == sizeof(unsigned long long) &&
319 __alignof__(unsigned long) == __alignof__(unsigned long long))
320 return kstrtoull(s, base, (unsigned long long *)res);
321 else
322 return _kstrtoul(s, base, res);
323 }
324
325 /**
326 * kstrtol - convert a string to a long
327 * @s: The start of the string. The string must be null-terminated, and may also
328 * include a single newline before its terminating null. The first character
329 * may also be a plus sign or a minus sign.
330 * @base: The number base to use. The maximum supported base is 16. If base is
331 * given as 0, then the base of the string is automatically detected with the
332 * conventional semantics - If it begins with 0x the number will be parsed as a
333 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
334 * parsed as an octal number. Otherwise it will be parsed as a decimal.
335 * @res: Where to write the result of the conversion on success.
336 *
337 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
338 * Used as a replacement for the obsolete simple_strtoull. Return code must
339 * be checked.
340 */
341 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
342 {
343 /*
344 * We want to shortcut function call, but
345 * __builtin_types_compatible_p(long, long long) = 0.
346 */
347 if (sizeof(long) == sizeof(long long) &&
348 __alignof__(long) == __alignof__(long long))
349 return kstrtoll(s, base, (long long *)res);
350 else
351 return _kstrtol(s, base, res);
352 }
353
354 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
355 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
356
357 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
358 {
359 return kstrtoull(s, base, res);
360 }
361
362 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
363 {
364 return kstrtoll(s, base, res);
365 }
366
367 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
368 {
369 return kstrtouint(s, base, res);
370 }
371
372 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
373 {
374 return kstrtoint(s, base, res);
375 }
376
377 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
378 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
379 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
380 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
381 int __must_check kstrtobool(const char *s, bool *res);
382
383 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
384 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
385 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
386 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
387 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
388 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
389 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
390 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
391 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
392 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
393 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
394
395 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
396 {
397 return kstrtoull_from_user(s, count, base, res);
398 }
399
400 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
401 {
402 return kstrtoll_from_user(s, count, base, res);
403 }
404
405 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
406 {
407 return kstrtouint_from_user(s, count, base, res);
408 }
409
410 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
411 {
412 return kstrtoint_from_user(s, count, base, res);
413 }
414
415 /* Obsolete, do not use. Use kstrto<foo> instead */
416
417 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
418 extern long simple_strtol(const char *,char **,unsigned int);
419 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
420 extern long long simple_strtoll(const char *,char **,unsigned int);
421
422 extern int num_to_str(char *buf, int size, unsigned long long num);
423
424 /* lib/printf utilities */
425
426 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
427 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
428 extern __printf(3, 4)
429 int snprintf(char *buf, size_t size, const char *fmt, ...);
430 extern __printf(3, 0)
431 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
432 extern __printf(3, 4)
433 int scnprintf(char *buf, size_t size, const char *fmt, ...);
434 extern __printf(3, 0)
435 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
436 extern __printf(2, 3) __malloc
437 char *kasprintf(gfp_t gfp, const char *fmt, ...);
438 extern __printf(2, 0) __malloc
439 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
440 extern __printf(2, 0)
441 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
442
443 extern __scanf(2, 3)
444 int sscanf(const char *, const char *, ...);
445 extern __scanf(2, 0)
446 int vsscanf(const char *, const char *, va_list);
447
448 extern int get_option(char **str, int *pint);
449 extern char *get_options(const char *str, int nints, int *ints);
450 extern unsigned long long memparse(const char *ptr, char **retptr);
451 extern bool parse_option_str(const char *str, const char *option);
452 extern char *next_arg(char *args, char **param, char **val);
453
454 extern int core_kernel_text(unsigned long addr);
455 extern int core_kernel_data(unsigned long addr);
456 extern int __kernel_text_address(unsigned long addr);
457 extern int kernel_text_address(unsigned long addr);
458 extern int func_ptr_is_kernel_text(void *ptr);
459
460 unsigned long int_sqrt(unsigned long);
461
462 extern void bust_spinlocks(int yes);
463 extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */
464 extern int panic_timeout;
465 extern int panic_on_oops;
466 extern int panic_on_unrecovered_nmi;
467 extern int panic_on_io_nmi;
468 extern int panic_on_warn;
469 extern int sysctl_panic_on_rcu_stall;
470 extern int sysctl_panic_on_stackoverflow;
471
472 extern bool crash_kexec_post_notifiers;
473
474 /*
475 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
476 * holds a CPU number which is executing panic() currently. A value of
477 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
478 */
479 extern atomic_t panic_cpu;
480 #define PANIC_CPU_INVALID -1
481
482 /*
483 * Only to be used by arch init code. If the user over-wrote the default
484 * CONFIG_PANIC_TIMEOUT, honor it.
485 */
486 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
487 {
488 if (panic_timeout == arch_default_timeout)
489 panic_timeout = timeout;
490 }
491 extern const char *print_tainted(void);
492 enum lockdep_ok {
493 LOCKDEP_STILL_OK,
494 LOCKDEP_NOW_UNRELIABLE
495 };
496 extern void add_taint(unsigned flag, enum lockdep_ok);
497 extern int test_taint(unsigned flag);
498 extern unsigned long get_taint(void);
499 extern int root_mountflags;
500
501 extern bool early_boot_irqs_disabled;
502
503 /*
504 * Values used for system_state. Ordering of the states must not be changed
505 * as code checks for <, <=, >, >= STATE.
506 */
507 extern enum system_states {
508 SYSTEM_BOOTING,
509 SYSTEM_SCHEDULING,
510 SYSTEM_RUNNING,
511 SYSTEM_HALT,
512 SYSTEM_POWER_OFF,
513 SYSTEM_RESTART,
514 } system_state;
515
516 #define TAINT_PROPRIETARY_MODULE 0
517 #define TAINT_FORCED_MODULE 1
518 #define TAINT_CPU_OUT_OF_SPEC 2
519 #define TAINT_FORCED_RMMOD 3
520 #define TAINT_MACHINE_CHECK 4
521 #define TAINT_BAD_PAGE 5
522 #define TAINT_USER 6
523 #define TAINT_DIE 7
524 #define TAINT_OVERRIDDEN_ACPI_TABLE 8
525 #define TAINT_WARN 9
526 #define TAINT_CRAP 10
527 #define TAINT_FIRMWARE_WORKAROUND 11
528 #define TAINT_OOT_MODULE 12
529 #define TAINT_UNSIGNED_MODULE 13
530 #define TAINT_SOFTLOCKUP 14
531 #define TAINT_LIVEPATCH 15
532 #define TAINT_FLAGS_COUNT 16
533
534 struct taint_flag {
535 char c_true; /* character printed when tainted */
536 char c_false; /* character printed when not tainted */
537 bool module; /* also show as a per-module taint flag */
538 };
539
540 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
541
542 extern const char hex_asc[];
543 #define hex_asc_lo(x) hex_asc[((x) & 0x0f)]
544 #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4]
545
546 static inline char *hex_byte_pack(char *buf, u8 byte)
547 {
548 *buf++ = hex_asc_hi(byte);
549 *buf++ = hex_asc_lo(byte);
550 return buf;
551 }
552
553 extern const char hex_asc_upper[];
554 #define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)]
555 #define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4]
556
557 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
558 {
559 *buf++ = hex_asc_upper_hi(byte);
560 *buf++ = hex_asc_upper_lo(byte);
561 return buf;
562 }
563
564 extern int hex_to_bin(char ch);
565 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
566 extern char *bin2hex(char *dst, const void *src, size_t count);
567
568 bool mac_pton(const char *s, u8 *mac);
569
570 /*
571 * General tracing related utility functions - trace_printk(),
572 * tracing_on/tracing_off and tracing_start()/tracing_stop
573 *
574 * Use tracing_on/tracing_off when you want to quickly turn on or off
575 * tracing. It simply enables or disables the recording of the trace events.
576 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
577 * file, which gives a means for the kernel and userspace to interact.
578 * Place a tracing_off() in the kernel where you want tracing to end.
579 * From user space, examine the trace, and then echo 1 > tracing_on
580 * to continue tracing.
581 *
582 * tracing_stop/tracing_start has slightly more overhead. It is used
583 * by things like suspend to ram where disabling the recording of the
584 * trace is not enough, but tracing must actually stop because things
585 * like calling smp_processor_id() may crash the system.
586 *
587 * Most likely, you want to use tracing_on/tracing_off.
588 */
589
590 enum ftrace_dump_mode {
591 DUMP_NONE,
592 DUMP_ALL,
593 DUMP_ORIG,
594 };
595
596 #ifdef CONFIG_TRACING
597 void tracing_on(void);
598 void tracing_off(void);
599 int tracing_is_on(void);
600 void tracing_snapshot(void);
601 void tracing_snapshot_alloc(void);
602
603 extern void tracing_start(void);
604 extern void tracing_stop(void);
605
606 static inline __printf(1, 2)
607 void ____trace_printk_check_format(const char *fmt, ...)
608 {
609 }
610 #define __trace_printk_check_format(fmt, args...) \
611 do { \
612 if (0) \
613 ____trace_printk_check_format(fmt, ##args); \
614 } while (0)
615
616 /**
617 * trace_printk - printf formatting in the ftrace buffer
618 * @fmt: the printf format for printing
619 *
620 * Note: __trace_printk is an internal function for trace_printk and
621 * the @ip is passed in via the trace_printk macro.
622 *
623 * This function allows a kernel developer to debug fast path sections
624 * that printk is not appropriate for. By scattering in various
625 * printk like tracing in the code, a developer can quickly see
626 * where problems are occurring.
627 *
628 * This is intended as a debugging tool for the developer only.
629 * Please refrain from leaving trace_printks scattered around in
630 * your code. (Extra memory is used for special buffers that are
631 * allocated when trace_printk() is used)
632 *
633 * A little optization trick is done here. If there's only one
634 * argument, there's no need to scan the string for printf formats.
635 * The trace_puts() will suffice. But how can we take advantage of
636 * using trace_puts() when trace_printk() has only one argument?
637 * By stringifying the args and checking the size we can tell
638 * whether or not there are args. __stringify((__VA_ARGS__)) will
639 * turn into "()\0" with a size of 3 when there are no args, anything
640 * else will be bigger. All we need to do is define a string to this,
641 * and then take its size and compare to 3. If it's bigger, use
642 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
643 * let gcc optimize the rest.
644 */
645
646 #define trace_printk(fmt, ...) \
647 do { \
648 char _______STR[] = __stringify((__VA_ARGS__)); \
649 if (sizeof(_______STR) > 3) \
650 do_trace_printk(fmt, ##__VA_ARGS__); \
651 else \
652 trace_puts(fmt); \
653 } while (0)
654
655 #define do_trace_printk(fmt, args...) \
656 do { \
657 static const char *trace_printk_fmt __used \
658 __attribute__((section("__trace_printk_fmt"))) = \
659 __builtin_constant_p(fmt) ? fmt : NULL; \
660 \
661 __trace_printk_check_format(fmt, ##args); \
662 \
663 if (__builtin_constant_p(fmt)) \
664 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \
665 else \
666 __trace_printk(_THIS_IP_, fmt, ##args); \
667 } while (0)
668
669 extern __printf(2, 3)
670 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
671
672 extern __printf(2, 3)
673 int __trace_printk(unsigned long ip, const char *fmt, ...);
674
675 /**
676 * trace_puts - write a string into the ftrace buffer
677 * @str: the string to record
678 *
679 * Note: __trace_bputs is an internal function for trace_puts and
680 * the @ip is passed in via the trace_puts macro.
681 *
682 * This is similar to trace_printk() but is made for those really fast
683 * paths that a developer wants the least amount of "Heisenbug" affects,
684 * where the processing of the print format is still too much.
685 *
686 * This function allows a kernel developer to debug fast path sections
687 * that printk is not appropriate for. By scattering in various
688 * printk like tracing in the code, a developer can quickly see
689 * where problems are occurring.
690 *
691 * This is intended as a debugging tool for the developer only.
692 * Please refrain from leaving trace_puts scattered around in
693 * your code. (Extra memory is used for special buffers that are
694 * allocated when trace_puts() is used)
695 *
696 * Returns: 0 if nothing was written, positive # if string was.
697 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
698 */
699
700 #define trace_puts(str) ({ \
701 static const char *trace_printk_fmt __used \
702 __attribute__((section("__trace_printk_fmt"))) = \
703 __builtin_constant_p(str) ? str : NULL; \
704 \
705 if (__builtin_constant_p(str)) \
706 __trace_bputs(_THIS_IP_, trace_printk_fmt); \
707 else \
708 __trace_puts(_THIS_IP_, str, strlen(str)); \
709 })
710 extern int __trace_bputs(unsigned long ip, const char *str);
711 extern int __trace_puts(unsigned long ip, const char *str, int size);
712
713 extern void trace_dump_stack(int skip);
714
715 /*
716 * The double __builtin_constant_p is because gcc will give us an error
717 * if we try to allocate the static variable to fmt if it is not a
718 * constant. Even with the outer if statement.
719 */
720 #define ftrace_vprintk(fmt, vargs) \
721 do { \
722 if (__builtin_constant_p(fmt)) { \
723 static const char *trace_printk_fmt __used \
724 __attribute__((section("__trace_printk_fmt"))) = \
725 __builtin_constant_p(fmt) ? fmt : NULL; \
726 \
727 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \
728 } else \
729 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \
730 } while (0)
731
732 extern __printf(2, 0) int
733 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
734
735 extern __printf(2, 0) int
736 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
737
738 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
739 #else
740 static inline void tracing_start(void) { }
741 static inline void tracing_stop(void) { }
742 static inline void trace_dump_stack(int skip) { }
743
744 static inline void tracing_on(void) { }
745 static inline void tracing_off(void) { }
746 static inline int tracing_is_on(void) { return 0; }
747 static inline void tracing_snapshot(void) { }
748 static inline void tracing_snapshot_alloc(void) { }
749
750 static inline __printf(1, 2)
751 int trace_printk(const char *fmt, ...)
752 {
753 return 0;
754 }
755 static __printf(1, 0) inline int
756 ftrace_vprintk(const char *fmt, va_list ap)
757 {
758 return 0;
759 }
760 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
761 #endif /* CONFIG_TRACING */
762
763 /*
764 * min()/max()/clamp() macros that also do
765 * strict type-checking.. See the
766 * "unnecessary" pointer comparison.
767 */
768 #define __min(t1, t2, min1, min2, x, y) ({ \
769 t1 min1 = (x); \
770 t2 min2 = (y); \
771 (void) (&min1 == &min2); \
772 min1 < min2 ? min1 : min2; })
773 #define min(x, y) \
774 __min(typeof(x), typeof(y), \
775 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \
776 x, y)
777
778 #define __max(t1, t2, max1, max2, x, y) ({ \
779 t1 max1 = (x); \
780 t2 max2 = (y); \
781 (void) (&max1 == &max2); \
782 max1 > max2 ? max1 : max2; })
783 #define max(x, y) \
784 __max(typeof(x), typeof(y), \
785 __UNIQUE_ID(max1_), __UNIQUE_ID(max2_), \
786 x, y)
787
788 #define min3(x, y, z) min((typeof(x))min(x, y), z)
789 #define max3(x, y, z) max((typeof(x))max(x, y), z)
790
791 /**
792 * min_not_zero - return the minimum that is _not_ zero, unless both are zero
793 * @x: value1
794 * @y: value2
795 */
796 #define min_not_zero(x, y) ({ \
797 typeof(x) __x = (x); \
798 typeof(y) __y = (y); \
799 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
800
801 /**
802 * clamp - return a value clamped to a given range with strict typechecking
803 * @val: current value
804 * @lo: lowest allowable value
805 * @hi: highest allowable value
806 *
807 * This macro does strict typechecking of lo/hi to make sure they are of the
808 * same type as val. See the unnecessary pointer comparisons.
809 */
810 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
811
812 /*
813 * ..and if you can't take the strict
814 * types, you can specify one yourself.
815 *
816 * Or not use min/max/clamp at all, of course.
817 */
818 #define min_t(type, x, y) \
819 __min(type, type, \
820 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \
821 x, y)
822
823 #define max_t(type, x, y) \
824 __max(type, type, \
825 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \
826 x, y)
827
828 /**
829 * clamp_t - return a value clamped to a given range using a given type
830 * @type: the type of variable to use
831 * @val: current value
832 * @lo: minimum allowable value
833 * @hi: maximum allowable value
834 *
835 * This macro does no typechecking and uses temporary variables of type
836 * 'type' to make all the comparisons.
837 */
838 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
839
840 /**
841 * clamp_val - return a value clamped to a given range using val's type
842 * @val: current value
843 * @lo: minimum allowable value
844 * @hi: maximum allowable value
845 *
846 * This macro does no typechecking and uses temporary variables of whatever
847 * type the input argument 'val' is. This is useful when val is an unsigned
848 * type and min and max are literals that will otherwise be assigned a signed
849 * integer type.
850 */
851 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
852
853
854 /*
855 * swap - swap value of @a and @b
856 */
857 #define swap(a, b) \
858 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
859
860 /**
861 * container_of - cast a member of a structure out to the containing structure
862 * @ptr: the pointer to the member.
863 * @type: the type of the container struct this is embedded in.
864 * @member: the name of the member within the struct.
865 *
866 */
867 #define container_of(ptr, type, member) ({ \
868 void *__mptr = (void *)(ptr); \
869 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \
870 !__same_type(*(ptr), void), \
871 "pointer type mismatch in container_of()"); \
872 ((type *)(__mptr - offsetof(type, member))); })
873
874 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
875 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
876 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
877 #endif
878
879 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
880 #define VERIFY_OCTAL_PERMISSIONS(perms) \
881 (BUILD_BUG_ON_ZERO((perms) < 0) + \
882 BUILD_BUG_ON_ZERO((perms) > 0777) + \
883 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \
884 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \
885 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \
886 /* USER_WRITABLE >= GROUP_WRITABLE */ \
887 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \
888 /* OTHER_WRITABLE? Generally considered a bad idea. */ \
889 BUILD_BUG_ON_ZERO((perms) & 2) + \
890 (perms))
891 #endif