]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/kernel.h
linux/kernel.h: Use parentheses around argument in u64_to_user_ptr()
[mirror_ubuntu-bionic-kernel.git] / include / linux / kernel.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_KERNEL_H
3 #define _LINUX_KERNEL_H
4
5
6 #include <stdarg.h>
7 #include <linux/linkage.h>
8 #include <linux/stddef.h>
9 #include <linux/types.h>
10 #include <linux/compiler.h>
11 #include <linux/bitops.h>
12 #include <linux/log2.h>
13 #include <linux/typecheck.h>
14 #include <linux/printk.h>
15 #include <linux/build_bug.h>
16 #include <asm/byteorder.h>
17 #include <uapi/linux/kernel.h>
18
19 #define USHRT_MAX ((u16)(~0U))
20 #define SHRT_MAX ((s16)(USHRT_MAX>>1))
21 #define SHRT_MIN ((s16)(-SHRT_MAX - 1))
22 #define INT_MAX ((int)(~0U>>1))
23 #define INT_MIN (-INT_MAX - 1)
24 #define UINT_MAX (~0U)
25 #define LONG_MAX ((long)(~0UL>>1))
26 #define LONG_MIN (-LONG_MAX - 1)
27 #define ULONG_MAX (~0UL)
28 #define LLONG_MAX ((long long)(~0ULL>>1))
29 #define LLONG_MIN (-LLONG_MAX - 1)
30 #define ULLONG_MAX (~0ULL)
31 #define SIZE_MAX (~(size_t)0)
32
33 #define U8_MAX ((u8)~0U)
34 #define S8_MAX ((s8)(U8_MAX>>1))
35 #define S8_MIN ((s8)(-S8_MAX - 1))
36 #define U16_MAX ((u16)~0U)
37 #define S16_MAX ((s16)(U16_MAX>>1))
38 #define S16_MIN ((s16)(-S16_MAX - 1))
39 #define U32_MAX ((u32)~0U)
40 #define S32_MAX ((s32)(U32_MAX>>1))
41 #define S32_MIN ((s32)(-S32_MAX - 1))
42 #define U64_MAX ((u64)~0ULL)
43 #define S64_MAX ((s64)(U64_MAX>>1))
44 #define S64_MIN ((s64)(-S64_MAX - 1))
45
46 #define STACK_MAGIC 0xdeadbeef
47
48 /**
49 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
50 * @x: value to repeat
51 *
52 * NOTE: @x is not checked for > 0xff; larger values produce odd results.
53 */
54 #define REPEAT_BYTE(x) ((~0ul / 0xff) * (x))
55
56 /* @a is a power of 2 value */
57 #define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
58 #define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a))
59 #define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask))
60 #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a)))
61 #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
62
63 /* generic data direction definitions */
64 #define READ 0
65 #define WRITE 1
66
67 /**
68 * ARRAY_SIZE - get the number of elements in array @arr
69 * @arr: array to be sized
70 */
71 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
72
73 #define u64_to_user_ptr(x) ( \
74 { \
75 typecheck(u64, (x)); \
76 (void __user *)(uintptr_t)(x); \
77 } \
78 )
79
80 /*
81 * This looks more complex than it should be. But we need to
82 * get the type for the ~ right in round_down (it needs to be
83 * as wide as the result!), and we want to evaluate the macro
84 * arguments just once each.
85 */
86 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
87 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
88 #define round_down(x, y) ((x) & ~__round_mask(x, y))
89
90 /**
91 * FIELD_SIZEOF - get the size of a struct's field
92 * @t: the target struct
93 * @f: the target struct's field
94 * Return: the size of @f in the struct definition without having a
95 * declared instance of @t.
96 */
97 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
98
99 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
100
101 #define DIV_ROUND_DOWN_ULL(ll, d) \
102 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
103
104 #define DIV_ROUND_UP_ULL(ll, d) DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d))
105
106 #if BITS_PER_LONG == 32
107 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
108 #else
109 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
110 #endif
111
112 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
113 #define roundup(x, y) ( \
114 { \
115 const typeof(y) __y = y; \
116 (((x) + (__y - 1)) / __y) * __y; \
117 } \
118 )
119 #define rounddown(x, y) ( \
120 { \
121 typeof(x) __x = (x); \
122 __x - (__x % (y)); \
123 } \
124 )
125
126 /*
127 * Divide positive or negative dividend by positive or negative divisor
128 * and round to closest integer. Result is undefined for negative
129 * divisors if the dividend variable type is unsigned and for negative
130 * dividends if the divisor variable type is unsigned.
131 */
132 #define DIV_ROUND_CLOSEST(x, divisor)( \
133 { \
134 typeof(x) __x = x; \
135 typeof(divisor) __d = divisor; \
136 (((typeof(x))-1) > 0 || \
137 ((typeof(divisor))-1) > 0 || \
138 (((__x) > 0) == ((__d) > 0))) ? \
139 (((__x) + ((__d) / 2)) / (__d)) : \
140 (((__x) - ((__d) / 2)) / (__d)); \
141 } \
142 )
143 /*
144 * Same as above but for u64 dividends. divisor must be a 32-bit
145 * number.
146 */
147 #define DIV_ROUND_CLOSEST_ULL(x, divisor)( \
148 { \
149 typeof(divisor) __d = divisor; \
150 unsigned long long _tmp = (x) + (__d) / 2; \
151 do_div(_tmp, __d); \
152 _tmp; \
153 } \
154 )
155
156 /*
157 * Multiplies an integer by a fraction, while avoiding unnecessary
158 * overflow or loss of precision.
159 */
160 #define mult_frac(x, numer, denom)( \
161 { \
162 typeof(x) quot = (x) / (denom); \
163 typeof(x) rem = (x) % (denom); \
164 (quot * (numer)) + ((rem * (numer)) / (denom)); \
165 } \
166 )
167
168
169 #define _RET_IP_ (unsigned long)__builtin_return_address(0)
170 #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
171
172 #ifdef CONFIG_LBDAF
173 # include <asm/div64.h>
174 # define sector_div(a, b) do_div(a, b)
175 #else
176 # define sector_div(n, b)( \
177 { \
178 int _res; \
179 _res = (n) % (b); \
180 (n) /= (b); \
181 _res; \
182 } \
183 )
184 #endif
185
186 /**
187 * upper_32_bits - return bits 32-63 of a number
188 * @n: the number we're accessing
189 *
190 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
191 * the "right shift count >= width of type" warning when that quantity is
192 * 32-bits.
193 */
194 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
195
196 /**
197 * lower_32_bits - return bits 0-31 of a number
198 * @n: the number we're accessing
199 */
200 #define lower_32_bits(n) ((u32)(n))
201
202 struct completion;
203 struct pt_regs;
204 struct user;
205
206 #ifdef CONFIG_PREEMPT_VOLUNTARY
207 extern int _cond_resched(void);
208 # define might_resched() _cond_resched()
209 #else
210 # define might_resched() do { } while (0)
211 #endif
212
213 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
214 void ___might_sleep(const char *file, int line, int preempt_offset);
215 void __might_sleep(const char *file, int line, int preempt_offset);
216 /**
217 * might_sleep - annotation for functions that can sleep
218 *
219 * this macro will print a stack trace if it is executed in an atomic
220 * context (spinlock, irq-handler, ...).
221 *
222 * This is a useful debugging help to be able to catch problems early and not
223 * be bitten later when the calling function happens to sleep when it is not
224 * supposed to.
225 */
226 # define might_sleep() \
227 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
228 # define sched_annotate_sleep() (current->task_state_change = 0)
229 #else
230 static inline void ___might_sleep(const char *file, int line,
231 int preempt_offset) { }
232 static inline void __might_sleep(const char *file, int line,
233 int preempt_offset) { }
234 # define might_sleep() do { might_resched(); } while (0)
235 # define sched_annotate_sleep() do { } while (0)
236 #endif
237
238 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
239
240 /**
241 * abs - return absolute value of an argument
242 * @x: the value. If it is unsigned type, it is converted to signed type first.
243 * char is treated as if it was signed (regardless of whether it really is)
244 * but the macro's return type is preserved as char.
245 *
246 * Return: an absolute value of x.
247 */
248 #define abs(x) __abs_choose_expr(x, long long, \
249 __abs_choose_expr(x, long, \
250 __abs_choose_expr(x, int, \
251 __abs_choose_expr(x, short, \
252 __abs_choose_expr(x, char, \
253 __builtin_choose_expr( \
254 __builtin_types_compatible_p(typeof(x), char), \
255 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
256 ((void)0)))))))
257
258 #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
259 __builtin_types_compatible_p(typeof(x), signed type) || \
260 __builtin_types_compatible_p(typeof(x), unsigned type), \
261 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
262
263 /**
264 * reciprocal_scale - "scale" a value into range [0, ep_ro)
265 * @val: value
266 * @ep_ro: right open interval endpoint
267 *
268 * Perform a "reciprocal multiplication" in order to "scale" a value into
269 * range [0, @ep_ro), where the upper interval endpoint is right-open.
270 * This is useful, e.g. for accessing a index of an array containing
271 * @ep_ro elements, for example. Think of it as sort of modulus, only that
272 * the result isn't that of modulo. ;) Note that if initial input is a
273 * small value, then result will return 0.
274 *
275 * Return: a result based on @val in interval [0, @ep_ro).
276 */
277 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
278 {
279 return (u32)(((u64) val * ep_ro) >> 32);
280 }
281
282 #if defined(CONFIG_MMU) && \
283 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
284 #define might_fault() __might_fault(__FILE__, __LINE__)
285 void __might_fault(const char *file, int line);
286 #else
287 static inline void might_fault(void) { }
288 #endif
289
290 extern struct atomic_notifier_head panic_notifier_list;
291 extern long (*panic_blink)(int state);
292 __printf(1, 2)
293 void panic(const char *fmt, ...) __noreturn __cold;
294 void nmi_panic(struct pt_regs *regs, const char *msg);
295 extern void oops_enter(void);
296 extern void oops_exit(void);
297 void print_oops_end_marker(void);
298 extern int oops_may_print(void);
299 void do_exit(long error_code) __noreturn;
300 void complete_and_exit(struct completion *, long) __noreturn;
301
302 #ifdef CONFIG_ARCH_HAS_REFCOUNT
303 void refcount_error_report(struct pt_regs *regs, const char *err);
304 #else
305 static inline void refcount_error_report(struct pt_regs *regs, const char *err)
306 { }
307 #endif
308
309 #ifdef CONFIG_LOCK_DOWN_KERNEL
310 extern bool __kernel_is_locked_down(const char *what, bool first);
311 #else
312 static inline bool __kernel_is_locked_down(const char *what, bool first)
313 {
314 return false;
315 }
316 #endif
317
318 #define kernel_is_locked_down(what) \
319 ({ \
320 static bool message_given; \
321 bool locked_down = __kernel_is_locked_down(what, !message_given); \
322 message_given = true; \
323 locked_down; \
324 })
325
326 /* Internal, do not use. */
327 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
328 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
329
330 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
331 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
332
333 /**
334 * kstrtoul - convert a string to an unsigned long
335 * @s: The start of the string. The string must be null-terminated, and may also
336 * include a single newline before its terminating null. The first character
337 * may also be a plus sign, but not a minus sign.
338 * @base: The number base to use. The maximum supported base is 16. If base is
339 * given as 0, then the base of the string is automatically detected with the
340 * conventional semantics - If it begins with 0x the number will be parsed as a
341 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
342 * parsed as an octal number. Otherwise it will be parsed as a decimal.
343 * @res: Where to write the result of the conversion on success.
344 *
345 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
346 * Used as a replacement for the obsolete simple_strtoull. Return code must
347 * be checked.
348 */
349 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
350 {
351 /*
352 * We want to shortcut function call, but
353 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
354 */
355 if (sizeof(unsigned long) == sizeof(unsigned long long) &&
356 __alignof__(unsigned long) == __alignof__(unsigned long long))
357 return kstrtoull(s, base, (unsigned long long *)res);
358 else
359 return _kstrtoul(s, base, res);
360 }
361
362 /**
363 * kstrtol - convert a string to a long
364 * @s: The start of the string. The string must be null-terminated, and may also
365 * include a single newline before its terminating null. The first character
366 * may also be a plus sign or a minus sign.
367 * @base: The number base to use. The maximum supported base is 16. If base is
368 * given as 0, then the base of the string is automatically detected with the
369 * conventional semantics - If it begins with 0x the number will be parsed as a
370 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
371 * parsed as an octal number. Otherwise it will be parsed as a decimal.
372 * @res: Where to write the result of the conversion on success.
373 *
374 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
375 * Used as a replacement for the obsolete simple_strtoull. Return code must
376 * be checked.
377 */
378 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
379 {
380 /*
381 * We want to shortcut function call, but
382 * __builtin_types_compatible_p(long, long long) = 0.
383 */
384 if (sizeof(long) == sizeof(long long) &&
385 __alignof__(long) == __alignof__(long long))
386 return kstrtoll(s, base, (long long *)res);
387 else
388 return _kstrtol(s, base, res);
389 }
390
391 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
392 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
393
394 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
395 {
396 return kstrtoull(s, base, res);
397 }
398
399 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
400 {
401 return kstrtoll(s, base, res);
402 }
403
404 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
405 {
406 return kstrtouint(s, base, res);
407 }
408
409 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
410 {
411 return kstrtoint(s, base, res);
412 }
413
414 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
415 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
416 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
417 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
418 int __must_check kstrtobool(const char *s, bool *res);
419
420 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
421 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
422 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
423 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
424 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
425 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
426 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
427 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
428 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
429 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
430 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
431
432 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
433 {
434 return kstrtoull_from_user(s, count, base, res);
435 }
436
437 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
438 {
439 return kstrtoll_from_user(s, count, base, res);
440 }
441
442 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
443 {
444 return kstrtouint_from_user(s, count, base, res);
445 }
446
447 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
448 {
449 return kstrtoint_from_user(s, count, base, res);
450 }
451
452 /* Obsolete, do not use. Use kstrto<foo> instead */
453
454 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
455 extern long simple_strtol(const char *,char **,unsigned int);
456 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
457 extern long long simple_strtoll(const char *,char **,unsigned int);
458
459 extern int num_to_str(char *buf, int size, unsigned long long num);
460
461 /* lib/printf utilities */
462
463 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
464 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
465 extern __printf(3, 4)
466 int snprintf(char *buf, size_t size, const char *fmt, ...);
467 extern __printf(3, 0)
468 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
469 extern __printf(3, 4)
470 int scnprintf(char *buf, size_t size, const char *fmt, ...);
471 extern __printf(3, 0)
472 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
473 extern __printf(2, 3) __malloc
474 char *kasprintf(gfp_t gfp, const char *fmt, ...);
475 extern __printf(2, 0) __malloc
476 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
477 extern __printf(2, 0)
478 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
479
480 extern __scanf(2, 3)
481 int sscanf(const char *, const char *, ...);
482 extern __scanf(2, 0)
483 int vsscanf(const char *, const char *, va_list);
484
485 extern int get_option(char **str, int *pint);
486 extern char *get_options(const char *str, int nints, int *ints);
487 extern unsigned long long memparse(const char *ptr, char **retptr);
488 extern bool parse_option_str(const char *str, const char *option);
489 extern char *next_arg(char *args, char **param, char **val);
490
491 extern int core_kernel_text(unsigned long addr);
492 extern int core_kernel_data(unsigned long addr);
493 extern int __kernel_text_address(unsigned long addr);
494 extern int kernel_text_address(unsigned long addr);
495 extern int func_ptr_is_kernel_text(void *ptr);
496
497 unsigned long int_sqrt(unsigned long);
498
499 extern void bust_spinlocks(int yes);
500 extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */
501 extern int panic_timeout;
502 extern int panic_on_oops;
503 extern int panic_on_unrecovered_nmi;
504 extern int panic_on_io_nmi;
505 extern int panic_on_warn;
506 extern int sysctl_panic_on_rcu_stall;
507 extern int sysctl_panic_on_stackoverflow;
508
509 extern bool crash_kexec_post_notifiers;
510
511 /*
512 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
513 * holds a CPU number which is executing panic() currently. A value of
514 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
515 */
516 extern atomic_t panic_cpu;
517 #define PANIC_CPU_INVALID -1
518
519 /*
520 * Only to be used by arch init code. If the user over-wrote the default
521 * CONFIG_PANIC_TIMEOUT, honor it.
522 */
523 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
524 {
525 if (panic_timeout == arch_default_timeout)
526 panic_timeout = timeout;
527 }
528 extern const char *print_tainted(void);
529 enum lockdep_ok {
530 LOCKDEP_STILL_OK,
531 LOCKDEP_NOW_UNRELIABLE
532 };
533 extern void add_taint(unsigned flag, enum lockdep_ok);
534 extern int test_taint(unsigned flag);
535 extern unsigned long get_taint(void);
536 extern int root_mountflags;
537
538 extern bool early_boot_irqs_disabled;
539
540 /*
541 * Values used for system_state. Ordering of the states must not be changed
542 * as code checks for <, <=, >, >= STATE.
543 */
544 extern enum system_states {
545 SYSTEM_BOOTING,
546 SYSTEM_SCHEDULING,
547 SYSTEM_RUNNING,
548 SYSTEM_HALT,
549 SYSTEM_POWER_OFF,
550 SYSTEM_RESTART,
551 } system_state;
552
553 #define TAINT_PROPRIETARY_MODULE 0
554 #define TAINT_FORCED_MODULE 1
555 #define TAINT_CPU_OUT_OF_SPEC 2
556 #define TAINT_FORCED_RMMOD 3
557 #define TAINT_MACHINE_CHECK 4
558 #define TAINT_BAD_PAGE 5
559 #define TAINT_USER 6
560 #define TAINT_DIE 7
561 #define TAINT_OVERRIDDEN_ACPI_TABLE 8
562 #define TAINT_WARN 9
563 #define TAINT_CRAP 10
564 #define TAINT_FIRMWARE_WORKAROUND 11
565 #define TAINT_OOT_MODULE 12
566 #define TAINT_UNSIGNED_MODULE 13
567 #define TAINT_SOFTLOCKUP 14
568 #define TAINT_LIVEPATCH 15
569 #define TAINT_AUX 16
570 #define TAINT_FLAGS_COUNT 17
571
572 struct taint_flag {
573 char c_true; /* character printed when tainted */
574 char c_false; /* character printed when not tainted */
575 bool module; /* also show as a per-module taint flag */
576 };
577
578 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
579
580 extern const char hex_asc[];
581 #define hex_asc_lo(x) hex_asc[((x) & 0x0f)]
582 #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4]
583
584 static inline char *hex_byte_pack(char *buf, u8 byte)
585 {
586 *buf++ = hex_asc_hi(byte);
587 *buf++ = hex_asc_lo(byte);
588 return buf;
589 }
590
591 extern const char hex_asc_upper[];
592 #define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)]
593 #define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4]
594
595 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
596 {
597 *buf++ = hex_asc_upper_hi(byte);
598 *buf++ = hex_asc_upper_lo(byte);
599 return buf;
600 }
601
602 extern int hex_to_bin(char ch);
603 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
604 extern char *bin2hex(char *dst, const void *src, size_t count);
605
606 bool mac_pton(const char *s, u8 *mac);
607
608 /*
609 * General tracing related utility functions - trace_printk(),
610 * tracing_on/tracing_off and tracing_start()/tracing_stop
611 *
612 * Use tracing_on/tracing_off when you want to quickly turn on or off
613 * tracing. It simply enables or disables the recording of the trace events.
614 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
615 * file, which gives a means for the kernel and userspace to interact.
616 * Place a tracing_off() in the kernel where you want tracing to end.
617 * From user space, examine the trace, and then echo 1 > tracing_on
618 * to continue tracing.
619 *
620 * tracing_stop/tracing_start has slightly more overhead. It is used
621 * by things like suspend to ram where disabling the recording of the
622 * trace is not enough, but tracing must actually stop because things
623 * like calling smp_processor_id() may crash the system.
624 *
625 * Most likely, you want to use tracing_on/tracing_off.
626 */
627
628 enum ftrace_dump_mode {
629 DUMP_NONE,
630 DUMP_ALL,
631 DUMP_ORIG,
632 };
633
634 #ifdef CONFIG_TRACING
635 void tracing_on(void);
636 void tracing_off(void);
637 int tracing_is_on(void);
638 void tracing_snapshot(void);
639 void tracing_snapshot_alloc(void);
640
641 extern void tracing_start(void);
642 extern void tracing_stop(void);
643
644 static inline __printf(1, 2)
645 void ____trace_printk_check_format(const char *fmt, ...)
646 {
647 }
648 #define __trace_printk_check_format(fmt, args...) \
649 do { \
650 if (0) \
651 ____trace_printk_check_format(fmt, ##args); \
652 } while (0)
653
654 /**
655 * trace_printk - printf formatting in the ftrace buffer
656 * @fmt: the printf format for printing
657 *
658 * Note: __trace_printk is an internal function for trace_printk() and
659 * the @ip is passed in via the trace_printk() macro.
660 *
661 * This function allows a kernel developer to debug fast path sections
662 * that printk is not appropriate for. By scattering in various
663 * printk like tracing in the code, a developer can quickly see
664 * where problems are occurring.
665 *
666 * This is intended as a debugging tool for the developer only.
667 * Please refrain from leaving trace_printks scattered around in
668 * your code. (Extra memory is used for special buffers that are
669 * allocated when trace_printk() is used.)
670 *
671 * A little optization trick is done here. If there's only one
672 * argument, there's no need to scan the string for printf formats.
673 * The trace_puts() will suffice. But how can we take advantage of
674 * using trace_puts() when trace_printk() has only one argument?
675 * By stringifying the args and checking the size we can tell
676 * whether or not there are args. __stringify((__VA_ARGS__)) will
677 * turn into "()\0" with a size of 3 when there are no args, anything
678 * else will be bigger. All we need to do is define a string to this,
679 * and then take its size and compare to 3. If it's bigger, use
680 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
681 * let gcc optimize the rest.
682 */
683
684 #define trace_printk(fmt, ...) \
685 do { \
686 char _______STR[] = __stringify((__VA_ARGS__)); \
687 if (sizeof(_______STR) > 3) \
688 do_trace_printk(fmt, ##__VA_ARGS__); \
689 else \
690 trace_puts(fmt); \
691 } while (0)
692
693 #define do_trace_printk(fmt, args...) \
694 do { \
695 static const char *trace_printk_fmt __used \
696 __attribute__((section("__trace_printk_fmt"))) = \
697 __builtin_constant_p(fmt) ? fmt : NULL; \
698 \
699 __trace_printk_check_format(fmt, ##args); \
700 \
701 if (__builtin_constant_p(fmt)) \
702 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \
703 else \
704 __trace_printk(_THIS_IP_, fmt, ##args); \
705 } while (0)
706
707 extern __printf(2, 3)
708 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
709
710 extern __printf(2, 3)
711 int __trace_printk(unsigned long ip, const char *fmt, ...);
712
713 /**
714 * trace_puts - write a string into the ftrace buffer
715 * @str: the string to record
716 *
717 * Note: __trace_bputs is an internal function for trace_puts and
718 * the @ip is passed in via the trace_puts macro.
719 *
720 * This is similar to trace_printk() but is made for those really fast
721 * paths that a developer wants the least amount of "Heisenbug" effects,
722 * where the processing of the print format is still too much.
723 *
724 * This function allows a kernel developer to debug fast path sections
725 * that printk is not appropriate for. By scattering in various
726 * printk like tracing in the code, a developer can quickly see
727 * where problems are occurring.
728 *
729 * This is intended as a debugging tool for the developer only.
730 * Please refrain from leaving trace_puts scattered around in
731 * your code. (Extra memory is used for special buffers that are
732 * allocated when trace_puts() is used.)
733 *
734 * Returns: 0 if nothing was written, positive # if string was.
735 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
736 */
737
738 #define trace_puts(str) ({ \
739 static const char *trace_printk_fmt __used \
740 __attribute__((section("__trace_printk_fmt"))) = \
741 __builtin_constant_p(str) ? str : NULL; \
742 \
743 if (__builtin_constant_p(str)) \
744 __trace_bputs(_THIS_IP_, trace_printk_fmt); \
745 else \
746 __trace_puts(_THIS_IP_, str, strlen(str)); \
747 })
748 extern int __trace_bputs(unsigned long ip, const char *str);
749 extern int __trace_puts(unsigned long ip, const char *str, int size);
750
751 extern void trace_dump_stack(int skip);
752
753 /*
754 * The double __builtin_constant_p is because gcc will give us an error
755 * if we try to allocate the static variable to fmt if it is not a
756 * constant. Even with the outer if statement.
757 */
758 #define ftrace_vprintk(fmt, vargs) \
759 do { \
760 if (__builtin_constant_p(fmt)) { \
761 static const char *trace_printk_fmt __used \
762 __attribute__((section("__trace_printk_fmt"))) = \
763 __builtin_constant_p(fmt) ? fmt : NULL; \
764 \
765 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \
766 } else \
767 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \
768 } while (0)
769
770 extern __printf(2, 0) int
771 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
772
773 extern __printf(2, 0) int
774 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
775
776 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
777 #else
778 static inline void tracing_start(void) { }
779 static inline void tracing_stop(void) { }
780 static inline void trace_dump_stack(int skip) { }
781
782 static inline void tracing_on(void) { }
783 static inline void tracing_off(void) { }
784 static inline int tracing_is_on(void) { return 0; }
785 static inline void tracing_snapshot(void) { }
786 static inline void tracing_snapshot_alloc(void) { }
787
788 static inline __printf(1, 2)
789 int trace_printk(const char *fmt, ...)
790 {
791 return 0;
792 }
793 static __printf(1, 0) inline int
794 ftrace_vprintk(const char *fmt, va_list ap)
795 {
796 return 0;
797 }
798 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
799 #endif /* CONFIG_TRACING */
800
801 /*
802 * min()/max()/clamp() macros that also do
803 * strict type-checking.. See the
804 * "unnecessary" pointer comparison.
805 */
806 #define __min(t1, t2, min1, min2, x, y) ({ \
807 t1 min1 = (x); \
808 t2 min2 = (y); \
809 (void) (&min1 == &min2); \
810 min1 < min2 ? min1 : min2; })
811
812 /**
813 * min - return minimum of two values of the same or compatible types
814 * @x: first value
815 * @y: second value
816 */
817 #define min(x, y) \
818 __min(typeof(x), typeof(y), \
819 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \
820 x, y)
821
822 #define __max(t1, t2, max1, max2, x, y) ({ \
823 t1 max1 = (x); \
824 t2 max2 = (y); \
825 (void) (&max1 == &max2); \
826 max1 > max2 ? max1 : max2; })
827
828 /**
829 * max - return maximum of two values of the same or compatible types
830 * @x: first value
831 * @y: second value
832 */
833 #define max(x, y) \
834 __max(typeof(x), typeof(y), \
835 __UNIQUE_ID(max1_), __UNIQUE_ID(max2_), \
836 x, y)
837
838 /**
839 * min3 - return minimum of three values
840 * @x: first value
841 * @y: second value
842 * @z: third value
843 */
844 #define min3(x, y, z) min((typeof(x))min(x, y), z)
845
846 /**
847 * max3 - return maximum of three values
848 * @x: first value
849 * @y: second value
850 * @z: third value
851 */
852 #define max3(x, y, z) max((typeof(x))max(x, y), z)
853
854 /**
855 * min_not_zero - return the minimum that is _not_ zero, unless both are zero
856 * @x: value1
857 * @y: value2
858 */
859 #define min_not_zero(x, y) ({ \
860 typeof(x) __x = (x); \
861 typeof(y) __y = (y); \
862 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
863
864 /**
865 * clamp - return a value clamped to a given range with strict typechecking
866 * @val: current value
867 * @lo: lowest allowable value
868 * @hi: highest allowable value
869 *
870 * This macro does strict typechecking of @lo/@hi to make sure they are of the
871 * same type as @val. See the unnecessary pointer comparisons.
872 */
873 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
874
875 /*
876 * ..and if you can't take the strict
877 * types, you can specify one yourself.
878 *
879 * Or not use min/max/clamp at all, of course.
880 */
881
882 /**
883 * min_t - return minimum of two values, using the specified type
884 * @type: data type to use
885 * @x: first value
886 * @y: second value
887 */
888 #define min_t(type, x, y) \
889 __min(type, type, \
890 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \
891 x, y)
892
893 /**
894 * max_t - return maximum of two values, using the specified type
895 * @type: data type to use
896 * @x: first value
897 * @y: second value
898 */
899 #define max_t(type, x, y) \
900 __max(type, type, \
901 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \
902 x, y)
903
904 /**
905 * clamp_t - return a value clamped to a given range using a given type
906 * @type: the type of variable to use
907 * @val: current value
908 * @lo: minimum allowable value
909 * @hi: maximum allowable value
910 *
911 * This macro does no typechecking and uses temporary variables of type
912 * @type to make all the comparisons.
913 */
914 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
915
916 /**
917 * clamp_val - return a value clamped to a given range using val's type
918 * @val: current value
919 * @lo: minimum allowable value
920 * @hi: maximum allowable value
921 *
922 * This macro does no typechecking and uses temporary variables of whatever
923 * type the input argument @val is. This is useful when @val is an unsigned
924 * type and @lo and @hi are literals that will otherwise be assigned a signed
925 * integer type.
926 */
927 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
928
929
930 /**
931 * swap - swap values of @a and @b
932 * @a: first value
933 * @b: second value
934 */
935 #define swap(a, b) \
936 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
937
938 /**
939 * container_of - cast a member of a structure out to the containing structure
940 * @ptr: the pointer to the member.
941 * @type: the type of the container struct this is embedded in.
942 * @member: the name of the member within the struct.
943 *
944 */
945 #define container_of(ptr, type, member) ({ \
946 void *__mptr = (void *)(ptr); \
947 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \
948 !__same_type(*(ptr), void), \
949 "pointer type mismatch in container_of()"); \
950 ((type *)(__mptr - offsetof(type, member))); })
951
952 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
953 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
954 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
955 #endif
956
957 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
958 #define VERIFY_OCTAL_PERMISSIONS(perms) \
959 (BUILD_BUG_ON_ZERO((perms) < 0) + \
960 BUILD_BUG_ON_ZERO((perms) > 0777) + \
961 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \
962 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \
963 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \
964 /* USER_WRITABLE >= GROUP_WRITABLE */ \
965 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \
966 /* OTHER_WRITABLE? Generally considered a bad idea. */ \
967 BUILD_BUG_ON_ZERO((perms) & 2) + \
968 (perms))
969 #endif