]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/kernel.h
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[mirror_ubuntu-artful-kernel.git] / include / linux / kernel.h
1 #ifndef _LINUX_KERNEL_H
2 #define _LINUX_KERNEL_H
3
4
5 #include <stdarg.h>
6 #include <linux/linkage.h>
7 #include <linux/stddef.h>
8 #include <linux/types.h>
9 #include <linux/compiler.h>
10 #include <linux/bitops.h>
11 #include <linux/log2.h>
12 #include <linux/typecheck.h>
13 #include <linux/printk.h>
14 #include <asm/byteorder.h>
15 #include <uapi/linux/kernel.h>
16
17 #define USHRT_MAX ((u16)(~0U))
18 #define SHRT_MAX ((s16)(USHRT_MAX>>1))
19 #define SHRT_MIN ((s16)(-SHRT_MAX - 1))
20 #define INT_MAX ((int)(~0U>>1))
21 #define INT_MIN (-INT_MAX - 1)
22 #define UINT_MAX (~0U)
23 #define LONG_MAX ((long)(~0UL>>1))
24 #define LONG_MIN (-LONG_MAX - 1)
25 #define ULONG_MAX (~0UL)
26 #define LLONG_MAX ((long long)(~0ULL>>1))
27 #define LLONG_MIN (-LLONG_MAX - 1)
28 #define ULLONG_MAX (~0ULL)
29 #define SIZE_MAX (~(size_t)0)
30
31 #define U8_MAX ((u8)~0U)
32 #define S8_MAX ((s8)(U8_MAX>>1))
33 #define S8_MIN ((s8)(-S8_MAX - 1))
34 #define U16_MAX ((u16)~0U)
35 #define S16_MAX ((s16)(U16_MAX>>1))
36 #define S16_MIN ((s16)(-S16_MAX - 1))
37 #define U32_MAX ((u32)~0U)
38 #define S32_MAX ((s32)(U32_MAX>>1))
39 #define S32_MIN ((s32)(-S32_MAX - 1))
40 #define U64_MAX ((u64)~0ULL)
41 #define S64_MAX ((s64)(U64_MAX>>1))
42 #define S64_MIN ((s64)(-S64_MAX - 1))
43
44 #define STACK_MAGIC 0xdeadbeef
45
46 #define REPEAT_BYTE(x) ((~0ul / 0xff) * (x))
47
48 /* @a is a power of 2 value */
49 #define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
50 #define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a))
51 #define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask))
52 #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a)))
53 #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
54
55 /* generic data direction definitions */
56 #define READ 0
57 #define WRITE 1
58
59 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
60
61 #define u64_to_user_ptr(x) ( \
62 { \
63 typecheck(u64, x); \
64 (void __user *)(uintptr_t)x; \
65 } \
66 )
67
68 /*
69 * This looks more complex than it should be. But we need to
70 * get the type for the ~ right in round_down (it needs to be
71 * as wide as the result!), and we want to evaluate the macro
72 * arguments just once each.
73 */
74 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
75 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
76 #define round_down(x, y) ((x) & ~__round_mask(x, y))
77
78 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
79 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
80 #define DIV_ROUND_UP_ULL(ll,d) \
81 ({ unsigned long long _tmp = (ll)+(d)-1; do_div(_tmp, d); _tmp; })
82
83 #if BITS_PER_LONG == 32
84 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
85 #else
86 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
87 #endif
88
89 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
90 #define roundup(x, y) ( \
91 { \
92 const typeof(y) __y = y; \
93 (((x) + (__y - 1)) / __y) * __y; \
94 } \
95 )
96 #define rounddown(x, y) ( \
97 { \
98 typeof(x) __x = (x); \
99 __x - (__x % (y)); \
100 } \
101 )
102
103 /*
104 * Divide positive or negative dividend by positive or negative divisor
105 * and round to closest integer. Result is undefined for negative
106 * divisors if he dividend variable type is unsigned and for negative
107 * dividends if the divisor variable type is unsigned.
108 */
109 #define DIV_ROUND_CLOSEST(x, divisor)( \
110 { \
111 typeof(x) __x = x; \
112 typeof(divisor) __d = divisor; \
113 (((typeof(x))-1) > 0 || \
114 ((typeof(divisor))-1) > 0 || \
115 (((__x) > 0) == ((__d) > 0))) ? \
116 (((__x) + ((__d) / 2)) / (__d)) : \
117 (((__x) - ((__d) / 2)) / (__d)); \
118 } \
119 )
120 /*
121 * Same as above but for u64 dividends. divisor must be a 32-bit
122 * number.
123 */
124 #define DIV_ROUND_CLOSEST_ULL(x, divisor)( \
125 { \
126 typeof(divisor) __d = divisor; \
127 unsigned long long _tmp = (x) + (__d) / 2; \
128 do_div(_tmp, __d); \
129 _tmp; \
130 } \
131 )
132
133 /*
134 * Multiplies an integer by a fraction, while avoiding unnecessary
135 * overflow or loss of precision.
136 */
137 #define mult_frac(x, numer, denom)( \
138 { \
139 typeof(x) quot = (x) / (denom); \
140 typeof(x) rem = (x) % (denom); \
141 (quot * (numer)) + ((rem * (numer)) / (denom)); \
142 } \
143 )
144
145
146 #define _RET_IP_ (unsigned long)__builtin_return_address(0)
147 #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
148
149 #ifdef CONFIG_LBDAF
150 # include <asm/div64.h>
151 # define sector_div(a, b) do_div(a, b)
152 #else
153 # define sector_div(n, b)( \
154 { \
155 int _res; \
156 _res = (n) % (b); \
157 (n) /= (b); \
158 _res; \
159 } \
160 )
161 #endif
162
163 /**
164 * upper_32_bits - return bits 32-63 of a number
165 * @n: the number we're accessing
166 *
167 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
168 * the "right shift count >= width of type" warning when that quantity is
169 * 32-bits.
170 */
171 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
172
173 /**
174 * lower_32_bits - return bits 0-31 of a number
175 * @n: the number we're accessing
176 */
177 #define lower_32_bits(n) ((u32)(n))
178
179 struct completion;
180 struct pt_regs;
181 struct user;
182
183 #ifdef CONFIG_PREEMPT_VOLUNTARY
184 extern int _cond_resched(void);
185 # define might_resched() _cond_resched()
186 #else
187 # define might_resched() do { } while (0)
188 #endif
189
190 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
191 void ___might_sleep(const char *file, int line, int preempt_offset);
192 void __might_sleep(const char *file, int line, int preempt_offset);
193 /**
194 * might_sleep - annotation for functions that can sleep
195 *
196 * this macro will print a stack trace if it is executed in an atomic
197 * context (spinlock, irq-handler, ...).
198 *
199 * This is a useful debugging help to be able to catch problems early and not
200 * be bitten later when the calling function happens to sleep when it is not
201 * supposed to.
202 */
203 # define might_sleep() \
204 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
205 # define sched_annotate_sleep() (current->task_state_change = 0)
206 #else
207 static inline void ___might_sleep(const char *file, int line,
208 int preempt_offset) { }
209 static inline void __might_sleep(const char *file, int line,
210 int preempt_offset) { }
211 # define might_sleep() do { might_resched(); } while (0)
212 # define sched_annotate_sleep() do { } while (0)
213 #endif
214
215 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
216
217 /**
218 * abs - return absolute value of an argument
219 * @x: the value. If it is unsigned type, it is converted to signed type first.
220 * char is treated as if it was signed (regardless of whether it really is)
221 * but the macro's return type is preserved as char.
222 *
223 * Return: an absolute value of x.
224 */
225 #define abs(x) __abs_choose_expr(x, long long, \
226 __abs_choose_expr(x, long, \
227 __abs_choose_expr(x, int, \
228 __abs_choose_expr(x, short, \
229 __abs_choose_expr(x, char, \
230 __builtin_choose_expr( \
231 __builtin_types_compatible_p(typeof(x), char), \
232 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
233 ((void)0)))))))
234
235 #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
236 __builtin_types_compatible_p(typeof(x), signed type) || \
237 __builtin_types_compatible_p(typeof(x), unsigned type), \
238 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
239
240 /**
241 * reciprocal_scale - "scale" a value into range [0, ep_ro)
242 * @val: value
243 * @ep_ro: right open interval endpoint
244 *
245 * Perform a "reciprocal multiplication" in order to "scale" a value into
246 * range [0, ep_ro), where the upper interval endpoint is right-open.
247 * This is useful, e.g. for accessing a index of an array containing
248 * ep_ro elements, for example. Think of it as sort of modulus, only that
249 * the result isn't that of modulo. ;) Note that if initial input is a
250 * small value, then result will return 0.
251 *
252 * Return: a result based on val in interval [0, ep_ro).
253 */
254 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
255 {
256 return (u32)(((u64) val * ep_ro) >> 32);
257 }
258
259 #if defined(CONFIG_MMU) && \
260 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
261 #define might_fault() __might_fault(__FILE__, __LINE__)
262 void __might_fault(const char *file, int line);
263 #else
264 static inline void might_fault(void) { }
265 #endif
266
267 extern struct atomic_notifier_head panic_notifier_list;
268 extern long (*panic_blink)(int state);
269 __printf(1, 2)
270 void panic(const char *fmt, ...) __noreturn __cold;
271 void nmi_panic(struct pt_regs *regs, const char *msg);
272 extern void oops_enter(void);
273 extern void oops_exit(void);
274 void print_oops_end_marker(void);
275 extern int oops_may_print(void);
276 void do_exit(long error_code) __noreturn;
277 void complete_and_exit(struct completion *, long) __noreturn;
278
279 /* Internal, do not use. */
280 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
281 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
282
283 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
284 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
285
286 /**
287 * kstrtoul - convert a string to an unsigned long
288 * @s: The start of the string. The string must be null-terminated, and may also
289 * include a single newline before its terminating null. The first character
290 * may also be a plus sign, but not a minus sign.
291 * @base: The number base to use. The maximum supported base is 16. If base is
292 * given as 0, then the base of the string is automatically detected with the
293 * conventional semantics - If it begins with 0x the number will be parsed as a
294 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
295 * parsed as an octal number. Otherwise it will be parsed as a decimal.
296 * @res: Where to write the result of the conversion on success.
297 *
298 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
299 * Used as a replacement for the obsolete simple_strtoull. Return code must
300 * be checked.
301 */
302 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
303 {
304 /*
305 * We want to shortcut function call, but
306 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
307 */
308 if (sizeof(unsigned long) == sizeof(unsigned long long) &&
309 __alignof__(unsigned long) == __alignof__(unsigned long long))
310 return kstrtoull(s, base, (unsigned long long *)res);
311 else
312 return _kstrtoul(s, base, res);
313 }
314
315 /**
316 * kstrtol - convert a string to a long
317 * @s: The start of the string. The string must be null-terminated, and may also
318 * include a single newline before its terminating null. The first character
319 * may also be a plus sign or a minus sign.
320 * @base: The number base to use. The maximum supported base is 16. If base is
321 * given as 0, then the base of the string is automatically detected with the
322 * conventional semantics - If it begins with 0x the number will be parsed as a
323 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
324 * parsed as an octal number. Otherwise it will be parsed as a decimal.
325 * @res: Where to write the result of the conversion on success.
326 *
327 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
328 * Used as a replacement for the obsolete simple_strtoull. Return code must
329 * be checked.
330 */
331 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
332 {
333 /*
334 * We want to shortcut function call, but
335 * __builtin_types_compatible_p(long, long long) = 0.
336 */
337 if (sizeof(long) == sizeof(long long) &&
338 __alignof__(long) == __alignof__(long long))
339 return kstrtoll(s, base, (long long *)res);
340 else
341 return _kstrtol(s, base, res);
342 }
343
344 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
345 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
346
347 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
348 {
349 return kstrtoull(s, base, res);
350 }
351
352 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
353 {
354 return kstrtoll(s, base, res);
355 }
356
357 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
358 {
359 return kstrtouint(s, base, res);
360 }
361
362 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
363 {
364 return kstrtoint(s, base, res);
365 }
366
367 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
368 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
369 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
370 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
371 int __must_check kstrtobool(const char *s, bool *res);
372
373 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
374 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
375 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
376 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
377 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
378 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
379 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
380 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
381 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
382 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
383 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
384
385 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
386 {
387 return kstrtoull_from_user(s, count, base, res);
388 }
389
390 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
391 {
392 return kstrtoll_from_user(s, count, base, res);
393 }
394
395 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
396 {
397 return kstrtouint_from_user(s, count, base, res);
398 }
399
400 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
401 {
402 return kstrtoint_from_user(s, count, base, res);
403 }
404
405 /* Obsolete, do not use. Use kstrto<foo> instead */
406
407 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
408 extern long simple_strtol(const char *,char **,unsigned int);
409 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
410 extern long long simple_strtoll(const char *,char **,unsigned int);
411
412 extern int num_to_str(char *buf, int size, unsigned long long num);
413
414 /* lib/printf utilities */
415
416 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
417 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
418 extern __printf(3, 4)
419 int snprintf(char *buf, size_t size, const char *fmt, ...);
420 extern __printf(3, 0)
421 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
422 extern __printf(3, 4)
423 int scnprintf(char *buf, size_t size, const char *fmt, ...);
424 extern __printf(3, 0)
425 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
426 extern __printf(2, 3) __malloc
427 char *kasprintf(gfp_t gfp, const char *fmt, ...);
428 extern __printf(2, 0) __malloc
429 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
430 extern __printf(2, 0)
431 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
432
433 extern __scanf(2, 3)
434 int sscanf(const char *, const char *, ...);
435 extern __scanf(2, 0)
436 int vsscanf(const char *, const char *, va_list);
437
438 extern int get_option(char **str, int *pint);
439 extern char *get_options(const char *str, int nints, int *ints);
440 extern unsigned long long memparse(const char *ptr, char **retptr);
441 extern bool parse_option_str(const char *str, const char *option);
442 extern char *next_arg(char *args, char **param, char **val);
443
444 extern int core_kernel_text(unsigned long addr);
445 extern int core_kernel_data(unsigned long addr);
446 extern int __kernel_text_address(unsigned long addr);
447 extern int kernel_text_address(unsigned long addr);
448 extern int func_ptr_is_kernel_text(void *ptr);
449
450 unsigned long int_sqrt(unsigned long);
451
452 extern void bust_spinlocks(int yes);
453 extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */
454 extern int panic_timeout;
455 extern int panic_on_oops;
456 extern int panic_on_unrecovered_nmi;
457 extern int panic_on_io_nmi;
458 extern int panic_on_warn;
459 extern int sysctl_panic_on_rcu_stall;
460 extern int sysctl_panic_on_stackoverflow;
461
462 extern bool crash_kexec_post_notifiers;
463
464 /*
465 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
466 * holds a CPU number which is executing panic() currently. A value of
467 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
468 */
469 extern atomic_t panic_cpu;
470 #define PANIC_CPU_INVALID -1
471
472 /*
473 * Only to be used by arch init code. If the user over-wrote the default
474 * CONFIG_PANIC_TIMEOUT, honor it.
475 */
476 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
477 {
478 if (panic_timeout == arch_default_timeout)
479 panic_timeout = timeout;
480 }
481 extern const char *print_tainted(void);
482 enum lockdep_ok {
483 LOCKDEP_STILL_OK,
484 LOCKDEP_NOW_UNRELIABLE
485 };
486 extern void add_taint(unsigned flag, enum lockdep_ok);
487 extern int test_taint(unsigned flag);
488 extern unsigned long get_taint(void);
489 extern int root_mountflags;
490
491 extern bool early_boot_irqs_disabled;
492
493 /*
494 * Values used for system_state. Ordering of the states must not be changed
495 * as code checks for <, <=, >, >= STATE.
496 */
497 extern enum system_states {
498 SYSTEM_BOOTING,
499 SYSTEM_SCHEDULING,
500 SYSTEM_RUNNING,
501 SYSTEM_HALT,
502 SYSTEM_POWER_OFF,
503 SYSTEM_RESTART,
504 } system_state;
505
506 #define TAINT_PROPRIETARY_MODULE 0
507 #define TAINT_FORCED_MODULE 1
508 #define TAINT_CPU_OUT_OF_SPEC 2
509 #define TAINT_FORCED_RMMOD 3
510 #define TAINT_MACHINE_CHECK 4
511 #define TAINT_BAD_PAGE 5
512 #define TAINT_USER 6
513 #define TAINT_DIE 7
514 #define TAINT_OVERRIDDEN_ACPI_TABLE 8
515 #define TAINT_WARN 9
516 #define TAINT_CRAP 10
517 #define TAINT_FIRMWARE_WORKAROUND 11
518 #define TAINT_OOT_MODULE 12
519 #define TAINT_UNSIGNED_MODULE 13
520 #define TAINT_SOFTLOCKUP 14
521 #define TAINT_LIVEPATCH 15
522 #define TAINT_FLAGS_COUNT 16
523
524 struct taint_flag {
525 char c_true; /* character printed when tainted */
526 char c_false; /* character printed when not tainted */
527 bool module; /* also show as a per-module taint flag */
528 };
529
530 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
531
532 extern const char hex_asc[];
533 #define hex_asc_lo(x) hex_asc[((x) & 0x0f)]
534 #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4]
535
536 static inline char *hex_byte_pack(char *buf, u8 byte)
537 {
538 *buf++ = hex_asc_hi(byte);
539 *buf++ = hex_asc_lo(byte);
540 return buf;
541 }
542
543 extern const char hex_asc_upper[];
544 #define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)]
545 #define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4]
546
547 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
548 {
549 *buf++ = hex_asc_upper_hi(byte);
550 *buf++ = hex_asc_upper_lo(byte);
551 return buf;
552 }
553
554 extern int hex_to_bin(char ch);
555 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
556 extern char *bin2hex(char *dst, const void *src, size_t count);
557
558 bool mac_pton(const char *s, u8 *mac);
559
560 /*
561 * General tracing related utility functions - trace_printk(),
562 * tracing_on/tracing_off and tracing_start()/tracing_stop
563 *
564 * Use tracing_on/tracing_off when you want to quickly turn on or off
565 * tracing. It simply enables or disables the recording of the trace events.
566 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
567 * file, which gives a means for the kernel and userspace to interact.
568 * Place a tracing_off() in the kernel where you want tracing to end.
569 * From user space, examine the trace, and then echo 1 > tracing_on
570 * to continue tracing.
571 *
572 * tracing_stop/tracing_start has slightly more overhead. It is used
573 * by things like suspend to ram where disabling the recording of the
574 * trace is not enough, but tracing must actually stop because things
575 * like calling smp_processor_id() may crash the system.
576 *
577 * Most likely, you want to use tracing_on/tracing_off.
578 */
579
580 enum ftrace_dump_mode {
581 DUMP_NONE,
582 DUMP_ALL,
583 DUMP_ORIG,
584 };
585
586 #ifdef CONFIG_TRACING
587 void tracing_on(void);
588 void tracing_off(void);
589 int tracing_is_on(void);
590 void tracing_snapshot(void);
591 void tracing_snapshot_alloc(void);
592
593 extern void tracing_start(void);
594 extern void tracing_stop(void);
595
596 static inline __printf(1, 2)
597 void ____trace_printk_check_format(const char *fmt, ...)
598 {
599 }
600 #define __trace_printk_check_format(fmt, args...) \
601 do { \
602 if (0) \
603 ____trace_printk_check_format(fmt, ##args); \
604 } while (0)
605
606 /**
607 * trace_printk - printf formatting in the ftrace buffer
608 * @fmt: the printf format for printing
609 *
610 * Note: __trace_printk is an internal function for trace_printk and
611 * the @ip is passed in via the trace_printk macro.
612 *
613 * This function allows a kernel developer to debug fast path sections
614 * that printk is not appropriate for. By scattering in various
615 * printk like tracing in the code, a developer can quickly see
616 * where problems are occurring.
617 *
618 * This is intended as a debugging tool for the developer only.
619 * Please refrain from leaving trace_printks scattered around in
620 * your code. (Extra memory is used for special buffers that are
621 * allocated when trace_printk() is used)
622 *
623 * A little optization trick is done here. If there's only one
624 * argument, there's no need to scan the string for printf formats.
625 * The trace_puts() will suffice. But how can we take advantage of
626 * using trace_puts() when trace_printk() has only one argument?
627 * By stringifying the args and checking the size we can tell
628 * whether or not there are args. __stringify((__VA_ARGS__)) will
629 * turn into "()\0" with a size of 3 when there are no args, anything
630 * else will be bigger. All we need to do is define a string to this,
631 * and then take its size and compare to 3. If it's bigger, use
632 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
633 * let gcc optimize the rest.
634 */
635
636 #define trace_printk(fmt, ...) \
637 do { \
638 char _______STR[] = __stringify((__VA_ARGS__)); \
639 if (sizeof(_______STR) > 3) \
640 do_trace_printk(fmt, ##__VA_ARGS__); \
641 else \
642 trace_puts(fmt); \
643 } while (0)
644
645 #define do_trace_printk(fmt, args...) \
646 do { \
647 static const char *trace_printk_fmt __used \
648 __attribute__((section("__trace_printk_fmt"))) = \
649 __builtin_constant_p(fmt) ? fmt : NULL; \
650 \
651 __trace_printk_check_format(fmt, ##args); \
652 \
653 if (__builtin_constant_p(fmt)) \
654 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \
655 else \
656 __trace_printk(_THIS_IP_, fmt, ##args); \
657 } while (0)
658
659 extern __printf(2, 3)
660 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
661
662 extern __printf(2, 3)
663 int __trace_printk(unsigned long ip, const char *fmt, ...);
664
665 /**
666 * trace_puts - write a string into the ftrace buffer
667 * @str: the string to record
668 *
669 * Note: __trace_bputs is an internal function for trace_puts and
670 * the @ip is passed in via the trace_puts macro.
671 *
672 * This is similar to trace_printk() but is made for those really fast
673 * paths that a developer wants the least amount of "Heisenbug" affects,
674 * where the processing of the print format is still too much.
675 *
676 * This function allows a kernel developer to debug fast path sections
677 * that printk is not appropriate for. By scattering in various
678 * printk like tracing in the code, a developer can quickly see
679 * where problems are occurring.
680 *
681 * This is intended as a debugging tool for the developer only.
682 * Please refrain from leaving trace_puts scattered around in
683 * your code. (Extra memory is used for special buffers that are
684 * allocated when trace_puts() is used)
685 *
686 * Returns: 0 if nothing was written, positive # if string was.
687 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
688 */
689
690 #define trace_puts(str) ({ \
691 static const char *trace_printk_fmt __used \
692 __attribute__((section("__trace_printk_fmt"))) = \
693 __builtin_constant_p(str) ? str : NULL; \
694 \
695 if (__builtin_constant_p(str)) \
696 __trace_bputs(_THIS_IP_, trace_printk_fmt); \
697 else \
698 __trace_puts(_THIS_IP_, str, strlen(str)); \
699 })
700 extern int __trace_bputs(unsigned long ip, const char *str);
701 extern int __trace_puts(unsigned long ip, const char *str, int size);
702
703 extern void trace_dump_stack(int skip);
704
705 /*
706 * The double __builtin_constant_p is because gcc will give us an error
707 * if we try to allocate the static variable to fmt if it is not a
708 * constant. Even with the outer if statement.
709 */
710 #define ftrace_vprintk(fmt, vargs) \
711 do { \
712 if (__builtin_constant_p(fmt)) { \
713 static const char *trace_printk_fmt __used \
714 __attribute__((section("__trace_printk_fmt"))) = \
715 __builtin_constant_p(fmt) ? fmt : NULL; \
716 \
717 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \
718 } else \
719 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \
720 } while (0)
721
722 extern __printf(2, 0) int
723 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
724
725 extern __printf(2, 0) int
726 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
727
728 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
729 #else
730 static inline void tracing_start(void) { }
731 static inline void tracing_stop(void) { }
732 static inline void trace_dump_stack(int skip) { }
733
734 static inline void tracing_on(void) { }
735 static inline void tracing_off(void) { }
736 static inline int tracing_is_on(void) { return 0; }
737 static inline void tracing_snapshot(void) { }
738 static inline void tracing_snapshot_alloc(void) { }
739
740 static inline __printf(1, 2)
741 int trace_printk(const char *fmt, ...)
742 {
743 return 0;
744 }
745 static __printf(1, 0) inline int
746 ftrace_vprintk(const char *fmt, va_list ap)
747 {
748 return 0;
749 }
750 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
751 #endif /* CONFIG_TRACING */
752
753 /*
754 * min()/max()/clamp() macros that also do
755 * strict type-checking.. See the
756 * "unnecessary" pointer comparison.
757 */
758 #define __min(t1, t2, min1, min2, x, y) ({ \
759 t1 min1 = (x); \
760 t2 min2 = (y); \
761 (void) (&min1 == &min2); \
762 min1 < min2 ? min1 : min2; })
763 #define min(x, y) \
764 __min(typeof(x), typeof(y), \
765 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \
766 x, y)
767
768 #define __max(t1, t2, max1, max2, x, y) ({ \
769 t1 max1 = (x); \
770 t2 max2 = (y); \
771 (void) (&max1 == &max2); \
772 max1 > max2 ? max1 : max2; })
773 #define max(x, y) \
774 __max(typeof(x), typeof(y), \
775 __UNIQUE_ID(max1_), __UNIQUE_ID(max2_), \
776 x, y)
777
778 #define min3(x, y, z) min((typeof(x))min(x, y), z)
779 #define max3(x, y, z) max((typeof(x))max(x, y), z)
780
781 /**
782 * min_not_zero - return the minimum that is _not_ zero, unless both are zero
783 * @x: value1
784 * @y: value2
785 */
786 #define min_not_zero(x, y) ({ \
787 typeof(x) __x = (x); \
788 typeof(y) __y = (y); \
789 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
790
791 /**
792 * clamp - return a value clamped to a given range with strict typechecking
793 * @val: current value
794 * @lo: lowest allowable value
795 * @hi: highest allowable value
796 *
797 * This macro does strict typechecking of lo/hi to make sure they are of the
798 * same type as val. See the unnecessary pointer comparisons.
799 */
800 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
801
802 /*
803 * ..and if you can't take the strict
804 * types, you can specify one yourself.
805 *
806 * Or not use min/max/clamp at all, of course.
807 */
808 #define min_t(type, x, y) \
809 __min(type, type, \
810 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \
811 x, y)
812
813 #define max_t(type, x, y) \
814 __max(type, type, \
815 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \
816 x, y)
817
818 /**
819 * clamp_t - return a value clamped to a given range using a given type
820 * @type: the type of variable to use
821 * @val: current value
822 * @lo: minimum allowable value
823 * @hi: maximum allowable value
824 *
825 * This macro does no typechecking and uses temporary variables of type
826 * 'type' to make all the comparisons.
827 */
828 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
829
830 /**
831 * clamp_val - return a value clamped to a given range using val's type
832 * @val: current value
833 * @lo: minimum allowable value
834 * @hi: maximum allowable value
835 *
836 * This macro does no typechecking and uses temporary variables of whatever
837 * type the input argument 'val' is. This is useful when val is an unsigned
838 * type and min and max are literals that will otherwise be assigned a signed
839 * integer type.
840 */
841 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
842
843
844 /*
845 * swap - swap value of @a and @b
846 */
847 #define swap(a, b) \
848 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
849
850 /**
851 * container_of - cast a member of a structure out to the containing structure
852 * @ptr: the pointer to the member.
853 * @type: the type of the container struct this is embedded in.
854 * @member: the name of the member within the struct.
855 *
856 */
857 #define container_of(ptr, type, member) ({ \
858 const typeof( ((type *)0)->member ) *__mptr = (ptr); \
859 (type *)( (char *)__mptr - offsetof(type,member) );})
860
861 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
862 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
863 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
864 #endif
865
866 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
867 #define VERIFY_OCTAL_PERMISSIONS(perms) \
868 (BUILD_BUG_ON_ZERO((perms) < 0) + \
869 BUILD_BUG_ON_ZERO((perms) > 0777) + \
870 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \
871 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \
872 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \
873 /* USER_WRITABLE >= GROUP_WRITABLE */ \
874 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \
875 /* OTHER_WRITABLE? Generally considered a bad idea. */ \
876 BUILD_BUG_ON_ZERO((perms) & 2) + \
877 (perms))
878 #endif