]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/linux/kernel.h
Merge tag 'char-misc-4.20-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[mirror_ubuntu-eoan-kernel.git] / include / linux / kernel.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_KERNEL_H
3 #define _LINUX_KERNEL_H
4
5
6 #include <stdarg.h>
7 #include <linux/linkage.h>
8 #include <linux/stddef.h>
9 #include <linux/types.h>
10 #include <linux/compiler.h>
11 #include <linux/bitops.h>
12 #include <linux/log2.h>
13 #include <linux/typecheck.h>
14 #include <linux/printk.h>
15 #include <linux/build_bug.h>
16 #include <asm/byteorder.h>
17 #include <uapi/linux/kernel.h>
18
19 #define USHRT_MAX ((u16)(~0U))
20 #define SHRT_MAX ((s16)(USHRT_MAX>>1))
21 #define SHRT_MIN ((s16)(-SHRT_MAX - 1))
22 #define INT_MAX ((int)(~0U>>1))
23 #define INT_MIN (-INT_MAX - 1)
24 #define UINT_MAX (~0U)
25 #define LONG_MAX ((long)(~0UL>>1))
26 #define LONG_MIN (-LONG_MAX - 1)
27 #define ULONG_MAX (~0UL)
28 #define LLONG_MAX ((long long)(~0ULL>>1))
29 #define LLONG_MIN (-LLONG_MAX - 1)
30 #define ULLONG_MAX (~0ULL)
31 #define SIZE_MAX (~(size_t)0)
32 #define PHYS_ADDR_MAX (~(phys_addr_t)0)
33
34 #define U8_MAX ((u8)~0U)
35 #define S8_MAX ((s8)(U8_MAX>>1))
36 #define S8_MIN ((s8)(-S8_MAX - 1))
37 #define U16_MAX ((u16)~0U)
38 #define S16_MAX ((s16)(U16_MAX>>1))
39 #define S16_MIN ((s16)(-S16_MAX - 1))
40 #define U32_MAX ((u32)~0U)
41 #define S32_MAX ((s32)(U32_MAX>>1))
42 #define S32_MIN ((s32)(-S32_MAX - 1))
43 #define U64_MAX ((u64)~0ULL)
44 #define S64_MAX ((s64)(U64_MAX>>1))
45 #define S64_MIN ((s64)(-S64_MAX - 1))
46
47 #define STACK_MAGIC 0xdeadbeef
48
49 /**
50 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
51 * @x: value to repeat
52 *
53 * NOTE: @x is not checked for > 0xff; larger values produce odd results.
54 */
55 #define REPEAT_BYTE(x) ((~0ul / 0xff) * (x))
56
57 /* @a is a power of 2 value */
58 #define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
59 #define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a))
60 #define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask))
61 #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a)))
62 #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
63
64 /* generic data direction definitions */
65 #define READ 0
66 #define WRITE 1
67
68 /**
69 * ARRAY_SIZE - get the number of elements in array @arr
70 * @arr: array to be sized
71 */
72 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
73
74 #define u64_to_user_ptr(x) ( \
75 { \
76 typecheck(u64, x); \
77 (void __user *)(uintptr_t)x; \
78 } \
79 )
80
81 /*
82 * This looks more complex than it should be. But we need to
83 * get the type for the ~ right in round_down (it needs to be
84 * as wide as the result!), and we want to evaluate the macro
85 * arguments just once each.
86 */
87 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
88 /**
89 * round_up - round up to next specified power of 2
90 * @x: the value to round
91 * @y: multiple to round up to (must be a power of 2)
92 *
93 * Rounds @x up to next multiple of @y (which must be a power of 2).
94 * To perform arbitrary rounding up, use roundup() below.
95 */
96 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
97 /**
98 * round_down - round down to next specified power of 2
99 * @x: the value to round
100 * @y: multiple to round down to (must be a power of 2)
101 *
102 * Rounds @x down to next multiple of @y (which must be a power of 2).
103 * To perform arbitrary rounding down, use rounddown() below.
104 */
105 #define round_down(x, y) ((x) & ~__round_mask(x, y))
106
107 /**
108 * FIELD_SIZEOF - get the size of a struct's field
109 * @t: the target struct
110 * @f: the target struct's field
111 * Return: the size of @f in the struct definition without having a
112 * declared instance of @t.
113 */
114 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
115
116 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
117
118 #define DIV_ROUND_DOWN_ULL(ll, d) \
119 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
120
121 #define DIV_ROUND_UP_ULL(ll, d) DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d))
122
123 #if BITS_PER_LONG == 32
124 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
125 #else
126 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
127 #endif
128
129 /**
130 * roundup - round up to the next specified multiple
131 * @x: the value to up
132 * @y: multiple to round up to
133 *
134 * Rounds @x up to next multiple of @y. If @y will always be a power
135 * of 2, consider using the faster round_up().
136 *
137 * The `const' here prevents gcc-3.3 from calling __divdi3
138 */
139 #define roundup(x, y) ( \
140 { \
141 const typeof(y) __y = y; \
142 (((x) + (__y - 1)) / __y) * __y; \
143 } \
144 )
145 /**
146 * rounddown - round down to next specified multiple
147 * @x: the value to round
148 * @y: multiple to round down to
149 *
150 * Rounds @x down to next multiple of @y. If @y will always be a power
151 * of 2, consider using the faster round_down().
152 */
153 #define rounddown(x, y) ( \
154 { \
155 typeof(x) __x = (x); \
156 __x - (__x % (y)); \
157 } \
158 )
159
160 /*
161 * Divide positive or negative dividend by positive or negative divisor
162 * and round to closest integer. Result is undefined for negative
163 * divisors if the dividend variable type is unsigned and for negative
164 * dividends if the divisor variable type is unsigned.
165 */
166 #define DIV_ROUND_CLOSEST(x, divisor)( \
167 { \
168 typeof(x) __x = x; \
169 typeof(divisor) __d = divisor; \
170 (((typeof(x))-1) > 0 || \
171 ((typeof(divisor))-1) > 0 || \
172 (((__x) > 0) == ((__d) > 0))) ? \
173 (((__x) + ((__d) / 2)) / (__d)) : \
174 (((__x) - ((__d) / 2)) / (__d)); \
175 } \
176 )
177 /*
178 * Same as above but for u64 dividends. divisor must be a 32-bit
179 * number.
180 */
181 #define DIV_ROUND_CLOSEST_ULL(x, divisor)( \
182 { \
183 typeof(divisor) __d = divisor; \
184 unsigned long long _tmp = (x) + (__d) / 2; \
185 do_div(_tmp, __d); \
186 _tmp; \
187 } \
188 )
189
190 /*
191 * Multiplies an integer by a fraction, while avoiding unnecessary
192 * overflow or loss of precision.
193 */
194 #define mult_frac(x, numer, denom)( \
195 { \
196 typeof(x) quot = (x) / (denom); \
197 typeof(x) rem = (x) % (denom); \
198 (quot * (numer)) + ((rem * (numer)) / (denom)); \
199 } \
200 )
201
202
203 #define _RET_IP_ (unsigned long)__builtin_return_address(0)
204 #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
205
206 #ifdef CONFIG_LBDAF
207 # include <asm/div64.h>
208 # define sector_div(a, b) do_div(a, b)
209 #else
210 # define sector_div(n, b)( \
211 { \
212 int _res; \
213 _res = (n) % (b); \
214 (n) /= (b); \
215 _res; \
216 } \
217 )
218 #endif
219
220 /**
221 * upper_32_bits - return bits 32-63 of a number
222 * @n: the number we're accessing
223 *
224 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
225 * the "right shift count >= width of type" warning when that quantity is
226 * 32-bits.
227 */
228 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
229
230 /**
231 * lower_32_bits - return bits 0-31 of a number
232 * @n: the number we're accessing
233 */
234 #define lower_32_bits(n) ((u32)(n))
235
236 struct completion;
237 struct pt_regs;
238 struct user;
239
240 #ifdef CONFIG_PREEMPT_VOLUNTARY
241 extern int _cond_resched(void);
242 # define might_resched() _cond_resched()
243 #else
244 # define might_resched() do { } while (0)
245 #endif
246
247 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
248 void ___might_sleep(const char *file, int line, int preempt_offset);
249 void __might_sleep(const char *file, int line, int preempt_offset);
250 /**
251 * might_sleep - annotation for functions that can sleep
252 *
253 * this macro will print a stack trace if it is executed in an atomic
254 * context (spinlock, irq-handler, ...).
255 *
256 * This is a useful debugging help to be able to catch problems early and not
257 * be bitten later when the calling function happens to sleep when it is not
258 * supposed to.
259 */
260 # define might_sleep() \
261 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
262 # define sched_annotate_sleep() (current->task_state_change = 0)
263 #else
264 static inline void ___might_sleep(const char *file, int line,
265 int preempt_offset) { }
266 static inline void __might_sleep(const char *file, int line,
267 int preempt_offset) { }
268 # define might_sleep() do { might_resched(); } while (0)
269 # define sched_annotate_sleep() do { } while (0)
270 #endif
271
272 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
273
274 /**
275 * abs - return absolute value of an argument
276 * @x: the value. If it is unsigned type, it is converted to signed type first.
277 * char is treated as if it was signed (regardless of whether it really is)
278 * but the macro's return type is preserved as char.
279 *
280 * Return: an absolute value of x.
281 */
282 #define abs(x) __abs_choose_expr(x, long long, \
283 __abs_choose_expr(x, long, \
284 __abs_choose_expr(x, int, \
285 __abs_choose_expr(x, short, \
286 __abs_choose_expr(x, char, \
287 __builtin_choose_expr( \
288 __builtin_types_compatible_p(typeof(x), char), \
289 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
290 ((void)0)))))))
291
292 #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
293 __builtin_types_compatible_p(typeof(x), signed type) || \
294 __builtin_types_compatible_p(typeof(x), unsigned type), \
295 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
296
297 /**
298 * reciprocal_scale - "scale" a value into range [0, ep_ro)
299 * @val: value
300 * @ep_ro: right open interval endpoint
301 *
302 * Perform a "reciprocal multiplication" in order to "scale" a value into
303 * range [0, @ep_ro), where the upper interval endpoint is right-open.
304 * This is useful, e.g. for accessing a index of an array containing
305 * @ep_ro elements, for example. Think of it as sort of modulus, only that
306 * the result isn't that of modulo. ;) Note that if initial input is a
307 * small value, then result will return 0.
308 *
309 * Return: a result based on @val in interval [0, @ep_ro).
310 */
311 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
312 {
313 return (u32)(((u64) val * ep_ro) >> 32);
314 }
315
316 #if defined(CONFIG_MMU) && \
317 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
318 #define might_fault() __might_fault(__FILE__, __LINE__)
319 void __might_fault(const char *file, int line);
320 #else
321 static inline void might_fault(void) { }
322 #endif
323
324 extern struct atomic_notifier_head panic_notifier_list;
325 extern long (*panic_blink)(int state);
326 __printf(1, 2)
327 void panic(const char *fmt, ...) __noreturn __cold;
328 void nmi_panic(struct pt_regs *regs, const char *msg);
329 extern void oops_enter(void);
330 extern void oops_exit(void);
331 void print_oops_end_marker(void);
332 extern int oops_may_print(void);
333 void do_exit(long error_code) __noreturn;
334 void complete_and_exit(struct completion *, long) __noreturn;
335
336 #ifdef CONFIG_ARCH_HAS_REFCOUNT
337 void refcount_error_report(struct pt_regs *regs, const char *err);
338 #else
339 static inline void refcount_error_report(struct pt_regs *regs, const char *err)
340 { }
341 #endif
342
343 /* Internal, do not use. */
344 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
345 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
346
347 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
348 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
349
350 /**
351 * kstrtoul - convert a string to an unsigned long
352 * @s: The start of the string. The string must be null-terminated, and may also
353 * include a single newline before its terminating null. The first character
354 * may also be a plus sign, but not a minus sign.
355 * @base: The number base to use. The maximum supported base is 16. If base is
356 * given as 0, then the base of the string is automatically detected with the
357 * conventional semantics - If it begins with 0x the number will be parsed as a
358 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
359 * parsed as an octal number. Otherwise it will be parsed as a decimal.
360 * @res: Where to write the result of the conversion on success.
361 *
362 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
363 * Used as a replacement for the obsolete simple_strtoull. Return code must
364 * be checked.
365 */
366 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
367 {
368 /*
369 * We want to shortcut function call, but
370 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
371 */
372 if (sizeof(unsigned long) == sizeof(unsigned long long) &&
373 __alignof__(unsigned long) == __alignof__(unsigned long long))
374 return kstrtoull(s, base, (unsigned long long *)res);
375 else
376 return _kstrtoul(s, base, res);
377 }
378
379 /**
380 * kstrtol - convert a string to a long
381 * @s: The start of the string. The string must be null-terminated, and may also
382 * include a single newline before its terminating null. The first character
383 * may also be a plus sign or a minus sign.
384 * @base: The number base to use. The maximum supported base is 16. If base is
385 * given as 0, then the base of the string is automatically detected with the
386 * conventional semantics - If it begins with 0x the number will be parsed as a
387 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
388 * parsed as an octal number. Otherwise it will be parsed as a decimal.
389 * @res: Where to write the result of the conversion on success.
390 *
391 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
392 * Used as a replacement for the obsolete simple_strtoull. Return code must
393 * be checked.
394 */
395 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
396 {
397 /*
398 * We want to shortcut function call, but
399 * __builtin_types_compatible_p(long, long long) = 0.
400 */
401 if (sizeof(long) == sizeof(long long) &&
402 __alignof__(long) == __alignof__(long long))
403 return kstrtoll(s, base, (long long *)res);
404 else
405 return _kstrtol(s, base, res);
406 }
407
408 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
409 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
410
411 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
412 {
413 return kstrtoull(s, base, res);
414 }
415
416 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
417 {
418 return kstrtoll(s, base, res);
419 }
420
421 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
422 {
423 return kstrtouint(s, base, res);
424 }
425
426 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
427 {
428 return kstrtoint(s, base, res);
429 }
430
431 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
432 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
433 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
434 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
435 int __must_check kstrtobool(const char *s, bool *res);
436
437 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
438 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
439 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
440 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
441 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
442 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
443 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
444 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
445 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
446 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
447 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
448
449 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
450 {
451 return kstrtoull_from_user(s, count, base, res);
452 }
453
454 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
455 {
456 return kstrtoll_from_user(s, count, base, res);
457 }
458
459 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
460 {
461 return kstrtouint_from_user(s, count, base, res);
462 }
463
464 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
465 {
466 return kstrtoint_from_user(s, count, base, res);
467 }
468
469 /* Obsolete, do not use. Use kstrto<foo> instead */
470
471 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
472 extern long simple_strtol(const char *,char **,unsigned int);
473 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
474 extern long long simple_strtoll(const char *,char **,unsigned int);
475
476 extern int num_to_str(char *buf, int size,
477 unsigned long long num, unsigned int width);
478
479 /* lib/printf utilities */
480
481 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
482 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
483 extern __printf(3, 4)
484 int snprintf(char *buf, size_t size, const char *fmt, ...);
485 extern __printf(3, 0)
486 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
487 extern __printf(3, 4)
488 int scnprintf(char *buf, size_t size, const char *fmt, ...);
489 extern __printf(3, 0)
490 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
491 extern __printf(2, 3) __malloc
492 char *kasprintf(gfp_t gfp, const char *fmt, ...);
493 extern __printf(2, 0) __malloc
494 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
495 extern __printf(2, 0)
496 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
497
498 extern __scanf(2, 3)
499 int sscanf(const char *, const char *, ...);
500 extern __scanf(2, 0)
501 int vsscanf(const char *, const char *, va_list);
502
503 extern int get_option(char **str, int *pint);
504 extern char *get_options(const char *str, int nints, int *ints);
505 extern unsigned long long memparse(const char *ptr, char **retptr);
506 extern bool parse_option_str(const char *str, const char *option);
507 extern char *next_arg(char *args, char **param, char **val);
508
509 extern int core_kernel_text(unsigned long addr);
510 extern int init_kernel_text(unsigned long addr);
511 extern int core_kernel_data(unsigned long addr);
512 extern int __kernel_text_address(unsigned long addr);
513 extern int kernel_text_address(unsigned long addr);
514 extern int func_ptr_is_kernel_text(void *ptr);
515
516 unsigned long int_sqrt(unsigned long);
517
518 #if BITS_PER_LONG < 64
519 u32 int_sqrt64(u64 x);
520 #else
521 static inline u32 int_sqrt64(u64 x)
522 {
523 return (u32)int_sqrt(x);
524 }
525 #endif
526
527 extern void bust_spinlocks(int yes);
528 extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */
529 extern int panic_timeout;
530 extern int panic_on_oops;
531 extern int panic_on_unrecovered_nmi;
532 extern int panic_on_io_nmi;
533 extern int panic_on_warn;
534 extern int sysctl_panic_on_rcu_stall;
535 extern int sysctl_panic_on_stackoverflow;
536
537 extern bool crash_kexec_post_notifiers;
538
539 /*
540 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
541 * holds a CPU number which is executing panic() currently. A value of
542 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
543 */
544 extern atomic_t panic_cpu;
545 #define PANIC_CPU_INVALID -1
546
547 /*
548 * Only to be used by arch init code. If the user over-wrote the default
549 * CONFIG_PANIC_TIMEOUT, honor it.
550 */
551 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
552 {
553 if (panic_timeout == arch_default_timeout)
554 panic_timeout = timeout;
555 }
556 extern const char *print_tainted(void);
557 enum lockdep_ok {
558 LOCKDEP_STILL_OK,
559 LOCKDEP_NOW_UNRELIABLE
560 };
561 extern void add_taint(unsigned flag, enum lockdep_ok);
562 extern int test_taint(unsigned flag);
563 extern unsigned long get_taint(void);
564 extern int root_mountflags;
565
566 extern bool early_boot_irqs_disabled;
567
568 /*
569 * Values used for system_state. Ordering of the states must not be changed
570 * as code checks for <, <=, >, >= STATE.
571 */
572 extern enum system_states {
573 SYSTEM_BOOTING,
574 SYSTEM_SCHEDULING,
575 SYSTEM_RUNNING,
576 SYSTEM_HALT,
577 SYSTEM_POWER_OFF,
578 SYSTEM_RESTART,
579 SYSTEM_SUSPEND,
580 } system_state;
581
582 /* This cannot be an enum because some may be used in assembly source. */
583 #define TAINT_PROPRIETARY_MODULE 0
584 #define TAINT_FORCED_MODULE 1
585 #define TAINT_CPU_OUT_OF_SPEC 2
586 #define TAINT_FORCED_RMMOD 3
587 #define TAINT_MACHINE_CHECK 4
588 #define TAINT_BAD_PAGE 5
589 #define TAINT_USER 6
590 #define TAINT_DIE 7
591 #define TAINT_OVERRIDDEN_ACPI_TABLE 8
592 #define TAINT_WARN 9
593 #define TAINT_CRAP 10
594 #define TAINT_FIRMWARE_WORKAROUND 11
595 #define TAINT_OOT_MODULE 12
596 #define TAINT_UNSIGNED_MODULE 13
597 #define TAINT_SOFTLOCKUP 14
598 #define TAINT_LIVEPATCH 15
599 #define TAINT_AUX 16
600 #define TAINT_RANDSTRUCT 17
601 #define TAINT_FLAGS_COUNT 18
602
603 struct taint_flag {
604 char c_true; /* character printed when tainted */
605 char c_false; /* character printed when not tainted */
606 bool module; /* also show as a per-module taint flag */
607 };
608
609 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
610
611 extern const char hex_asc[];
612 #define hex_asc_lo(x) hex_asc[((x) & 0x0f)]
613 #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4]
614
615 static inline char *hex_byte_pack(char *buf, u8 byte)
616 {
617 *buf++ = hex_asc_hi(byte);
618 *buf++ = hex_asc_lo(byte);
619 return buf;
620 }
621
622 extern const char hex_asc_upper[];
623 #define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)]
624 #define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4]
625
626 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
627 {
628 *buf++ = hex_asc_upper_hi(byte);
629 *buf++ = hex_asc_upper_lo(byte);
630 return buf;
631 }
632
633 extern int hex_to_bin(char ch);
634 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
635 extern char *bin2hex(char *dst, const void *src, size_t count);
636
637 bool mac_pton(const char *s, u8 *mac);
638
639 /*
640 * General tracing related utility functions - trace_printk(),
641 * tracing_on/tracing_off and tracing_start()/tracing_stop
642 *
643 * Use tracing_on/tracing_off when you want to quickly turn on or off
644 * tracing. It simply enables or disables the recording of the trace events.
645 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
646 * file, which gives a means for the kernel and userspace to interact.
647 * Place a tracing_off() in the kernel where you want tracing to end.
648 * From user space, examine the trace, and then echo 1 > tracing_on
649 * to continue tracing.
650 *
651 * tracing_stop/tracing_start has slightly more overhead. It is used
652 * by things like suspend to ram where disabling the recording of the
653 * trace is not enough, but tracing must actually stop because things
654 * like calling smp_processor_id() may crash the system.
655 *
656 * Most likely, you want to use tracing_on/tracing_off.
657 */
658
659 enum ftrace_dump_mode {
660 DUMP_NONE,
661 DUMP_ALL,
662 DUMP_ORIG,
663 };
664
665 #ifdef CONFIG_TRACING
666 void tracing_on(void);
667 void tracing_off(void);
668 int tracing_is_on(void);
669 void tracing_snapshot(void);
670 void tracing_snapshot_alloc(void);
671
672 extern void tracing_start(void);
673 extern void tracing_stop(void);
674
675 static inline __printf(1, 2)
676 void ____trace_printk_check_format(const char *fmt, ...)
677 {
678 }
679 #define __trace_printk_check_format(fmt, args...) \
680 do { \
681 if (0) \
682 ____trace_printk_check_format(fmt, ##args); \
683 } while (0)
684
685 /**
686 * trace_printk - printf formatting in the ftrace buffer
687 * @fmt: the printf format for printing
688 *
689 * Note: __trace_printk is an internal function for trace_printk() and
690 * the @ip is passed in via the trace_printk() macro.
691 *
692 * This function allows a kernel developer to debug fast path sections
693 * that printk is not appropriate for. By scattering in various
694 * printk like tracing in the code, a developer can quickly see
695 * where problems are occurring.
696 *
697 * This is intended as a debugging tool for the developer only.
698 * Please refrain from leaving trace_printks scattered around in
699 * your code. (Extra memory is used for special buffers that are
700 * allocated when trace_printk() is used.)
701 *
702 * A little optimization trick is done here. If there's only one
703 * argument, there's no need to scan the string for printf formats.
704 * The trace_puts() will suffice. But how can we take advantage of
705 * using trace_puts() when trace_printk() has only one argument?
706 * By stringifying the args and checking the size we can tell
707 * whether or not there are args. __stringify((__VA_ARGS__)) will
708 * turn into "()\0" with a size of 3 when there are no args, anything
709 * else will be bigger. All we need to do is define a string to this,
710 * and then take its size and compare to 3. If it's bigger, use
711 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
712 * let gcc optimize the rest.
713 */
714
715 #define trace_printk(fmt, ...) \
716 do { \
717 char _______STR[] = __stringify((__VA_ARGS__)); \
718 if (sizeof(_______STR) > 3) \
719 do_trace_printk(fmt, ##__VA_ARGS__); \
720 else \
721 trace_puts(fmt); \
722 } while (0)
723
724 #define do_trace_printk(fmt, args...) \
725 do { \
726 static const char *trace_printk_fmt __used \
727 __attribute__((section("__trace_printk_fmt"))) = \
728 __builtin_constant_p(fmt) ? fmt : NULL; \
729 \
730 __trace_printk_check_format(fmt, ##args); \
731 \
732 if (__builtin_constant_p(fmt)) \
733 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \
734 else \
735 __trace_printk(_THIS_IP_, fmt, ##args); \
736 } while (0)
737
738 extern __printf(2, 3)
739 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
740
741 extern __printf(2, 3)
742 int __trace_printk(unsigned long ip, const char *fmt, ...);
743
744 /**
745 * trace_puts - write a string into the ftrace buffer
746 * @str: the string to record
747 *
748 * Note: __trace_bputs is an internal function for trace_puts and
749 * the @ip is passed in via the trace_puts macro.
750 *
751 * This is similar to trace_printk() but is made for those really fast
752 * paths that a developer wants the least amount of "Heisenbug" effects,
753 * where the processing of the print format is still too much.
754 *
755 * This function allows a kernel developer to debug fast path sections
756 * that printk is not appropriate for. By scattering in various
757 * printk like tracing in the code, a developer can quickly see
758 * where problems are occurring.
759 *
760 * This is intended as a debugging tool for the developer only.
761 * Please refrain from leaving trace_puts scattered around in
762 * your code. (Extra memory is used for special buffers that are
763 * allocated when trace_puts() is used.)
764 *
765 * Returns: 0 if nothing was written, positive # if string was.
766 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
767 */
768
769 #define trace_puts(str) ({ \
770 static const char *trace_printk_fmt __used \
771 __attribute__((section("__trace_printk_fmt"))) = \
772 __builtin_constant_p(str) ? str : NULL; \
773 \
774 if (__builtin_constant_p(str)) \
775 __trace_bputs(_THIS_IP_, trace_printk_fmt); \
776 else \
777 __trace_puts(_THIS_IP_, str, strlen(str)); \
778 })
779 extern int __trace_bputs(unsigned long ip, const char *str);
780 extern int __trace_puts(unsigned long ip, const char *str, int size);
781
782 extern void trace_dump_stack(int skip);
783
784 /*
785 * The double __builtin_constant_p is because gcc will give us an error
786 * if we try to allocate the static variable to fmt if it is not a
787 * constant. Even with the outer if statement.
788 */
789 #define ftrace_vprintk(fmt, vargs) \
790 do { \
791 if (__builtin_constant_p(fmt)) { \
792 static const char *trace_printk_fmt __used \
793 __attribute__((section("__trace_printk_fmt"))) = \
794 __builtin_constant_p(fmt) ? fmt : NULL; \
795 \
796 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \
797 } else \
798 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \
799 } while (0)
800
801 extern __printf(2, 0) int
802 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
803
804 extern __printf(2, 0) int
805 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
806
807 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
808 #else
809 static inline void tracing_start(void) { }
810 static inline void tracing_stop(void) { }
811 static inline void trace_dump_stack(int skip) { }
812
813 static inline void tracing_on(void) { }
814 static inline void tracing_off(void) { }
815 static inline int tracing_is_on(void) { return 0; }
816 static inline void tracing_snapshot(void) { }
817 static inline void tracing_snapshot_alloc(void) { }
818
819 static inline __printf(1, 2)
820 int trace_printk(const char *fmt, ...)
821 {
822 return 0;
823 }
824 static __printf(1, 0) inline int
825 ftrace_vprintk(const char *fmt, va_list ap)
826 {
827 return 0;
828 }
829 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
830 #endif /* CONFIG_TRACING */
831
832 /*
833 * min()/max()/clamp() macros must accomplish three things:
834 *
835 * - avoid multiple evaluations of the arguments (so side-effects like
836 * "x++" happen only once) when non-constant.
837 * - perform strict type-checking (to generate warnings instead of
838 * nasty runtime surprises). See the "unnecessary" pointer comparison
839 * in __typecheck().
840 * - retain result as a constant expressions when called with only
841 * constant expressions (to avoid tripping VLA warnings in stack
842 * allocation usage).
843 */
844 #define __typecheck(x, y) \
845 (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
846
847 /*
848 * This returns a constant expression while determining if an argument is
849 * a constant expression, most importantly without evaluating the argument.
850 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
851 */
852 #define __is_constexpr(x) \
853 (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
854
855 #define __no_side_effects(x, y) \
856 (__is_constexpr(x) && __is_constexpr(y))
857
858 #define __safe_cmp(x, y) \
859 (__typecheck(x, y) && __no_side_effects(x, y))
860
861 #define __cmp(x, y, op) ((x) op (y) ? (x) : (y))
862
863 #define __cmp_once(x, y, unique_x, unique_y, op) ({ \
864 typeof(x) unique_x = (x); \
865 typeof(y) unique_y = (y); \
866 __cmp(unique_x, unique_y, op); })
867
868 #define __careful_cmp(x, y, op) \
869 __builtin_choose_expr(__safe_cmp(x, y), \
870 __cmp(x, y, op), \
871 __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
872
873 /**
874 * min - return minimum of two values of the same or compatible types
875 * @x: first value
876 * @y: second value
877 */
878 #define min(x, y) __careful_cmp(x, y, <)
879
880 /**
881 * max - return maximum of two values of the same or compatible types
882 * @x: first value
883 * @y: second value
884 */
885 #define max(x, y) __careful_cmp(x, y, >)
886
887 /**
888 * min3 - return minimum of three values
889 * @x: first value
890 * @y: second value
891 * @z: third value
892 */
893 #define min3(x, y, z) min((typeof(x))min(x, y), z)
894
895 /**
896 * max3 - return maximum of three values
897 * @x: first value
898 * @y: second value
899 * @z: third value
900 */
901 #define max3(x, y, z) max((typeof(x))max(x, y), z)
902
903 /**
904 * min_not_zero - return the minimum that is _not_ zero, unless both are zero
905 * @x: value1
906 * @y: value2
907 */
908 #define min_not_zero(x, y) ({ \
909 typeof(x) __x = (x); \
910 typeof(y) __y = (y); \
911 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
912
913 /**
914 * clamp - return a value clamped to a given range with strict typechecking
915 * @val: current value
916 * @lo: lowest allowable value
917 * @hi: highest allowable value
918 *
919 * This macro does strict typechecking of @lo/@hi to make sure they are of the
920 * same type as @val. See the unnecessary pointer comparisons.
921 */
922 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
923
924 /*
925 * ..and if you can't take the strict
926 * types, you can specify one yourself.
927 *
928 * Or not use min/max/clamp at all, of course.
929 */
930
931 /**
932 * min_t - return minimum of two values, using the specified type
933 * @type: data type to use
934 * @x: first value
935 * @y: second value
936 */
937 #define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <)
938
939 /**
940 * max_t - return maximum of two values, using the specified type
941 * @type: data type to use
942 * @x: first value
943 * @y: second value
944 */
945 #define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >)
946
947 /**
948 * clamp_t - return a value clamped to a given range using a given type
949 * @type: the type of variable to use
950 * @val: current value
951 * @lo: minimum allowable value
952 * @hi: maximum allowable value
953 *
954 * This macro does no typechecking and uses temporary variables of type
955 * @type to make all the comparisons.
956 */
957 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
958
959 /**
960 * clamp_val - return a value clamped to a given range using val's type
961 * @val: current value
962 * @lo: minimum allowable value
963 * @hi: maximum allowable value
964 *
965 * This macro does no typechecking and uses temporary variables of whatever
966 * type the input argument @val is. This is useful when @val is an unsigned
967 * type and @lo and @hi are literals that will otherwise be assigned a signed
968 * integer type.
969 */
970 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
971
972
973 /**
974 * swap - swap values of @a and @b
975 * @a: first value
976 * @b: second value
977 */
978 #define swap(a, b) \
979 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
980
981 /* This counts to 12. Any more, it will return 13th argument. */
982 #define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
983 #define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
984
985 #define __CONCAT(a, b) a ## b
986 #define CONCATENATE(a, b) __CONCAT(a, b)
987
988 /**
989 * container_of - cast a member of a structure out to the containing structure
990 * @ptr: the pointer to the member.
991 * @type: the type of the container struct this is embedded in.
992 * @member: the name of the member within the struct.
993 *
994 */
995 #define container_of(ptr, type, member) ({ \
996 void *__mptr = (void *)(ptr); \
997 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \
998 !__same_type(*(ptr), void), \
999 "pointer type mismatch in container_of()"); \
1000 ((type *)(__mptr - offsetof(type, member))); })
1001
1002 /**
1003 * container_of_safe - cast a member of a structure out to the containing structure
1004 * @ptr: the pointer to the member.
1005 * @type: the type of the container struct this is embedded in.
1006 * @member: the name of the member within the struct.
1007 *
1008 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
1009 */
1010 #define container_of_safe(ptr, type, member) ({ \
1011 void *__mptr = (void *)(ptr); \
1012 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \
1013 !__same_type(*(ptr), void), \
1014 "pointer type mismatch in container_of()"); \
1015 IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \
1016 ((type *)(__mptr - offsetof(type, member))); })
1017
1018 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
1019 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
1020 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
1021 #endif
1022
1023 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
1024 #define VERIFY_OCTAL_PERMISSIONS(perms) \
1025 (BUILD_BUG_ON_ZERO((perms) < 0) + \
1026 BUILD_BUG_ON_ZERO((perms) > 0777) + \
1027 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \
1028 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \
1029 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \
1030 /* USER_WRITABLE >= GROUP_WRITABLE */ \
1031 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \
1032 /* OTHER_WRITABLE? Generally considered a bad idea. */ \
1033 BUILD_BUG_ON_ZERO((perms) & 2) + \
1034 (perms))
1035 #endif