]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/kvm_host.h
linux/kernel.h: fix overflow for DIV_ROUND_UP_ULL
[mirror_ubuntu-bionic-kernel.git] / include / linux / kvm_host.h
1 #ifndef __KVM_HOST_H
2 #define __KVM_HOST_H
3
4 /*
5 * This work is licensed under the terms of the GNU GPL, version 2. See
6 * the COPYING file in the top-level directory.
7 */
8
9 #include <linux/types.h>
10 #include <linux/hardirq.h>
11 #include <linux/list.h>
12 #include <linux/mutex.h>
13 #include <linux/spinlock.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/bug.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/preempt.h>
20 #include <linux/msi.h>
21 #include <linux/slab.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/swait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <asm/signal.h>
32
33 #include <linux/kvm.h>
34 #include <linux/kvm_para.h>
35
36 #include <linux/kvm_types.h>
37
38 #include <asm/kvm_host.h>
39
40 #ifndef KVM_MAX_VCPU_ID
41 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
42 #endif
43
44 /*
45 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
46 * in kvm, other bits are visible for userspace which are defined in
47 * include/linux/kvm_h.
48 */
49 #define KVM_MEMSLOT_INVALID (1UL << 16)
50
51 /* Two fragments for cross MMIO pages. */
52 #define KVM_MAX_MMIO_FRAGMENTS 2
53
54 #ifndef KVM_ADDRESS_SPACE_NUM
55 #define KVM_ADDRESS_SPACE_NUM 1
56 #endif
57
58 /*
59 * For the normal pfn, the highest 12 bits should be zero,
60 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
61 * mask bit 63 to indicate the noslot pfn.
62 */
63 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
64 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
65 #define KVM_PFN_NOSLOT (0x1ULL << 63)
66
67 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
68 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
69 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
70
71 /*
72 * error pfns indicate that the gfn is in slot but faild to
73 * translate it to pfn on host.
74 */
75 static inline bool is_error_pfn(kvm_pfn_t pfn)
76 {
77 return !!(pfn & KVM_PFN_ERR_MASK);
78 }
79
80 /*
81 * error_noslot pfns indicate that the gfn can not be
82 * translated to pfn - it is not in slot or failed to
83 * translate it to pfn.
84 */
85 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
86 {
87 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
88 }
89
90 /* noslot pfn indicates that the gfn is not in slot. */
91 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
92 {
93 return pfn == KVM_PFN_NOSLOT;
94 }
95
96 /*
97 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
98 * provide own defines and kvm_is_error_hva
99 */
100 #ifndef KVM_HVA_ERR_BAD
101
102 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
103 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
104
105 static inline bool kvm_is_error_hva(unsigned long addr)
106 {
107 return addr >= PAGE_OFFSET;
108 }
109
110 #endif
111
112 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
113
114 static inline bool is_error_page(struct page *page)
115 {
116 return IS_ERR(page);
117 }
118
119 #define KVM_REQUEST_MASK GENMASK(7,0)
120 #define KVM_REQUEST_NO_WAKEUP BIT(8)
121 #define KVM_REQUEST_WAIT BIT(9)
122 /*
123 * Architecture-independent vcpu->requests bit members
124 * Bits 4-7 are reserved for more arch-independent bits.
125 */
126 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
127 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
128 #define KVM_REQ_PENDING_TIMER 2
129 #define KVM_REQ_UNHALT 3
130 #define KVM_REQUEST_ARCH_BASE 8
131
132 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
133 BUILD_BUG_ON((unsigned)(nr) >= 32 - KVM_REQUEST_ARCH_BASE); \
134 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
135 })
136 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
137
138 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
139 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
140
141 extern struct kmem_cache *kvm_vcpu_cache;
142
143 extern spinlock_t kvm_lock;
144 extern struct list_head vm_list;
145
146 struct kvm_io_range {
147 gpa_t addr;
148 int len;
149 struct kvm_io_device *dev;
150 };
151
152 #define NR_IOBUS_DEVS 1000
153
154 struct kvm_io_bus {
155 int dev_count;
156 int ioeventfd_count;
157 struct kvm_io_range range[];
158 };
159
160 enum kvm_bus {
161 KVM_MMIO_BUS,
162 KVM_PIO_BUS,
163 KVM_VIRTIO_CCW_NOTIFY_BUS,
164 KVM_FAST_MMIO_BUS,
165 KVM_NR_BUSES
166 };
167
168 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
169 int len, const void *val);
170 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
171 gpa_t addr, int len, const void *val, long cookie);
172 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
173 int len, void *val);
174 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
175 int len, struct kvm_io_device *dev);
176 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
177 struct kvm_io_device *dev);
178 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
179 gpa_t addr);
180
181 #ifdef CONFIG_KVM_ASYNC_PF
182 struct kvm_async_pf {
183 struct work_struct work;
184 struct list_head link;
185 struct list_head queue;
186 struct kvm_vcpu *vcpu;
187 struct mm_struct *mm;
188 gva_t gva;
189 unsigned long addr;
190 struct kvm_arch_async_pf arch;
191 bool wakeup_all;
192 };
193
194 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
195 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
196 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva,
197 struct kvm_arch_async_pf *arch);
198 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
199 #endif
200
201 enum {
202 OUTSIDE_GUEST_MODE,
203 IN_GUEST_MODE,
204 EXITING_GUEST_MODE,
205 READING_SHADOW_PAGE_TABLES,
206 };
207
208 /*
209 * Sometimes a large or cross-page mmio needs to be broken up into separate
210 * exits for userspace servicing.
211 */
212 struct kvm_mmio_fragment {
213 gpa_t gpa;
214 void *data;
215 unsigned len;
216 };
217
218 struct kvm_vcpu {
219 struct kvm *kvm;
220 #ifdef CONFIG_PREEMPT_NOTIFIERS
221 struct preempt_notifier preempt_notifier;
222 #endif
223 int cpu;
224 int vcpu_id;
225 int srcu_idx;
226 int mode;
227 unsigned long requests;
228 unsigned long guest_debug;
229
230 int pre_pcpu;
231 struct list_head blocked_vcpu_list;
232
233 struct mutex mutex;
234 struct kvm_run *run;
235
236 int guest_xcr0_loaded;
237 struct swait_queue_head wq;
238 struct pid __rcu *pid;
239 int sigset_active;
240 sigset_t sigset;
241 struct kvm_vcpu_stat stat;
242 unsigned int halt_poll_ns;
243 bool valid_wakeup;
244
245 #ifdef CONFIG_HAS_IOMEM
246 int mmio_needed;
247 int mmio_read_completed;
248 int mmio_is_write;
249 int mmio_cur_fragment;
250 int mmio_nr_fragments;
251 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
252 #endif
253
254 #ifdef CONFIG_KVM_ASYNC_PF
255 struct {
256 u32 queued;
257 struct list_head queue;
258 struct list_head done;
259 spinlock_t lock;
260 } async_pf;
261 #endif
262
263 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
264 /*
265 * Cpu relax intercept or pause loop exit optimization
266 * in_spin_loop: set when a vcpu does a pause loop exit
267 * or cpu relax intercepted.
268 * dy_eligible: indicates whether vcpu is eligible for directed yield.
269 */
270 struct {
271 bool in_spin_loop;
272 bool dy_eligible;
273 } spin_loop;
274 #endif
275 bool preempted;
276 struct kvm_vcpu_arch arch;
277 struct dentry *debugfs_dentry;
278 };
279
280 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
281 {
282 /*
283 * The memory barrier ensures a previous write to vcpu->requests cannot
284 * be reordered with the read of vcpu->mode. It pairs with the general
285 * memory barrier following the write of vcpu->mode in VCPU RUN.
286 */
287 smp_mb__before_atomic();
288 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
289 }
290
291 /*
292 * Some of the bitops functions do not support too long bitmaps.
293 * This number must be determined not to exceed such limits.
294 */
295 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
296
297 struct kvm_memory_slot {
298 gfn_t base_gfn;
299 unsigned long npages;
300 unsigned long *dirty_bitmap;
301 struct kvm_arch_memory_slot arch;
302 unsigned long userspace_addr;
303 u32 flags;
304 short id;
305 };
306
307 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
308 {
309 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
310 }
311
312 struct kvm_s390_adapter_int {
313 u64 ind_addr;
314 u64 summary_addr;
315 u64 ind_offset;
316 u32 summary_offset;
317 u32 adapter_id;
318 };
319
320 struct kvm_hv_sint {
321 u32 vcpu;
322 u32 sint;
323 };
324
325 struct kvm_kernel_irq_routing_entry {
326 u32 gsi;
327 u32 type;
328 int (*set)(struct kvm_kernel_irq_routing_entry *e,
329 struct kvm *kvm, int irq_source_id, int level,
330 bool line_status);
331 union {
332 struct {
333 unsigned irqchip;
334 unsigned pin;
335 } irqchip;
336 struct {
337 u32 address_lo;
338 u32 address_hi;
339 u32 data;
340 u32 flags;
341 u32 devid;
342 } msi;
343 struct kvm_s390_adapter_int adapter;
344 struct kvm_hv_sint hv_sint;
345 };
346 struct hlist_node link;
347 };
348
349 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
350 struct kvm_irq_routing_table {
351 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
352 u32 nr_rt_entries;
353 /*
354 * Array indexed by gsi. Each entry contains list of irq chips
355 * the gsi is connected to.
356 */
357 struct hlist_head map[0];
358 };
359 #endif
360
361 #ifndef KVM_PRIVATE_MEM_SLOTS
362 #define KVM_PRIVATE_MEM_SLOTS 0
363 #endif
364
365 #ifndef KVM_MEM_SLOTS_NUM
366 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
367 #endif
368
369 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
370 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
371 {
372 return 0;
373 }
374 #endif
375
376 /*
377 * Note:
378 * memslots are not sorted by id anymore, please use id_to_memslot()
379 * to get the memslot by its id.
380 */
381 struct kvm_memslots {
382 u64 generation;
383 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM];
384 /* The mapping table from slot id to the index in memslots[]. */
385 short id_to_index[KVM_MEM_SLOTS_NUM];
386 atomic_t lru_slot;
387 int used_slots;
388 };
389
390 struct kvm {
391 spinlock_t mmu_lock;
392 struct mutex slots_lock;
393 struct mm_struct *mm; /* userspace tied to this vm */
394 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
395 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
396
397 /*
398 * created_vcpus is protected by kvm->lock, and is incremented
399 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
400 * incremented after storing the kvm_vcpu pointer in vcpus,
401 * and is accessed atomically.
402 */
403 atomic_t online_vcpus;
404 int created_vcpus;
405 int last_boosted_vcpu;
406 struct list_head vm_list;
407 struct mutex lock;
408 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
409 #ifdef CONFIG_HAVE_KVM_EVENTFD
410 struct {
411 spinlock_t lock;
412 struct list_head items;
413 struct list_head resampler_list;
414 struct mutex resampler_lock;
415 } irqfds;
416 struct list_head ioeventfds;
417 #endif
418 struct kvm_vm_stat stat;
419 struct kvm_arch arch;
420 refcount_t users_count;
421 #ifdef CONFIG_KVM_MMIO
422 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
423 spinlock_t ring_lock;
424 struct list_head coalesced_zones;
425 #endif
426
427 struct mutex irq_lock;
428 #ifdef CONFIG_HAVE_KVM_IRQCHIP
429 /*
430 * Update side is protected by irq_lock.
431 */
432 struct kvm_irq_routing_table __rcu *irq_routing;
433 #endif
434 #ifdef CONFIG_HAVE_KVM_IRQFD
435 struct hlist_head irq_ack_notifier_list;
436 #endif
437
438 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
439 struct mmu_notifier mmu_notifier;
440 unsigned long mmu_notifier_seq;
441 long mmu_notifier_count;
442 #endif
443 long tlbs_dirty;
444 struct list_head devices;
445 struct dentry *debugfs_dentry;
446 struct kvm_stat_data **debugfs_stat_data;
447 struct srcu_struct srcu;
448 struct srcu_struct irq_srcu;
449 pid_t userspace_pid;
450 };
451
452 #define kvm_err(fmt, ...) \
453 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
454 #define kvm_info(fmt, ...) \
455 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
456 #define kvm_debug(fmt, ...) \
457 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
458 #define kvm_debug_ratelimited(fmt, ...) \
459 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
460 ## __VA_ARGS__)
461 #define kvm_pr_unimpl(fmt, ...) \
462 pr_err_ratelimited("kvm [%i]: " fmt, \
463 task_tgid_nr(current), ## __VA_ARGS__)
464
465 /* The guest did something we don't support. */
466 #define vcpu_unimpl(vcpu, fmt, ...) \
467 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
468 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
469
470 #define vcpu_debug(vcpu, fmt, ...) \
471 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
472 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
473 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
474 ## __VA_ARGS__)
475 #define vcpu_err(vcpu, fmt, ...) \
476 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
477
478 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
479 {
480 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
481 lockdep_is_held(&kvm->slots_lock) ||
482 !refcount_read(&kvm->users_count));
483 }
484
485 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
486 {
487 int num_vcpus = atomic_read(&kvm->online_vcpus);
488 i = array_index_nospec(i, num_vcpus);
489
490 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
491 smp_rmb();
492 return kvm->vcpus[i];
493 }
494
495 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
496 for (idx = 0; \
497 idx < atomic_read(&kvm->online_vcpus) && \
498 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
499 idx++)
500
501 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
502 {
503 struct kvm_vcpu *vcpu = NULL;
504 int i;
505
506 if (id < 0)
507 return NULL;
508 if (id < KVM_MAX_VCPUS)
509 vcpu = kvm_get_vcpu(kvm, id);
510 if (vcpu && vcpu->vcpu_id == id)
511 return vcpu;
512 kvm_for_each_vcpu(i, vcpu, kvm)
513 if (vcpu->vcpu_id == id)
514 return vcpu;
515 return NULL;
516 }
517
518 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
519 {
520 struct kvm_vcpu *tmp;
521 int idx;
522
523 kvm_for_each_vcpu(idx, tmp, vcpu->kvm)
524 if (tmp == vcpu)
525 return idx;
526 BUG();
527 }
528
529 #define kvm_for_each_memslot(memslot, slots) \
530 for (memslot = &slots->memslots[0]; \
531 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\
532 memslot++)
533
534 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id);
535 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu);
536
537 int __must_check vcpu_load(struct kvm_vcpu *vcpu);
538 void vcpu_put(struct kvm_vcpu *vcpu);
539
540 #ifdef __KVM_HAVE_IOAPIC
541 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
542 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
543 #else
544 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
545 {
546 }
547 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
548 {
549 }
550 #endif
551
552 #ifdef CONFIG_HAVE_KVM_IRQFD
553 int kvm_irqfd_init(void);
554 void kvm_irqfd_exit(void);
555 #else
556 static inline int kvm_irqfd_init(void)
557 {
558 return 0;
559 }
560
561 static inline void kvm_irqfd_exit(void)
562 {
563 }
564 #endif
565 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
566 struct module *module);
567 void kvm_exit(void);
568
569 void kvm_get_kvm(struct kvm *kvm);
570 void kvm_put_kvm(struct kvm *kvm);
571
572 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
573 {
574 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
575 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
576 lockdep_is_held(&kvm->slots_lock) ||
577 !refcount_read(&kvm->users_count));
578 }
579
580 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
581 {
582 return __kvm_memslots(kvm, 0);
583 }
584
585 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
586 {
587 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
588
589 return __kvm_memslots(vcpu->kvm, as_id);
590 }
591
592 static inline struct kvm_memory_slot *
593 id_to_memslot(struct kvm_memslots *slots, int id)
594 {
595 int index = slots->id_to_index[id];
596 struct kvm_memory_slot *slot;
597
598 slot = &slots->memslots[index];
599
600 WARN_ON(slot->id != id);
601 return slot;
602 }
603
604 /*
605 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
606 * - create a new memory slot
607 * - delete an existing memory slot
608 * - modify an existing memory slot
609 * -- move it in the guest physical memory space
610 * -- just change its flags
611 *
612 * Since flags can be changed by some of these operations, the following
613 * differentiation is the best we can do for __kvm_set_memory_region():
614 */
615 enum kvm_mr_change {
616 KVM_MR_CREATE,
617 KVM_MR_DELETE,
618 KVM_MR_MOVE,
619 KVM_MR_FLAGS_ONLY,
620 };
621
622 int kvm_set_memory_region(struct kvm *kvm,
623 const struct kvm_userspace_memory_region *mem);
624 int __kvm_set_memory_region(struct kvm *kvm,
625 const struct kvm_userspace_memory_region *mem);
626 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
627 struct kvm_memory_slot *dont);
628 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
629 unsigned long npages);
630 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
631 int kvm_arch_prepare_memory_region(struct kvm *kvm,
632 struct kvm_memory_slot *memslot,
633 const struct kvm_userspace_memory_region *mem,
634 enum kvm_mr_change change);
635 void kvm_arch_commit_memory_region(struct kvm *kvm,
636 const struct kvm_userspace_memory_region *mem,
637 const struct kvm_memory_slot *old,
638 const struct kvm_memory_slot *new,
639 enum kvm_mr_change change);
640 bool kvm_largepages_enabled(void);
641 void kvm_disable_largepages(void);
642 /* flush all memory translations */
643 void kvm_arch_flush_shadow_all(struct kvm *kvm);
644 /* flush memory translations pointing to 'slot' */
645 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
646 struct kvm_memory_slot *slot);
647
648 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
649 struct page **pages, int nr_pages);
650
651 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
652 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
653 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
654 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
655 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
656 bool *writable);
657 void kvm_release_page_clean(struct page *page);
658 void kvm_release_page_dirty(struct page *page);
659 void kvm_set_page_accessed(struct page *page);
660
661 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn);
662 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
663 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
664 bool *writable);
665 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
666 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
667 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
668 bool atomic, bool *async, bool write_fault,
669 bool *writable);
670
671 void kvm_release_pfn_clean(kvm_pfn_t pfn);
672 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
673 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
674 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
675 void kvm_get_pfn(kvm_pfn_t pfn);
676
677 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
678 int len);
679 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
680 unsigned long len);
681 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
682 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
683 void *data, unsigned long len);
684 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
685 int offset, int len);
686 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
687 unsigned long len);
688 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
689 void *data, unsigned long len);
690 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
691 void *data, unsigned int offset,
692 unsigned long len);
693 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
694 gpa_t gpa, unsigned long len);
695 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
696 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
697 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
698 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
699 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn);
700 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
701
702 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
703 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
704 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
705 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
706 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
707 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
708 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
709 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
710 int len);
711 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
712 unsigned long len);
713 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
714 unsigned long len);
715 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
716 int offset, int len);
717 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
718 unsigned long len);
719 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
720
721 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
722 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
723
724 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
725 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
726 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
727 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
728 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
729 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
730 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
731 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu);
732 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu);
733
734 void kvm_flush_remote_tlbs(struct kvm *kvm);
735 void kvm_reload_remote_mmus(struct kvm *kvm);
736 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
737
738 long kvm_arch_dev_ioctl(struct file *filp,
739 unsigned int ioctl, unsigned long arg);
740 long kvm_arch_vcpu_ioctl(struct file *filp,
741 unsigned int ioctl, unsigned long arg);
742 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
743
744 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
745
746 int kvm_get_dirty_log(struct kvm *kvm,
747 struct kvm_dirty_log *log, int *is_dirty);
748
749 int kvm_get_dirty_log_protect(struct kvm *kvm,
750 struct kvm_dirty_log *log, bool *is_dirty);
751
752 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
753 struct kvm_memory_slot *slot,
754 gfn_t gfn_offset,
755 unsigned long mask);
756
757 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
758 struct kvm_dirty_log *log);
759
760 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
761 bool line_status);
762 long kvm_arch_vm_ioctl(struct file *filp,
763 unsigned int ioctl, unsigned long arg);
764
765 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
766 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
767
768 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
769 struct kvm_translation *tr);
770
771 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
772 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
773 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
774 struct kvm_sregs *sregs);
775 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
776 struct kvm_sregs *sregs);
777 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
778 struct kvm_mp_state *mp_state);
779 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
780 struct kvm_mp_state *mp_state);
781 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
782 struct kvm_guest_debug *dbg);
783 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
784
785 int kvm_arch_init(void *opaque);
786 void kvm_arch_exit(void);
787
788 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu);
789 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu);
790
791 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
792
793 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu);
794 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
795 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
796 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id);
797 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu);
798 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
799 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
800
801 bool kvm_arch_has_vcpu_debugfs(void);
802 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu);
803
804 int kvm_arch_hardware_enable(void);
805 void kvm_arch_hardware_disable(void);
806 int kvm_arch_hardware_setup(void);
807 void kvm_arch_hardware_unsetup(void);
808 void kvm_arch_check_processor_compat(void *rtn);
809 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
810 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
811 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
812
813 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
814 static inline struct kvm *kvm_arch_alloc_vm(void)
815 {
816 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
817 }
818
819 static inline void kvm_arch_free_vm(struct kvm *kvm)
820 {
821 kfree(kvm);
822 }
823 #endif
824
825 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
826 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
827 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
828 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
829 #else
830 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
831 {
832 }
833
834 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
835 {
836 }
837
838 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
839 {
840 return false;
841 }
842 #endif
843 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
844 void kvm_arch_start_assignment(struct kvm *kvm);
845 void kvm_arch_end_assignment(struct kvm *kvm);
846 bool kvm_arch_has_assigned_device(struct kvm *kvm);
847 #else
848 static inline void kvm_arch_start_assignment(struct kvm *kvm)
849 {
850 }
851
852 static inline void kvm_arch_end_assignment(struct kvm *kvm)
853 {
854 }
855
856 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
857 {
858 return false;
859 }
860 #endif
861
862 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu)
863 {
864 #ifdef __KVM_HAVE_ARCH_WQP
865 return vcpu->arch.wqp;
866 #else
867 return &vcpu->wq;
868 #endif
869 }
870
871 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
872 /*
873 * returns true if the virtual interrupt controller is initialized and
874 * ready to accept virtual IRQ. On some architectures the virtual interrupt
875 * controller is dynamically instantiated and this is not always true.
876 */
877 bool kvm_arch_intc_initialized(struct kvm *kvm);
878 #else
879 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
880 {
881 return true;
882 }
883 #endif
884
885 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
886 void kvm_arch_destroy_vm(struct kvm *kvm);
887 void kvm_arch_sync_events(struct kvm *kvm);
888
889 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
890 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
891
892 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
893
894 struct kvm_irq_ack_notifier {
895 struct hlist_node link;
896 unsigned gsi;
897 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
898 };
899
900 int kvm_irq_map_gsi(struct kvm *kvm,
901 struct kvm_kernel_irq_routing_entry *entries, int gsi);
902 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
903
904 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
905 bool line_status);
906 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
907 int irq_source_id, int level, bool line_status);
908 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
909 struct kvm *kvm, int irq_source_id,
910 int level, bool line_status);
911 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
912 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
913 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
914 void kvm_register_irq_ack_notifier(struct kvm *kvm,
915 struct kvm_irq_ack_notifier *kian);
916 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
917 struct kvm_irq_ack_notifier *kian);
918 int kvm_request_irq_source_id(struct kvm *kvm);
919 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
920
921 /*
922 * search_memslots() and __gfn_to_memslot() are here because they are
923 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
924 * gfn_to_memslot() itself isn't here as an inline because that would
925 * bloat other code too much.
926 */
927 static inline struct kvm_memory_slot *
928 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
929 {
930 int start = 0, end = slots->used_slots;
931 int slot = atomic_read(&slots->lru_slot);
932 struct kvm_memory_slot *memslots = slots->memslots;
933
934 if (gfn >= memslots[slot].base_gfn &&
935 gfn < memslots[slot].base_gfn + memslots[slot].npages)
936 return &memslots[slot];
937
938 while (start < end) {
939 slot = start + (end - start) / 2;
940
941 if (gfn >= memslots[slot].base_gfn)
942 end = slot;
943 else
944 start = slot + 1;
945 }
946
947 if (gfn >= memslots[start].base_gfn &&
948 gfn < memslots[start].base_gfn + memslots[start].npages) {
949 atomic_set(&slots->lru_slot, start);
950 return &memslots[start];
951 }
952
953 return NULL;
954 }
955
956 static inline struct kvm_memory_slot *
957 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
958 {
959 return search_memslots(slots, gfn);
960 }
961
962 static inline unsigned long
963 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
964 {
965 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
966 }
967
968 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
969 {
970 return gfn_to_memslot(kvm, gfn)->id;
971 }
972
973 static inline gfn_t
974 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
975 {
976 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
977
978 return slot->base_gfn + gfn_offset;
979 }
980
981 static inline gpa_t gfn_to_gpa(gfn_t gfn)
982 {
983 return (gpa_t)gfn << PAGE_SHIFT;
984 }
985
986 static inline gfn_t gpa_to_gfn(gpa_t gpa)
987 {
988 return (gfn_t)(gpa >> PAGE_SHIFT);
989 }
990
991 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
992 {
993 return (hpa_t)pfn << PAGE_SHIFT;
994 }
995
996 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
997 gpa_t gpa)
998 {
999 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1000 }
1001
1002 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1003 {
1004 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1005
1006 return kvm_is_error_hva(hva);
1007 }
1008
1009 enum kvm_stat_kind {
1010 KVM_STAT_VM,
1011 KVM_STAT_VCPU,
1012 };
1013
1014 struct kvm_stat_data {
1015 int offset;
1016 struct kvm *kvm;
1017 };
1018
1019 struct kvm_stats_debugfs_item {
1020 const char *name;
1021 int offset;
1022 enum kvm_stat_kind kind;
1023 };
1024 extern struct kvm_stats_debugfs_item debugfs_entries[];
1025 extern struct dentry *kvm_debugfs_dir;
1026
1027 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1028 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1029 {
1030 if (unlikely(kvm->mmu_notifier_count))
1031 return 1;
1032 /*
1033 * Ensure the read of mmu_notifier_count happens before the read
1034 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1035 * mmu_notifier_invalidate_range_end to make sure that the caller
1036 * either sees the old (non-zero) value of mmu_notifier_count or
1037 * the new (incremented) value of mmu_notifier_seq.
1038 * PowerPC Book3s HV KVM calls this under a per-page lock
1039 * rather than under kvm->mmu_lock, for scalability, so
1040 * can't rely on kvm->mmu_lock to keep things ordered.
1041 */
1042 smp_rmb();
1043 if (kvm->mmu_notifier_seq != mmu_seq)
1044 return 1;
1045 return 0;
1046 }
1047 #endif
1048
1049 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1050
1051 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1052
1053 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1054 int kvm_set_irq_routing(struct kvm *kvm,
1055 const struct kvm_irq_routing_entry *entries,
1056 unsigned nr,
1057 unsigned flags);
1058 int kvm_set_routing_entry(struct kvm *kvm,
1059 struct kvm_kernel_irq_routing_entry *e,
1060 const struct kvm_irq_routing_entry *ue);
1061 void kvm_free_irq_routing(struct kvm *kvm);
1062
1063 #else
1064
1065 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1066
1067 #endif
1068
1069 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1070
1071 #ifdef CONFIG_HAVE_KVM_EVENTFD
1072
1073 void kvm_eventfd_init(struct kvm *kvm);
1074 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1075
1076 #ifdef CONFIG_HAVE_KVM_IRQFD
1077 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1078 void kvm_irqfd_release(struct kvm *kvm);
1079 void kvm_irq_routing_update(struct kvm *);
1080 #else
1081 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1082 {
1083 return -EINVAL;
1084 }
1085
1086 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1087 #endif
1088
1089 #else
1090
1091 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1092
1093 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1094 {
1095 return -EINVAL;
1096 }
1097
1098 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1099
1100 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1101 static inline void kvm_irq_routing_update(struct kvm *kvm)
1102 {
1103 }
1104 #endif
1105
1106 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1107 {
1108 return -ENOSYS;
1109 }
1110
1111 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1112
1113 void kvm_arch_irq_routing_update(struct kvm *kvm);
1114
1115 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1116 {
1117 /*
1118 * Ensure the rest of the request is published to kvm_check_request's
1119 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1120 */
1121 smp_wmb();
1122 set_bit(req & KVM_REQUEST_MASK, &vcpu->requests);
1123 }
1124
1125 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1126 {
1127 return READ_ONCE(vcpu->requests);
1128 }
1129
1130 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1131 {
1132 return test_bit(req & KVM_REQUEST_MASK, &vcpu->requests);
1133 }
1134
1135 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1136 {
1137 clear_bit(req & KVM_REQUEST_MASK, &vcpu->requests);
1138 }
1139
1140 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1141 {
1142 if (kvm_test_request(req, vcpu)) {
1143 kvm_clear_request(req, vcpu);
1144
1145 /*
1146 * Ensure the rest of the request is visible to kvm_check_request's
1147 * caller. Paired with the smp_wmb in kvm_make_request.
1148 */
1149 smp_mb__after_atomic();
1150 return true;
1151 } else {
1152 return false;
1153 }
1154 }
1155
1156 extern bool kvm_rebooting;
1157
1158 extern unsigned int halt_poll_ns;
1159 extern unsigned int halt_poll_ns_grow;
1160 extern unsigned int halt_poll_ns_shrink;
1161
1162 struct kvm_device {
1163 struct kvm_device_ops *ops;
1164 struct kvm *kvm;
1165 void *private;
1166 struct list_head vm_node;
1167 };
1168
1169 /* create, destroy, and name are mandatory */
1170 struct kvm_device_ops {
1171 const char *name;
1172
1173 /*
1174 * create is called holding kvm->lock and any operations not suitable
1175 * to do while holding the lock should be deferred to init (see
1176 * below).
1177 */
1178 int (*create)(struct kvm_device *dev, u32 type);
1179
1180 /*
1181 * init is called after create if create is successful and is called
1182 * outside of holding kvm->lock.
1183 */
1184 void (*init)(struct kvm_device *dev);
1185
1186 /*
1187 * Destroy is responsible for freeing dev.
1188 *
1189 * Destroy may be called before or after destructors are called
1190 * on emulated I/O regions, depending on whether a reference is
1191 * held by a vcpu or other kvm component that gets destroyed
1192 * after the emulated I/O.
1193 */
1194 void (*destroy)(struct kvm_device *dev);
1195
1196 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1197 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1198 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1199 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1200 unsigned long arg);
1201 };
1202
1203 void kvm_device_get(struct kvm_device *dev);
1204 void kvm_device_put(struct kvm_device *dev);
1205 struct kvm_device *kvm_device_from_filp(struct file *filp);
1206 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type);
1207 void kvm_unregister_device_ops(u32 type);
1208
1209 extern struct kvm_device_ops kvm_mpic_ops;
1210 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1211 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1212
1213 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1214
1215 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1216 {
1217 vcpu->spin_loop.in_spin_loop = val;
1218 }
1219 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1220 {
1221 vcpu->spin_loop.dy_eligible = val;
1222 }
1223
1224 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1225
1226 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1227 {
1228 }
1229
1230 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1231 {
1232 }
1233 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1234
1235 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1236 bool kvm_arch_has_irq_bypass(void);
1237 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1238 struct irq_bypass_producer *);
1239 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1240 struct irq_bypass_producer *);
1241 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1242 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1243 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1244 uint32_t guest_irq, bool set);
1245 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1246
1247 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1248 /* If we wakeup during the poll time, was it a sucessful poll? */
1249 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1250 {
1251 return vcpu->valid_wakeup;
1252 }
1253
1254 #else
1255 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1256 {
1257 return true;
1258 }
1259 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1260
1261 #endif