]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/kvm_host.h
Merge tag 'for-linus-urgent' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-jammy-kernel.git] / include / linux / kvm_host.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <asm/signal.h>
32
33 #include <linux/kvm.h>
34 #include <linux/kvm_para.h>
35
36 #include <linux/kvm_types.h>
37
38 #include <asm/kvm_host.h>
39 #include <linux/kvm_dirty_ring.h>
40
41 #ifndef KVM_MAX_VCPU_ID
42 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
43 #endif
44
45 /*
46 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
47 * in kvm, other bits are visible for userspace which are defined in
48 * include/linux/kvm_h.
49 */
50 #define KVM_MEMSLOT_INVALID (1UL << 16)
51
52 /*
53 * Bit 63 of the memslot generation number is an "update in-progress flag",
54 * e.g. is temporarily set for the duration of install_new_memslots().
55 * This flag effectively creates a unique generation number that is used to
56 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
57 * i.e. may (or may not) have come from the previous memslots generation.
58 *
59 * This is necessary because the actual memslots update is not atomic with
60 * respect to the generation number update. Updating the generation number
61 * first would allow a vCPU to cache a spte from the old memslots using the
62 * new generation number, and updating the generation number after switching
63 * to the new memslots would allow cache hits using the old generation number
64 * to reference the defunct memslots.
65 *
66 * This mechanism is used to prevent getting hits in KVM's caches while a
67 * memslot update is in-progress, and to prevent cache hits *after* updating
68 * the actual generation number against accesses that were inserted into the
69 * cache *before* the memslots were updated.
70 */
71 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
72
73 /* Two fragments for cross MMIO pages. */
74 #define KVM_MAX_MMIO_FRAGMENTS 2
75
76 #ifndef KVM_ADDRESS_SPACE_NUM
77 #define KVM_ADDRESS_SPACE_NUM 1
78 #endif
79
80 /*
81 * For the normal pfn, the highest 12 bits should be zero,
82 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
83 * mask bit 63 to indicate the noslot pfn.
84 */
85 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
86 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
87 #define KVM_PFN_NOSLOT (0x1ULL << 63)
88
89 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
90 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
91 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
92
93 /*
94 * error pfns indicate that the gfn is in slot but faild to
95 * translate it to pfn on host.
96 */
97 static inline bool is_error_pfn(kvm_pfn_t pfn)
98 {
99 return !!(pfn & KVM_PFN_ERR_MASK);
100 }
101
102 /*
103 * error_noslot pfns indicate that the gfn can not be
104 * translated to pfn - it is not in slot or failed to
105 * translate it to pfn.
106 */
107 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
108 {
109 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
110 }
111
112 /* noslot pfn indicates that the gfn is not in slot. */
113 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
114 {
115 return pfn == KVM_PFN_NOSLOT;
116 }
117
118 /*
119 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
120 * provide own defines and kvm_is_error_hva
121 */
122 #ifndef KVM_HVA_ERR_BAD
123
124 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
125 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
126
127 static inline bool kvm_is_error_hva(unsigned long addr)
128 {
129 return addr >= PAGE_OFFSET;
130 }
131
132 #endif
133
134 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
135
136 static inline bool is_error_page(struct page *page)
137 {
138 return IS_ERR(page);
139 }
140
141 #define KVM_REQUEST_MASK GENMASK(7,0)
142 #define KVM_REQUEST_NO_WAKEUP BIT(8)
143 #define KVM_REQUEST_WAIT BIT(9)
144 /*
145 * Architecture-independent vcpu->requests bit members
146 * Bits 4-7 are reserved for more arch-independent bits.
147 */
148 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
149 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
150 #define KVM_REQ_UNBLOCK 2
151 #define KVM_REQ_UNHALT 3
152 #define KVM_REQUEST_ARCH_BASE 8
153
154 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
155 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
156 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
157 })
158 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
159
160 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
161 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
162
163 extern struct mutex kvm_lock;
164 extern struct list_head vm_list;
165
166 struct kvm_io_range {
167 gpa_t addr;
168 int len;
169 struct kvm_io_device *dev;
170 };
171
172 #define NR_IOBUS_DEVS 1000
173
174 struct kvm_io_bus {
175 int dev_count;
176 int ioeventfd_count;
177 struct kvm_io_range range[];
178 };
179
180 enum kvm_bus {
181 KVM_MMIO_BUS,
182 KVM_PIO_BUS,
183 KVM_VIRTIO_CCW_NOTIFY_BUS,
184 KVM_FAST_MMIO_BUS,
185 KVM_NR_BUSES
186 };
187
188 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
189 int len, const void *val);
190 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
191 gpa_t addr, int len, const void *val, long cookie);
192 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
193 int len, void *val);
194 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
195 int len, struct kvm_io_device *dev);
196 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
197 struct kvm_io_device *dev);
198 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
199 gpa_t addr);
200
201 #ifdef CONFIG_KVM_ASYNC_PF
202 struct kvm_async_pf {
203 struct work_struct work;
204 struct list_head link;
205 struct list_head queue;
206 struct kvm_vcpu *vcpu;
207 struct mm_struct *mm;
208 gpa_t cr2_or_gpa;
209 unsigned long addr;
210 struct kvm_arch_async_pf arch;
211 bool wakeup_all;
212 bool notpresent_injected;
213 };
214
215 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
216 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
217 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
218 unsigned long hva, struct kvm_arch_async_pf *arch);
219 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
220 #endif
221
222 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
223 struct kvm_gfn_range {
224 struct kvm_memory_slot *slot;
225 gfn_t start;
226 gfn_t end;
227 pte_t pte;
228 bool may_block;
229 };
230 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
231 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
232 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
233 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
234 #endif
235
236 enum {
237 OUTSIDE_GUEST_MODE,
238 IN_GUEST_MODE,
239 EXITING_GUEST_MODE,
240 READING_SHADOW_PAGE_TABLES,
241 };
242
243 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
244
245 struct kvm_host_map {
246 /*
247 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
248 * a 'struct page' for it. When using mem= kernel parameter some memory
249 * can be used as guest memory but they are not managed by host
250 * kernel).
251 * If 'pfn' is not managed by the host kernel, this field is
252 * initialized to KVM_UNMAPPED_PAGE.
253 */
254 struct page *page;
255 void *hva;
256 kvm_pfn_t pfn;
257 kvm_pfn_t gfn;
258 };
259
260 /*
261 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
262 * directly to check for that.
263 */
264 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
265 {
266 return !!map->hva;
267 }
268
269 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
270 {
271 return single_task_running() && !need_resched() && ktime_before(cur, stop);
272 }
273
274 /*
275 * Sometimes a large or cross-page mmio needs to be broken up into separate
276 * exits for userspace servicing.
277 */
278 struct kvm_mmio_fragment {
279 gpa_t gpa;
280 void *data;
281 unsigned len;
282 };
283
284 struct kvm_vcpu {
285 struct kvm *kvm;
286 #ifdef CONFIG_PREEMPT_NOTIFIERS
287 struct preempt_notifier preempt_notifier;
288 #endif
289 int cpu;
290 int vcpu_id; /* id given by userspace at creation */
291 int vcpu_idx; /* index in kvm->vcpus array */
292 int srcu_idx;
293 int mode;
294 u64 requests;
295 unsigned long guest_debug;
296
297 int pre_pcpu;
298 struct list_head blocked_vcpu_list;
299
300 struct mutex mutex;
301 struct kvm_run *run;
302
303 struct rcuwait wait;
304 struct pid __rcu *pid;
305 int sigset_active;
306 sigset_t sigset;
307 struct kvm_vcpu_stat stat;
308 unsigned int halt_poll_ns;
309 bool valid_wakeup;
310
311 #ifdef CONFIG_HAS_IOMEM
312 int mmio_needed;
313 int mmio_read_completed;
314 int mmio_is_write;
315 int mmio_cur_fragment;
316 int mmio_nr_fragments;
317 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
318 #endif
319
320 #ifdef CONFIG_KVM_ASYNC_PF
321 struct {
322 u32 queued;
323 struct list_head queue;
324 struct list_head done;
325 spinlock_t lock;
326 } async_pf;
327 #endif
328
329 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
330 /*
331 * Cpu relax intercept or pause loop exit optimization
332 * in_spin_loop: set when a vcpu does a pause loop exit
333 * or cpu relax intercepted.
334 * dy_eligible: indicates whether vcpu is eligible for directed yield.
335 */
336 struct {
337 bool in_spin_loop;
338 bool dy_eligible;
339 } spin_loop;
340 #endif
341 bool preempted;
342 bool ready;
343 struct kvm_vcpu_arch arch;
344 struct kvm_dirty_ring dirty_ring;
345 };
346
347 /* must be called with irqs disabled */
348 static __always_inline void guest_enter_irqoff(void)
349 {
350 /*
351 * This is running in ioctl context so its safe to assume that it's the
352 * stime pending cputime to flush.
353 */
354 instrumentation_begin();
355 vtime_account_guest_enter();
356 instrumentation_end();
357
358 /*
359 * KVM does not hold any references to rcu protected data when it
360 * switches CPU into a guest mode. In fact switching to a guest mode
361 * is very similar to exiting to userspace from rcu point of view. In
362 * addition CPU may stay in a guest mode for quite a long time (up to
363 * one time slice). Lets treat guest mode as quiescent state, just like
364 * we do with user-mode execution.
365 */
366 if (!context_tracking_guest_enter()) {
367 instrumentation_begin();
368 rcu_virt_note_context_switch(smp_processor_id());
369 instrumentation_end();
370 }
371 }
372
373 static __always_inline void guest_exit_irqoff(void)
374 {
375 context_tracking_guest_exit();
376
377 instrumentation_begin();
378 /* Flush the guest cputime we spent on the guest */
379 vtime_account_guest_exit();
380 instrumentation_end();
381 }
382
383 static inline void guest_exit(void)
384 {
385 unsigned long flags;
386
387 local_irq_save(flags);
388 guest_exit_irqoff();
389 local_irq_restore(flags);
390 }
391
392 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
393 {
394 /*
395 * The memory barrier ensures a previous write to vcpu->requests cannot
396 * be reordered with the read of vcpu->mode. It pairs with the general
397 * memory barrier following the write of vcpu->mode in VCPU RUN.
398 */
399 smp_mb__before_atomic();
400 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
401 }
402
403 /*
404 * Some of the bitops functions do not support too long bitmaps.
405 * This number must be determined not to exceed such limits.
406 */
407 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
408
409 struct kvm_memory_slot {
410 gfn_t base_gfn;
411 unsigned long npages;
412 unsigned long *dirty_bitmap;
413 struct kvm_arch_memory_slot arch;
414 unsigned long userspace_addr;
415 u32 flags;
416 short id;
417 u16 as_id;
418 };
419
420 static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot)
421 {
422 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
423 }
424
425 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
426 {
427 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
428 }
429
430 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
431 {
432 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
433
434 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
435 }
436
437 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
438 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
439 #endif
440
441 struct kvm_s390_adapter_int {
442 u64 ind_addr;
443 u64 summary_addr;
444 u64 ind_offset;
445 u32 summary_offset;
446 u32 adapter_id;
447 };
448
449 struct kvm_hv_sint {
450 u32 vcpu;
451 u32 sint;
452 };
453
454 struct kvm_kernel_irq_routing_entry {
455 u32 gsi;
456 u32 type;
457 int (*set)(struct kvm_kernel_irq_routing_entry *e,
458 struct kvm *kvm, int irq_source_id, int level,
459 bool line_status);
460 union {
461 struct {
462 unsigned irqchip;
463 unsigned pin;
464 } irqchip;
465 struct {
466 u32 address_lo;
467 u32 address_hi;
468 u32 data;
469 u32 flags;
470 u32 devid;
471 } msi;
472 struct kvm_s390_adapter_int adapter;
473 struct kvm_hv_sint hv_sint;
474 };
475 struct hlist_node link;
476 };
477
478 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
479 struct kvm_irq_routing_table {
480 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
481 u32 nr_rt_entries;
482 /*
483 * Array indexed by gsi. Each entry contains list of irq chips
484 * the gsi is connected to.
485 */
486 struct hlist_head map[];
487 };
488 #endif
489
490 #ifndef KVM_PRIVATE_MEM_SLOTS
491 #define KVM_PRIVATE_MEM_SLOTS 0
492 #endif
493
494 #define KVM_MEM_SLOTS_NUM SHRT_MAX
495 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
496
497 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
498 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
499 {
500 return 0;
501 }
502 #endif
503
504 /*
505 * Note:
506 * memslots are not sorted by id anymore, please use id_to_memslot()
507 * to get the memslot by its id.
508 */
509 struct kvm_memslots {
510 u64 generation;
511 /* The mapping table from slot id to the index in memslots[]. */
512 short id_to_index[KVM_MEM_SLOTS_NUM];
513 atomic_t lru_slot;
514 int used_slots;
515 struct kvm_memory_slot memslots[];
516 };
517
518 struct kvm {
519 #ifdef KVM_HAVE_MMU_RWLOCK
520 rwlock_t mmu_lock;
521 #else
522 spinlock_t mmu_lock;
523 #endif /* KVM_HAVE_MMU_RWLOCK */
524
525 struct mutex slots_lock;
526 struct mm_struct *mm; /* userspace tied to this vm */
527 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
528 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
529
530 /*
531 * created_vcpus is protected by kvm->lock, and is incremented
532 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
533 * incremented after storing the kvm_vcpu pointer in vcpus,
534 * and is accessed atomically.
535 */
536 atomic_t online_vcpus;
537 int created_vcpus;
538 int last_boosted_vcpu;
539 struct list_head vm_list;
540 struct mutex lock;
541 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
542 #ifdef CONFIG_HAVE_KVM_EVENTFD
543 struct {
544 spinlock_t lock;
545 struct list_head items;
546 struct list_head resampler_list;
547 struct mutex resampler_lock;
548 } irqfds;
549 struct list_head ioeventfds;
550 #endif
551 struct kvm_vm_stat stat;
552 struct kvm_arch arch;
553 refcount_t users_count;
554 #ifdef CONFIG_KVM_MMIO
555 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
556 spinlock_t ring_lock;
557 struct list_head coalesced_zones;
558 #endif
559
560 struct mutex irq_lock;
561 #ifdef CONFIG_HAVE_KVM_IRQCHIP
562 /*
563 * Update side is protected by irq_lock.
564 */
565 struct kvm_irq_routing_table __rcu *irq_routing;
566 #endif
567 #ifdef CONFIG_HAVE_KVM_IRQFD
568 struct hlist_head irq_ack_notifier_list;
569 #endif
570
571 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
572 struct mmu_notifier mmu_notifier;
573 unsigned long mmu_notifier_seq;
574 long mmu_notifier_count;
575 unsigned long mmu_notifier_range_start;
576 unsigned long mmu_notifier_range_end;
577 #endif
578 long tlbs_dirty;
579 struct list_head devices;
580 u64 manual_dirty_log_protect;
581 struct dentry *debugfs_dentry;
582 struct kvm_stat_data **debugfs_stat_data;
583 struct srcu_struct srcu;
584 struct srcu_struct irq_srcu;
585 pid_t userspace_pid;
586 unsigned int max_halt_poll_ns;
587 u32 dirty_ring_size;
588 };
589
590 #define kvm_err(fmt, ...) \
591 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
592 #define kvm_info(fmt, ...) \
593 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
594 #define kvm_debug(fmt, ...) \
595 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
596 #define kvm_debug_ratelimited(fmt, ...) \
597 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
598 ## __VA_ARGS__)
599 #define kvm_pr_unimpl(fmt, ...) \
600 pr_err_ratelimited("kvm [%i]: " fmt, \
601 task_tgid_nr(current), ## __VA_ARGS__)
602
603 /* The guest did something we don't support. */
604 #define vcpu_unimpl(vcpu, fmt, ...) \
605 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
606 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
607
608 #define vcpu_debug(vcpu, fmt, ...) \
609 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
610 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
611 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
612 ## __VA_ARGS__)
613 #define vcpu_err(vcpu, fmt, ...) \
614 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
615
616 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
617 {
618 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
619 }
620
621 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
622 {
623 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
624 lockdep_is_held(&kvm->slots_lock) ||
625 !refcount_read(&kvm->users_count));
626 }
627
628 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
629 {
630 int num_vcpus = atomic_read(&kvm->online_vcpus);
631 i = array_index_nospec(i, num_vcpus);
632
633 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
634 smp_rmb();
635 return kvm->vcpus[i];
636 }
637
638 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
639 for (idx = 0; \
640 idx < atomic_read(&kvm->online_vcpus) && \
641 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
642 idx++)
643
644 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
645 {
646 struct kvm_vcpu *vcpu = NULL;
647 int i;
648
649 if (id < 0)
650 return NULL;
651 if (id < KVM_MAX_VCPUS)
652 vcpu = kvm_get_vcpu(kvm, id);
653 if (vcpu && vcpu->vcpu_id == id)
654 return vcpu;
655 kvm_for_each_vcpu(i, vcpu, kvm)
656 if (vcpu->vcpu_id == id)
657 return vcpu;
658 return NULL;
659 }
660
661 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
662 {
663 return vcpu->vcpu_idx;
664 }
665
666 #define kvm_for_each_memslot(memslot, slots) \
667 for (memslot = &slots->memslots[0]; \
668 memslot < slots->memslots + slots->used_slots; memslot++) \
669 if (WARN_ON_ONCE(!memslot->npages)) { \
670 } else
671
672 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
673
674 void vcpu_load(struct kvm_vcpu *vcpu);
675 void vcpu_put(struct kvm_vcpu *vcpu);
676
677 #ifdef __KVM_HAVE_IOAPIC
678 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
679 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
680 #else
681 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
682 {
683 }
684 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
685 {
686 }
687 #endif
688
689 #ifdef CONFIG_HAVE_KVM_IRQFD
690 int kvm_irqfd_init(void);
691 void kvm_irqfd_exit(void);
692 #else
693 static inline int kvm_irqfd_init(void)
694 {
695 return 0;
696 }
697
698 static inline void kvm_irqfd_exit(void)
699 {
700 }
701 #endif
702 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
703 struct module *module);
704 void kvm_exit(void);
705
706 void kvm_get_kvm(struct kvm *kvm);
707 void kvm_put_kvm(struct kvm *kvm);
708 bool file_is_kvm(struct file *file);
709 void kvm_put_kvm_no_destroy(struct kvm *kvm);
710
711 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
712 {
713 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
714 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
715 lockdep_is_held(&kvm->slots_lock) ||
716 !refcount_read(&kvm->users_count));
717 }
718
719 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
720 {
721 return __kvm_memslots(kvm, 0);
722 }
723
724 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
725 {
726 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
727
728 return __kvm_memslots(vcpu->kvm, as_id);
729 }
730
731 static inline
732 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
733 {
734 int index = slots->id_to_index[id];
735 struct kvm_memory_slot *slot;
736
737 if (index < 0)
738 return NULL;
739
740 slot = &slots->memslots[index];
741
742 WARN_ON(slot->id != id);
743 return slot;
744 }
745
746 /*
747 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
748 * - create a new memory slot
749 * - delete an existing memory slot
750 * - modify an existing memory slot
751 * -- move it in the guest physical memory space
752 * -- just change its flags
753 *
754 * Since flags can be changed by some of these operations, the following
755 * differentiation is the best we can do for __kvm_set_memory_region():
756 */
757 enum kvm_mr_change {
758 KVM_MR_CREATE,
759 KVM_MR_DELETE,
760 KVM_MR_MOVE,
761 KVM_MR_FLAGS_ONLY,
762 };
763
764 int kvm_set_memory_region(struct kvm *kvm,
765 const struct kvm_userspace_memory_region *mem);
766 int __kvm_set_memory_region(struct kvm *kvm,
767 const struct kvm_userspace_memory_region *mem);
768 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
769 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
770 int kvm_arch_prepare_memory_region(struct kvm *kvm,
771 struct kvm_memory_slot *memslot,
772 const struct kvm_userspace_memory_region *mem,
773 enum kvm_mr_change change);
774 void kvm_arch_commit_memory_region(struct kvm *kvm,
775 const struct kvm_userspace_memory_region *mem,
776 struct kvm_memory_slot *old,
777 const struct kvm_memory_slot *new,
778 enum kvm_mr_change change);
779 /* flush all memory translations */
780 void kvm_arch_flush_shadow_all(struct kvm *kvm);
781 /* flush memory translations pointing to 'slot' */
782 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
783 struct kvm_memory_slot *slot);
784
785 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
786 struct page **pages, int nr_pages);
787
788 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
789 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
790 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
791 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
792 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
793 bool *writable);
794 void kvm_release_page_clean(struct page *page);
795 void kvm_release_page_dirty(struct page *page);
796 void kvm_set_page_accessed(struct page *page);
797
798 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
799 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
800 bool *writable);
801 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
802 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
803 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
804 bool atomic, bool *async, bool write_fault,
805 bool *writable, hva_t *hva);
806
807 void kvm_release_pfn_clean(kvm_pfn_t pfn);
808 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
809 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
810 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
811 void kvm_get_pfn(kvm_pfn_t pfn);
812
813 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
814 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
815 int len);
816 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
817 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
818 void *data, unsigned long len);
819 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
820 void *data, unsigned int offset,
821 unsigned long len);
822 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
823 int offset, int len);
824 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
825 unsigned long len);
826 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
827 void *data, unsigned long len);
828 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
829 void *data, unsigned int offset,
830 unsigned long len);
831 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
832 gpa_t gpa, unsigned long len);
833
834 #define __kvm_get_guest(kvm, gfn, offset, v) \
835 ({ \
836 unsigned long __addr = gfn_to_hva(kvm, gfn); \
837 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
838 int __ret = -EFAULT; \
839 \
840 if (!kvm_is_error_hva(__addr)) \
841 __ret = get_user(v, __uaddr); \
842 __ret; \
843 })
844
845 #define kvm_get_guest(kvm, gpa, v) \
846 ({ \
847 gpa_t __gpa = gpa; \
848 struct kvm *__kvm = kvm; \
849 \
850 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
851 offset_in_page(__gpa), v); \
852 })
853
854 #define __kvm_put_guest(kvm, gfn, offset, v) \
855 ({ \
856 unsigned long __addr = gfn_to_hva(kvm, gfn); \
857 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
858 int __ret = -EFAULT; \
859 \
860 if (!kvm_is_error_hva(__addr)) \
861 __ret = put_user(v, __uaddr); \
862 if (!__ret) \
863 mark_page_dirty(kvm, gfn); \
864 __ret; \
865 })
866
867 #define kvm_put_guest(kvm, gpa, v) \
868 ({ \
869 gpa_t __gpa = gpa; \
870 struct kvm *__kvm = kvm; \
871 \
872 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
873 offset_in_page(__gpa), v); \
874 })
875
876 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
877 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
878 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
879 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
880 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
881 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn);
882 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
883
884 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
885 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
886 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
887 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
888 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
889 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
890 struct gfn_to_pfn_cache *cache, bool atomic);
891 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
892 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
893 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
894 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
895 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
896 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
897 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
898 int len);
899 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
900 unsigned long len);
901 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
902 unsigned long len);
903 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
904 int offset, int len);
905 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
906 unsigned long len);
907 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
908
909 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
910 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
911
912 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
913 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
914 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
915 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
916 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
917 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
918 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
919
920 void kvm_flush_remote_tlbs(struct kvm *kvm);
921 void kvm_reload_remote_mmus(struct kvm *kvm);
922
923 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
924 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
925 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
926 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
927 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
928 #endif
929
930 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
931 struct kvm_vcpu *except,
932 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
933 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
934 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
935 struct kvm_vcpu *except);
936 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
937 unsigned long *vcpu_bitmap);
938
939 long kvm_arch_dev_ioctl(struct file *filp,
940 unsigned int ioctl, unsigned long arg);
941 long kvm_arch_vcpu_ioctl(struct file *filp,
942 unsigned int ioctl, unsigned long arg);
943 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
944
945 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
946
947 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
948 struct kvm_memory_slot *slot,
949 gfn_t gfn_offset,
950 unsigned long mask);
951 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
952
953 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
954 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
955 const struct kvm_memory_slot *memslot);
956 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
957 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
958 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
959 int *is_dirty, struct kvm_memory_slot **memslot);
960 #endif
961
962 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
963 bool line_status);
964 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
965 struct kvm_enable_cap *cap);
966 long kvm_arch_vm_ioctl(struct file *filp,
967 unsigned int ioctl, unsigned long arg);
968
969 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
970 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
971
972 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
973 struct kvm_translation *tr);
974
975 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
976 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
977 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
978 struct kvm_sregs *sregs);
979 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
980 struct kvm_sregs *sregs);
981 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
982 struct kvm_mp_state *mp_state);
983 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
984 struct kvm_mp_state *mp_state);
985 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
986 struct kvm_guest_debug *dbg);
987 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
988
989 int kvm_arch_init(void *opaque);
990 void kvm_arch_exit(void);
991
992 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
993
994 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
995 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
996 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
997 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
998 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
999 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1000
1001 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1002 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1003 #endif
1004
1005 int kvm_arch_hardware_enable(void);
1006 void kvm_arch_hardware_disable(void);
1007 int kvm_arch_hardware_setup(void *opaque);
1008 void kvm_arch_hardware_unsetup(void);
1009 int kvm_arch_check_processor_compat(void *opaque);
1010 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1011 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1012 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1013 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1014 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1015 int kvm_arch_post_init_vm(struct kvm *kvm);
1016 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1017
1018 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1019 /*
1020 * All architectures that want to use vzalloc currently also
1021 * need their own kvm_arch_alloc_vm implementation.
1022 */
1023 static inline struct kvm *kvm_arch_alloc_vm(void)
1024 {
1025 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1026 }
1027
1028 static inline void kvm_arch_free_vm(struct kvm *kvm)
1029 {
1030 kfree(kvm);
1031 }
1032 #endif
1033
1034 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1035 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1036 {
1037 return -ENOTSUPP;
1038 }
1039 #endif
1040
1041 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1042 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1043 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1044 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1045 #else
1046 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1047 {
1048 }
1049
1050 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1051 {
1052 }
1053
1054 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1055 {
1056 return false;
1057 }
1058 #endif
1059 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1060 void kvm_arch_start_assignment(struct kvm *kvm);
1061 void kvm_arch_end_assignment(struct kvm *kvm);
1062 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1063 #else
1064 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1065 {
1066 }
1067
1068 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1069 {
1070 }
1071
1072 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1073 {
1074 return false;
1075 }
1076 #endif
1077
1078 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1079 {
1080 #ifdef __KVM_HAVE_ARCH_WQP
1081 return vcpu->arch.waitp;
1082 #else
1083 return &vcpu->wait;
1084 #endif
1085 }
1086
1087 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1088 /*
1089 * returns true if the virtual interrupt controller is initialized and
1090 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1091 * controller is dynamically instantiated and this is not always true.
1092 */
1093 bool kvm_arch_intc_initialized(struct kvm *kvm);
1094 #else
1095 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1096 {
1097 return true;
1098 }
1099 #endif
1100
1101 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1102 void kvm_arch_destroy_vm(struct kvm *kvm);
1103 void kvm_arch_sync_events(struct kvm *kvm);
1104
1105 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1106
1107 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1108 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1109 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1110
1111 struct kvm_irq_ack_notifier {
1112 struct hlist_node link;
1113 unsigned gsi;
1114 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1115 };
1116
1117 int kvm_irq_map_gsi(struct kvm *kvm,
1118 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1119 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1120
1121 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1122 bool line_status);
1123 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1124 int irq_source_id, int level, bool line_status);
1125 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1126 struct kvm *kvm, int irq_source_id,
1127 int level, bool line_status);
1128 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1129 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1130 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1131 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1132 struct kvm_irq_ack_notifier *kian);
1133 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1134 struct kvm_irq_ack_notifier *kian);
1135 int kvm_request_irq_source_id(struct kvm *kvm);
1136 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1137 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1138
1139 /*
1140 * search_memslots() and __gfn_to_memslot() are here because they are
1141 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1142 * gfn_to_memslot() itself isn't here as an inline because that would
1143 * bloat other code too much.
1144 *
1145 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1146 */
1147 static inline struct kvm_memory_slot *
1148 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1149 {
1150 int start = 0, end = slots->used_slots;
1151 int slot = atomic_read(&slots->lru_slot);
1152 struct kvm_memory_slot *memslots = slots->memslots;
1153
1154 if (unlikely(!slots->used_slots))
1155 return NULL;
1156
1157 if (gfn >= memslots[slot].base_gfn &&
1158 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1159 return &memslots[slot];
1160
1161 while (start < end) {
1162 slot = start + (end - start) / 2;
1163
1164 if (gfn >= memslots[slot].base_gfn)
1165 end = slot;
1166 else
1167 start = slot + 1;
1168 }
1169
1170 if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1171 gfn < memslots[start].base_gfn + memslots[start].npages) {
1172 atomic_set(&slots->lru_slot, start);
1173 return &memslots[start];
1174 }
1175
1176 return NULL;
1177 }
1178
1179 static inline struct kvm_memory_slot *
1180 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1181 {
1182 return search_memslots(slots, gfn);
1183 }
1184
1185 static inline unsigned long
1186 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1187 {
1188 /*
1189 * The index was checked originally in search_memslots. To avoid
1190 * that a malicious guest builds a Spectre gadget out of e.g. page
1191 * table walks, do not let the processor speculate loads outside
1192 * the guest's registered memslots.
1193 */
1194 unsigned long offset = gfn - slot->base_gfn;
1195 offset = array_index_nospec(offset, slot->npages);
1196 return slot->userspace_addr + offset * PAGE_SIZE;
1197 }
1198
1199 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1200 {
1201 return gfn_to_memslot(kvm, gfn)->id;
1202 }
1203
1204 static inline gfn_t
1205 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1206 {
1207 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1208
1209 return slot->base_gfn + gfn_offset;
1210 }
1211
1212 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1213 {
1214 return (gpa_t)gfn << PAGE_SHIFT;
1215 }
1216
1217 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1218 {
1219 return (gfn_t)(gpa >> PAGE_SHIFT);
1220 }
1221
1222 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1223 {
1224 return (hpa_t)pfn << PAGE_SHIFT;
1225 }
1226
1227 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1228 gpa_t gpa)
1229 {
1230 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1231 }
1232
1233 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1234 {
1235 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1236
1237 return kvm_is_error_hva(hva);
1238 }
1239
1240 enum kvm_stat_kind {
1241 KVM_STAT_VM,
1242 KVM_STAT_VCPU,
1243 };
1244
1245 struct kvm_stat_data {
1246 struct kvm *kvm;
1247 struct kvm_stats_debugfs_item *dbgfs_item;
1248 };
1249
1250 struct kvm_stats_debugfs_item {
1251 const char *name;
1252 int offset;
1253 enum kvm_stat_kind kind;
1254 int mode;
1255 };
1256
1257 #define KVM_DBGFS_GET_MODE(dbgfs_item) \
1258 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1259
1260 #define VM_STAT(n, x, ...) \
1261 { n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1262 #define VCPU_STAT(n, x, ...) \
1263 { n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1264
1265 extern struct kvm_stats_debugfs_item debugfs_entries[];
1266 extern struct dentry *kvm_debugfs_dir;
1267
1268 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1269 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1270 {
1271 if (unlikely(kvm->mmu_notifier_count))
1272 return 1;
1273 /*
1274 * Ensure the read of mmu_notifier_count happens before the read
1275 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1276 * mmu_notifier_invalidate_range_end to make sure that the caller
1277 * either sees the old (non-zero) value of mmu_notifier_count or
1278 * the new (incremented) value of mmu_notifier_seq.
1279 * PowerPC Book3s HV KVM calls this under a per-page lock
1280 * rather than under kvm->mmu_lock, for scalability, so
1281 * can't rely on kvm->mmu_lock to keep things ordered.
1282 */
1283 smp_rmb();
1284 if (kvm->mmu_notifier_seq != mmu_seq)
1285 return 1;
1286 return 0;
1287 }
1288
1289 static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1290 unsigned long mmu_seq,
1291 unsigned long hva)
1292 {
1293 lockdep_assert_held(&kvm->mmu_lock);
1294 /*
1295 * If mmu_notifier_count is non-zero, then the range maintained by
1296 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1297 * might be being invalidated. Note that it may include some false
1298 * positives, due to shortcuts when handing concurrent invalidations.
1299 */
1300 if (unlikely(kvm->mmu_notifier_count) &&
1301 hva >= kvm->mmu_notifier_range_start &&
1302 hva < kvm->mmu_notifier_range_end)
1303 return 1;
1304 if (kvm->mmu_notifier_seq != mmu_seq)
1305 return 1;
1306 return 0;
1307 }
1308 #endif
1309
1310 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1311
1312 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1313
1314 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1315 int kvm_set_irq_routing(struct kvm *kvm,
1316 const struct kvm_irq_routing_entry *entries,
1317 unsigned nr,
1318 unsigned flags);
1319 int kvm_set_routing_entry(struct kvm *kvm,
1320 struct kvm_kernel_irq_routing_entry *e,
1321 const struct kvm_irq_routing_entry *ue);
1322 void kvm_free_irq_routing(struct kvm *kvm);
1323
1324 #else
1325
1326 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1327
1328 #endif
1329
1330 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1331
1332 #ifdef CONFIG_HAVE_KVM_EVENTFD
1333
1334 void kvm_eventfd_init(struct kvm *kvm);
1335 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1336
1337 #ifdef CONFIG_HAVE_KVM_IRQFD
1338 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1339 void kvm_irqfd_release(struct kvm *kvm);
1340 void kvm_irq_routing_update(struct kvm *);
1341 #else
1342 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1343 {
1344 return -EINVAL;
1345 }
1346
1347 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1348 #endif
1349
1350 #else
1351
1352 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1353
1354 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1355 {
1356 return -EINVAL;
1357 }
1358
1359 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1360
1361 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1362 static inline void kvm_irq_routing_update(struct kvm *kvm)
1363 {
1364 }
1365 #endif
1366
1367 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1368 {
1369 return -ENOSYS;
1370 }
1371
1372 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1373
1374 void kvm_arch_irq_routing_update(struct kvm *kvm);
1375
1376 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1377 {
1378 /*
1379 * Ensure the rest of the request is published to kvm_check_request's
1380 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1381 */
1382 smp_wmb();
1383 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1384 }
1385
1386 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1387 {
1388 return READ_ONCE(vcpu->requests);
1389 }
1390
1391 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1392 {
1393 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1394 }
1395
1396 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1397 {
1398 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1399 }
1400
1401 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1402 {
1403 if (kvm_test_request(req, vcpu)) {
1404 kvm_clear_request(req, vcpu);
1405
1406 /*
1407 * Ensure the rest of the request is visible to kvm_check_request's
1408 * caller. Paired with the smp_wmb in kvm_make_request.
1409 */
1410 smp_mb__after_atomic();
1411 return true;
1412 } else {
1413 return false;
1414 }
1415 }
1416
1417 extern bool kvm_rebooting;
1418
1419 extern unsigned int halt_poll_ns;
1420 extern unsigned int halt_poll_ns_grow;
1421 extern unsigned int halt_poll_ns_grow_start;
1422 extern unsigned int halt_poll_ns_shrink;
1423
1424 struct kvm_device {
1425 const struct kvm_device_ops *ops;
1426 struct kvm *kvm;
1427 void *private;
1428 struct list_head vm_node;
1429 };
1430
1431 /* create, destroy, and name are mandatory */
1432 struct kvm_device_ops {
1433 const char *name;
1434
1435 /*
1436 * create is called holding kvm->lock and any operations not suitable
1437 * to do while holding the lock should be deferred to init (see
1438 * below).
1439 */
1440 int (*create)(struct kvm_device *dev, u32 type);
1441
1442 /*
1443 * init is called after create if create is successful and is called
1444 * outside of holding kvm->lock.
1445 */
1446 void (*init)(struct kvm_device *dev);
1447
1448 /*
1449 * Destroy is responsible for freeing dev.
1450 *
1451 * Destroy may be called before or after destructors are called
1452 * on emulated I/O regions, depending on whether a reference is
1453 * held by a vcpu or other kvm component that gets destroyed
1454 * after the emulated I/O.
1455 */
1456 void (*destroy)(struct kvm_device *dev);
1457
1458 /*
1459 * Release is an alternative method to free the device. It is
1460 * called when the device file descriptor is closed. Once
1461 * release is called, the destroy method will not be called
1462 * anymore as the device is removed from the device list of
1463 * the VM. kvm->lock is held.
1464 */
1465 void (*release)(struct kvm_device *dev);
1466
1467 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1468 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1469 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1470 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1471 unsigned long arg);
1472 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1473 };
1474
1475 void kvm_device_get(struct kvm_device *dev);
1476 void kvm_device_put(struct kvm_device *dev);
1477 struct kvm_device *kvm_device_from_filp(struct file *filp);
1478 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1479 void kvm_unregister_device_ops(u32 type);
1480
1481 extern struct kvm_device_ops kvm_mpic_ops;
1482 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1483 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1484
1485 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1486
1487 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1488 {
1489 vcpu->spin_loop.in_spin_loop = val;
1490 }
1491 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1492 {
1493 vcpu->spin_loop.dy_eligible = val;
1494 }
1495
1496 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1497
1498 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1499 {
1500 }
1501
1502 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1503 {
1504 }
1505 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1506
1507 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1508 {
1509 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1510 !(memslot->flags & KVM_MEMSLOT_INVALID));
1511 }
1512
1513 struct kvm_vcpu *kvm_get_running_vcpu(void);
1514 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1515
1516 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1517 bool kvm_arch_has_irq_bypass(void);
1518 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1519 struct irq_bypass_producer *);
1520 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1521 struct irq_bypass_producer *);
1522 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1523 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1524 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1525 uint32_t guest_irq, bool set);
1526 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1527
1528 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1529 /* If we wakeup during the poll time, was it a sucessful poll? */
1530 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1531 {
1532 return vcpu->valid_wakeup;
1533 }
1534
1535 #else
1536 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1537 {
1538 return true;
1539 }
1540 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1541
1542 #ifdef CONFIG_HAVE_KVM_NO_POLL
1543 /* Callback that tells if we must not poll */
1544 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1545 #else
1546 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1547 {
1548 return false;
1549 }
1550 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1551
1552 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1553 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1554 unsigned int ioctl, unsigned long arg);
1555 #else
1556 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1557 unsigned int ioctl,
1558 unsigned long arg)
1559 {
1560 return -ENOIOCTLCMD;
1561 }
1562 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1563
1564 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1565 unsigned long start, unsigned long end);
1566
1567 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1568 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1569 #else
1570 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1571 {
1572 return 0;
1573 }
1574 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1575
1576 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1577
1578 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1579 uintptr_t data, const char *name,
1580 struct task_struct **thread_ptr);
1581
1582 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
1583 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1584 {
1585 vcpu->run->exit_reason = KVM_EXIT_INTR;
1586 vcpu->stat.signal_exits++;
1587 }
1588 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1589
1590 /*
1591 * This defines how many reserved entries we want to keep before we
1592 * kick the vcpu to the userspace to avoid dirty ring full. This
1593 * value can be tuned to higher if e.g. PML is enabled on the host.
1594 */
1595 #define KVM_DIRTY_RING_RSVD_ENTRIES 64
1596
1597 /* Max number of entries allowed for each kvm dirty ring */
1598 #define KVM_DIRTY_RING_MAX_ENTRIES 65536
1599
1600 #endif