]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/kvm_host.h
9ee7f350473bfcd4eb885769c7eaf675d40bd0fd
[mirror_ubuntu-jammy-kernel.git] / include / linux / kvm_host.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <asm/signal.h>
33
34 #include <linux/kvm.h>
35 #include <linux/kvm_para.h>
36
37 #include <linux/kvm_types.h>
38
39 #include <asm/kvm_host.h>
40 #include <linux/kvm_dirty_ring.h>
41
42 #ifndef KVM_MAX_VCPU_ID
43 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
44 #endif
45
46 /*
47 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
48 * in kvm, other bits are visible for userspace which are defined in
49 * include/linux/kvm_h.
50 */
51 #define KVM_MEMSLOT_INVALID (1UL << 16)
52
53 /*
54 * Bit 63 of the memslot generation number is an "update in-progress flag",
55 * e.g. is temporarily set for the duration of install_new_memslots().
56 * This flag effectively creates a unique generation number that is used to
57 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
58 * i.e. may (or may not) have come from the previous memslots generation.
59 *
60 * This is necessary because the actual memslots update is not atomic with
61 * respect to the generation number update. Updating the generation number
62 * first would allow a vCPU to cache a spte from the old memslots using the
63 * new generation number, and updating the generation number after switching
64 * to the new memslots would allow cache hits using the old generation number
65 * to reference the defunct memslots.
66 *
67 * This mechanism is used to prevent getting hits in KVM's caches while a
68 * memslot update is in-progress, and to prevent cache hits *after* updating
69 * the actual generation number against accesses that were inserted into the
70 * cache *before* the memslots were updated.
71 */
72 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
73
74 /* Two fragments for cross MMIO pages. */
75 #define KVM_MAX_MMIO_FRAGMENTS 2
76
77 #ifndef KVM_ADDRESS_SPACE_NUM
78 #define KVM_ADDRESS_SPACE_NUM 1
79 #endif
80
81 /*
82 * For the normal pfn, the highest 12 bits should be zero,
83 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
84 * mask bit 63 to indicate the noslot pfn.
85 */
86 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
87 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
88 #define KVM_PFN_NOSLOT (0x1ULL << 63)
89
90 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
91 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
92 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
93
94 /*
95 * error pfns indicate that the gfn is in slot but faild to
96 * translate it to pfn on host.
97 */
98 static inline bool is_error_pfn(kvm_pfn_t pfn)
99 {
100 return !!(pfn & KVM_PFN_ERR_MASK);
101 }
102
103 /*
104 * error_noslot pfns indicate that the gfn can not be
105 * translated to pfn - it is not in slot or failed to
106 * translate it to pfn.
107 */
108 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
109 {
110 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
111 }
112
113 /* noslot pfn indicates that the gfn is not in slot. */
114 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
115 {
116 return pfn == KVM_PFN_NOSLOT;
117 }
118
119 /*
120 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
121 * provide own defines and kvm_is_error_hva
122 */
123 #ifndef KVM_HVA_ERR_BAD
124
125 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
126 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
127
128 static inline bool kvm_is_error_hva(unsigned long addr)
129 {
130 return addr >= PAGE_OFFSET;
131 }
132
133 #endif
134
135 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
136
137 static inline bool is_error_page(struct page *page)
138 {
139 return IS_ERR(page);
140 }
141
142 #define KVM_REQUEST_MASK GENMASK(7,0)
143 #define KVM_REQUEST_NO_WAKEUP BIT(8)
144 #define KVM_REQUEST_WAIT BIT(9)
145 /*
146 * Architecture-independent vcpu->requests bit members
147 * Bits 4-7 are reserved for more arch-independent bits.
148 */
149 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
150 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
151 #define KVM_REQ_UNBLOCK 2
152 #define KVM_REQ_UNHALT 3
153 #define KVM_REQUEST_ARCH_BASE 8
154
155 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
156 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
157 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
158 })
159 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
160
161 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
162 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
163
164 extern struct mutex kvm_lock;
165 extern struct list_head vm_list;
166
167 struct kvm_io_range {
168 gpa_t addr;
169 int len;
170 struct kvm_io_device *dev;
171 };
172
173 #define NR_IOBUS_DEVS 1000
174
175 struct kvm_io_bus {
176 int dev_count;
177 int ioeventfd_count;
178 struct kvm_io_range range[];
179 };
180
181 enum kvm_bus {
182 KVM_MMIO_BUS,
183 KVM_PIO_BUS,
184 KVM_VIRTIO_CCW_NOTIFY_BUS,
185 KVM_FAST_MMIO_BUS,
186 KVM_NR_BUSES
187 };
188
189 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
190 int len, const void *val);
191 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
192 gpa_t addr, int len, const void *val, long cookie);
193 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
194 int len, void *val);
195 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
196 int len, struct kvm_io_device *dev);
197 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
198 struct kvm_io_device *dev);
199 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
200 gpa_t addr);
201
202 #ifdef CONFIG_KVM_ASYNC_PF
203 struct kvm_async_pf {
204 struct work_struct work;
205 struct list_head link;
206 struct list_head queue;
207 struct kvm_vcpu *vcpu;
208 struct mm_struct *mm;
209 gpa_t cr2_or_gpa;
210 unsigned long addr;
211 struct kvm_arch_async_pf arch;
212 bool wakeup_all;
213 bool notpresent_injected;
214 };
215
216 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
217 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
218 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
219 unsigned long hva, struct kvm_arch_async_pf *arch);
220 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
221 #endif
222
223 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
224 struct kvm_gfn_range {
225 struct kvm_memory_slot *slot;
226 gfn_t start;
227 gfn_t end;
228 pte_t pte;
229 bool may_block;
230 };
231 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
232 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
233 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
234 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
235 #endif
236
237 enum {
238 OUTSIDE_GUEST_MODE,
239 IN_GUEST_MODE,
240 EXITING_GUEST_MODE,
241 READING_SHADOW_PAGE_TABLES,
242 };
243
244 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
245
246 struct kvm_host_map {
247 /*
248 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
249 * a 'struct page' for it. When using mem= kernel parameter some memory
250 * can be used as guest memory but they are not managed by host
251 * kernel).
252 * If 'pfn' is not managed by the host kernel, this field is
253 * initialized to KVM_UNMAPPED_PAGE.
254 */
255 struct page *page;
256 void *hva;
257 kvm_pfn_t pfn;
258 kvm_pfn_t gfn;
259 };
260
261 /*
262 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
263 * directly to check for that.
264 */
265 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
266 {
267 return !!map->hva;
268 }
269
270 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
271 {
272 return single_task_running() && !need_resched() && ktime_before(cur, stop);
273 }
274
275 /*
276 * Sometimes a large or cross-page mmio needs to be broken up into separate
277 * exits for userspace servicing.
278 */
279 struct kvm_mmio_fragment {
280 gpa_t gpa;
281 void *data;
282 unsigned len;
283 };
284
285 struct kvm_vcpu {
286 struct kvm *kvm;
287 #ifdef CONFIG_PREEMPT_NOTIFIERS
288 struct preempt_notifier preempt_notifier;
289 #endif
290 int cpu;
291 int vcpu_id; /* id given by userspace at creation */
292 int vcpu_idx; /* index in kvm->vcpus array */
293 int srcu_idx;
294 int mode;
295 u64 requests;
296 unsigned long guest_debug;
297
298 int pre_pcpu;
299 struct list_head blocked_vcpu_list;
300
301 struct mutex mutex;
302 struct kvm_run *run;
303
304 struct rcuwait wait;
305 struct pid __rcu *pid;
306 int sigset_active;
307 sigset_t sigset;
308 struct kvm_vcpu_stat stat;
309 unsigned int halt_poll_ns;
310 bool valid_wakeup;
311
312 #ifdef CONFIG_HAS_IOMEM
313 int mmio_needed;
314 int mmio_read_completed;
315 int mmio_is_write;
316 int mmio_cur_fragment;
317 int mmio_nr_fragments;
318 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
319 #endif
320
321 #ifdef CONFIG_KVM_ASYNC_PF
322 struct {
323 u32 queued;
324 struct list_head queue;
325 struct list_head done;
326 spinlock_t lock;
327 } async_pf;
328 #endif
329
330 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
331 /*
332 * Cpu relax intercept or pause loop exit optimization
333 * in_spin_loop: set when a vcpu does a pause loop exit
334 * or cpu relax intercepted.
335 * dy_eligible: indicates whether vcpu is eligible for directed yield.
336 */
337 struct {
338 bool in_spin_loop;
339 bool dy_eligible;
340 } spin_loop;
341 #endif
342 bool preempted;
343 bool ready;
344 struct kvm_vcpu_arch arch;
345 struct kvm_dirty_ring dirty_ring;
346 };
347
348 /* must be called with irqs disabled */
349 static __always_inline void guest_enter_irqoff(void)
350 {
351 /*
352 * This is running in ioctl context so its safe to assume that it's the
353 * stime pending cputime to flush.
354 */
355 instrumentation_begin();
356 vtime_account_guest_enter();
357 instrumentation_end();
358
359 /*
360 * KVM does not hold any references to rcu protected data when it
361 * switches CPU into a guest mode. In fact switching to a guest mode
362 * is very similar to exiting to userspace from rcu point of view. In
363 * addition CPU may stay in a guest mode for quite a long time (up to
364 * one time slice). Lets treat guest mode as quiescent state, just like
365 * we do with user-mode execution.
366 */
367 if (!context_tracking_guest_enter()) {
368 instrumentation_begin();
369 rcu_virt_note_context_switch(smp_processor_id());
370 instrumentation_end();
371 }
372 }
373
374 static __always_inline void guest_exit_irqoff(void)
375 {
376 context_tracking_guest_exit();
377
378 instrumentation_begin();
379 /* Flush the guest cputime we spent on the guest */
380 vtime_account_guest_exit();
381 instrumentation_end();
382 }
383
384 static inline void guest_exit(void)
385 {
386 unsigned long flags;
387
388 local_irq_save(flags);
389 guest_exit_irqoff();
390 local_irq_restore(flags);
391 }
392
393 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
394 {
395 /*
396 * The memory barrier ensures a previous write to vcpu->requests cannot
397 * be reordered with the read of vcpu->mode. It pairs with the general
398 * memory barrier following the write of vcpu->mode in VCPU RUN.
399 */
400 smp_mb__before_atomic();
401 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
402 }
403
404 /*
405 * Some of the bitops functions do not support too long bitmaps.
406 * This number must be determined not to exceed such limits.
407 */
408 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
409
410 struct kvm_memory_slot {
411 gfn_t base_gfn;
412 unsigned long npages;
413 unsigned long *dirty_bitmap;
414 struct kvm_arch_memory_slot arch;
415 unsigned long userspace_addr;
416 u32 flags;
417 short id;
418 u16 as_id;
419 };
420
421 static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot)
422 {
423 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
424 }
425
426 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
427 {
428 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
429 }
430
431 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
432 {
433 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
434
435 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
436 }
437
438 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
439 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
440 #endif
441
442 struct kvm_s390_adapter_int {
443 u64 ind_addr;
444 u64 summary_addr;
445 u64 ind_offset;
446 u32 summary_offset;
447 u32 adapter_id;
448 };
449
450 struct kvm_hv_sint {
451 u32 vcpu;
452 u32 sint;
453 };
454
455 struct kvm_kernel_irq_routing_entry {
456 u32 gsi;
457 u32 type;
458 int (*set)(struct kvm_kernel_irq_routing_entry *e,
459 struct kvm *kvm, int irq_source_id, int level,
460 bool line_status);
461 union {
462 struct {
463 unsigned irqchip;
464 unsigned pin;
465 } irqchip;
466 struct {
467 u32 address_lo;
468 u32 address_hi;
469 u32 data;
470 u32 flags;
471 u32 devid;
472 } msi;
473 struct kvm_s390_adapter_int adapter;
474 struct kvm_hv_sint hv_sint;
475 };
476 struct hlist_node link;
477 };
478
479 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
480 struct kvm_irq_routing_table {
481 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
482 u32 nr_rt_entries;
483 /*
484 * Array indexed by gsi. Each entry contains list of irq chips
485 * the gsi is connected to.
486 */
487 struct hlist_head map[];
488 };
489 #endif
490
491 #ifndef KVM_PRIVATE_MEM_SLOTS
492 #define KVM_PRIVATE_MEM_SLOTS 0
493 #endif
494
495 #define KVM_MEM_SLOTS_NUM SHRT_MAX
496 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
497
498 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
499 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
500 {
501 return 0;
502 }
503 #endif
504
505 /*
506 * Note:
507 * memslots are not sorted by id anymore, please use id_to_memslot()
508 * to get the memslot by its id.
509 */
510 struct kvm_memslots {
511 u64 generation;
512 /* The mapping table from slot id to the index in memslots[]. */
513 short id_to_index[KVM_MEM_SLOTS_NUM];
514 atomic_t lru_slot;
515 int used_slots;
516 struct kvm_memory_slot memslots[];
517 };
518
519 struct kvm {
520 #ifdef KVM_HAVE_MMU_RWLOCK
521 rwlock_t mmu_lock;
522 #else
523 spinlock_t mmu_lock;
524 #endif /* KVM_HAVE_MMU_RWLOCK */
525
526 struct mutex slots_lock;
527
528 /*
529 * Protects the arch-specific fields of struct kvm_memory_slots in
530 * use by the VM. To be used under the slots_lock (above) or in a
531 * kvm->srcu critical section where acquiring the slots_lock would
532 * lead to deadlock with the synchronize_srcu in
533 * install_new_memslots.
534 */
535 struct mutex slots_arch_lock;
536 struct mm_struct *mm; /* userspace tied to this vm */
537 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
538 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
539
540 /*
541 * created_vcpus is protected by kvm->lock, and is incremented
542 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
543 * incremented after storing the kvm_vcpu pointer in vcpus,
544 * and is accessed atomically.
545 */
546 atomic_t online_vcpus;
547 int created_vcpus;
548 int last_boosted_vcpu;
549 struct list_head vm_list;
550 struct mutex lock;
551 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
552 #ifdef CONFIG_HAVE_KVM_EVENTFD
553 struct {
554 spinlock_t lock;
555 struct list_head items;
556 struct list_head resampler_list;
557 struct mutex resampler_lock;
558 } irqfds;
559 struct list_head ioeventfds;
560 #endif
561 struct kvm_vm_stat stat;
562 struct kvm_arch arch;
563 refcount_t users_count;
564 #ifdef CONFIG_KVM_MMIO
565 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
566 spinlock_t ring_lock;
567 struct list_head coalesced_zones;
568 #endif
569
570 struct mutex irq_lock;
571 #ifdef CONFIG_HAVE_KVM_IRQCHIP
572 /*
573 * Update side is protected by irq_lock.
574 */
575 struct kvm_irq_routing_table __rcu *irq_routing;
576 #endif
577 #ifdef CONFIG_HAVE_KVM_IRQFD
578 struct hlist_head irq_ack_notifier_list;
579 #endif
580
581 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
582 struct mmu_notifier mmu_notifier;
583 unsigned long mmu_notifier_seq;
584 long mmu_notifier_count;
585 unsigned long mmu_notifier_range_start;
586 unsigned long mmu_notifier_range_end;
587 #endif
588 long tlbs_dirty;
589 struct list_head devices;
590 u64 manual_dirty_log_protect;
591 struct dentry *debugfs_dentry;
592 struct kvm_stat_data **debugfs_stat_data;
593 struct srcu_struct srcu;
594 struct srcu_struct irq_srcu;
595 pid_t userspace_pid;
596 unsigned int max_halt_poll_ns;
597 u32 dirty_ring_size;
598
599 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
600 struct notifier_block pm_notifier;
601 #endif
602 };
603
604 #define kvm_err(fmt, ...) \
605 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
606 #define kvm_info(fmt, ...) \
607 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
608 #define kvm_debug(fmt, ...) \
609 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
610 #define kvm_debug_ratelimited(fmt, ...) \
611 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
612 ## __VA_ARGS__)
613 #define kvm_pr_unimpl(fmt, ...) \
614 pr_err_ratelimited("kvm [%i]: " fmt, \
615 task_tgid_nr(current), ## __VA_ARGS__)
616
617 /* The guest did something we don't support. */
618 #define vcpu_unimpl(vcpu, fmt, ...) \
619 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
620 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
621
622 #define vcpu_debug(vcpu, fmt, ...) \
623 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
624 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
625 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
626 ## __VA_ARGS__)
627 #define vcpu_err(vcpu, fmt, ...) \
628 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
629
630 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
631 {
632 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
633 }
634
635 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
636 {
637 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
638 lockdep_is_held(&kvm->slots_lock) ||
639 !refcount_read(&kvm->users_count));
640 }
641
642 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
643 {
644 int num_vcpus = atomic_read(&kvm->online_vcpus);
645 i = array_index_nospec(i, num_vcpus);
646
647 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
648 smp_rmb();
649 return kvm->vcpus[i];
650 }
651
652 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
653 for (idx = 0; \
654 idx < atomic_read(&kvm->online_vcpus) && \
655 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
656 idx++)
657
658 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
659 {
660 struct kvm_vcpu *vcpu = NULL;
661 int i;
662
663 if (id < 0)
664 return NULL;
665 if (id < KVM_MAX_VCPUS)
666 vcpu = kvm_get_vcpu(kvm, id);
667 if (vcpu && vcpu->vcpu_id == id)
668 return vcpu;
669 kvm_for_each_vcpu(i, vcpu, kvm)
670 if (vcpu->vcpu_id == id)
671 return vcpu;
672 return NULL;
673 }
674
675 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
676 {
677 return vcpu->vcpu_idx;
678 }
679
680 #define kvm_for_each_memslot(memslot, slots) \
681 for (memslot = &slots->memslots[0]; \
682 memslot < slots->memslots + slots->used_slots; memslot++) \
683 if (WARN_ON_ONCE(!memslot->npages)) { \
684 } else
685
686 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
687
688 void vcpu_load(struct kvm_vcpu *vcpu);
689 void vcpu_put(struct kvm_vcpu *vcpu);
690
691 #ifdef __KVM_HAVE_IOAPIC
692 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
693 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
694 #else
695 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
696 {
697 }
698 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
699 {
700 }
701 #endif
702
703 #ifdef CONFIG_HAVE_KVM_IRQFD
704 int kvm_irqfd_init(void);
705 void kvm_irqfd_exit(void);
706 #else
707 static inline int kvm_irqfd_init(void)
708 {
709 return 0;
710 }
711
712 static inline void kvm_irqfd_exit(void)
713 {
714 }
715 #endif
716 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
717 struct module *module);
718 void kvm_exit(void);
719
720 void kvm_get_kvm(struct kvm *kvm);
721 void kvm_put_kvm(struct kvm *kvm);
722 bool file_is_kvm(struct file *file);
723 void kvm_put_kvm_no_destroy(struct kvm *kvm);
724
725 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
726 {
727 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
728 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
729 lockdep_is_held(&kvm->slots_lock) ||
730 !refcount_read(&kvm->users_count));
731 }
732
733 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
734 {
735 return __kvm_memslots(kvm, 0);
736 }
737
738 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
739 {
740 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
741
742 return __kvm_memslots(vcpu->kvm, as_id);
743 }
744
745 static inline
746 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
747 {
748 int index = slots->id_to_index[id];
749 struct kvm_memory_slot *slot;
750
751 if (index < 0)
752 return NULL;
753
754 slot = &slots->memslots[index];
755
756 WARN_ON(slot->id != id);
757 return slot;
758 }
759
760 /*
761 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
762 * - create a new memory slot
763 * - delete an existing memory slot
764 * - modify an existing memory slot
765 * -- move it in the guest physical memory space
766 * -- just change its flags
767 *
768 * Since flags can be changed by some of these operations, the following
769 * differentiation is the best we can do for __kvm_set_memory_region():
770 */
771 enum kvm_mr_change {
772 KVM_MR_CREATE,
773 KVM_MR_DELETE,
774 KVM_MR_MOVE,
775 KVM_MR_FLAGS_ONLY,
776 };
777
778 int kvm_set_memory_region(struct kvm *kvm,
779 const struct kvm_userspace_memory_region *mem);
780 int __kvm_set_memory_region(struct kvm *kvm,
781 const struct kvm_userspace_memory_region *mem);
782 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
783 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
784 int kvm_arch_prepare_memory_region(struct kvm *kvm,
785 struct kvm_memory_slot *memslot,
786 const struct kvm_userspace_memory_region *mem,
787 enum kvm_mr_change change);
788 void kvm_arch_commit_memory_region(struct kvm *kvm,
789 const struct kvm_userspace_memory_region *mem,
790 struct kvm_memory_slot *old,
791 const struct kvm_memory_slot *new,
792 enum kvm_mr_change change);
793 /* flush all memory translations */
794 void kvm_arch_flush_shadow_all(struct kvm *kvm);
795 /* flush memory translations pointing to 'slot' */
796 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
797 struct kvm_memory_slot *slot);
798
799 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
800 struct page **pages, int nr_pages);
801
802 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
803 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
804 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
805 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
806 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
807 bool *writable);
808 void kvm_release_page_clean(struct page *page);
809 void kvm_release_page_dirty(struct page *page);
810 void kvm_set_page_accessed(struct page *page);
811
812 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
813 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
814 bool *writable);
815 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
816 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
817 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
818 bool atomic, bool *async, bool write_fault,
819 bool *writable, hva_t *hva);
820
821 void kvm_release_pfn_clean(kvm_pfn_t pfn);
822 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
823 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
824 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
825 void kvm_get_pfn(kvm_pfn_t pfn);
826
827 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
828 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
829 int len);
830 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
831 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
832 void *data, unsigned long len);
833 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
834 void *data, unsigned int offset,
835 unsigned long len);
836 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
837 int offset, int len);
838 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
839 unsigned long len);
840 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
841 void *data, unsigned long len);
842 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
843 void *data, unsigned int offset,
844 unsigned long len);
845 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
846 gpa_t gpa, unsigned long len);
847
848 #define __kvm_get_guest(kvm, gfn, offset, v) \
849 ({ \
850 unsigned long __addr = gfn_to_hva(kvm, gfn); \
851 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
852 int __ret = -EFAULT; \
853 \
854 if (!kvm_is_error_hva(__addr)) \
855 __ret = get_user(v, __uaddr); \
856 __ret; \
857 })
858
859 #define kvm_get_guest(kvm, gpa, v) \
860 ({ \
861 gpa_t __gpa = gpa; \
862 struct kvm *__kvm = kvm; \
863 \
864 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
865 offset_in_page(__gpa), v); \
866 })
867
868 #define __kvm_put_guest(kvm, gfn, offset, v) \
869 ({ \
870 unsigned long __addr = gfn_to_hva(kvm, gfn); \
871 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
872 int __ret = -EFAULT; \
873 \
874 if (!kvm_is_error_hva(__addr)) \
875 __ret = put_user(v, __uaddr); \
876 if (!__ret) \
877 mark_page_dirty(kvm, gfn); \
878 __ret; \
879 })
880
881 #define kvm_put_guest(kvm, gpa, v) \
882 ({ \
883 gpa_t __gpa = gpa; \
884 struct kvm *__kvm = kvm; \
885 \
886 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
887 offset_in_page(__gpa), v); \
888 })
889
890 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
891 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
892 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
893 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
894 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
895 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn);
896 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
897
898 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
899 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
900 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
901 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
902 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
903 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
904 struct gfn_to_pfn_cache *cache, bool atomic);
905 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
906 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
907 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
908 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
909 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
910 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
911 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
912 int len);
913 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
914 unsigned long len);
915 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
916 unsigned long len);
917 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
918 int offset, int len);
919 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
920 unsigned long len);
921 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
922
923 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
924 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
925
926 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
927 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
928 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
929 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
930 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
931 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
932 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
933
934 void kvm_flush_remote_tlbs(struct kvm *kvm);
935 void kvm_reload_remote_mmus(struct kvm *kvm);
936
937 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
938 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
939 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
940 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
941 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
942 #endif
943
944 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
945 struct kvm_vcpu *except,
946 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
947 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
948 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
949 struct kvm_vcpu *except);
950 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
951 unsigned long *vcpu_bitmap);
952
953 long kvm_arch_dev_ioctl(struct file *filp,
954 unsigned int ioctl, unsigned long arg);
955 long kvm_arch_vcpu_ioctl(struct file *filp,
956 unsigned int ioctl, unsigned long arg);
957 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
958
959 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
960
961 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
962 struct kvm_memory_slot *slot,
963 gfn_t gfn_offset,
964 unsigned long mask);
965 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
966
967 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
968 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
969 const struct kvm_memory_slot *memslot);
970 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
971 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
972 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
973 int *is_dirty, struct kvm_memory_slot **memslot);
974 #endif
975
976 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
977 bool line_status);
978 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
979 struct kvm_enable_cap *cap);
980 long kvm_arch_vm_ioctl(struct file *filp,
981 unsigned int ioctl, unsigned long arg);
982
983 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
984 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
985
986 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
987 struct kvm_translation *tr);
988
989 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
990 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
991 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
992 struct kvm_sregs *sregs);
993 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
994 struct kvm_sregs *sregs);
995 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
996 struct kvm_mp_state *mp_state);
997 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
998 struct kvm_mp_state *mp_state);
999 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1000 struct kvm_guest_debug *dbg);
1001 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1002
1003 int kvm_arch_init(void *opaque);
1004 void kvm_arch_exit(void);
1005
1006 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1007
1008 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1009 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1010 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1011 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1012 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1013 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1014
1015 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1016 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1017 #endif
1018
1019 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1020 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1021 #endif
1022
1023 int kvm_arch_hardware_enable(void);
1024 void kvm_arch_hardware_disable(void);
1025 int kvm_arch_hardware_setup(void *opaque);
1026 void kvm_arch_hardware_unsetup(void);
1027 int kvm_arch_check_processor_compat(void *opaque);
1028 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1029 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1030 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1031 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1032 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1033 int kvm_arch_post_init_vm(struct kvm *kvm);
1034 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1035
1036 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1037 /*
1038 * All architectures that want to use vzalloc currently also
1039 * need their own kvm_arch_alloc_vm implementation.
1040 */
1041 static inline struct kvm *kvm_arch_alloc_vm(void)
1042 {
1043 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1044 }
1045
1046 static inline void kvm_arch_free_vm(struct kvm *kvm)
1047 {
1048 kfree(kvm);
1049 }
1050 #endif
1051
1052 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1053 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1054 {
1055 return -ENOTSUPP;
1056 }
1057 #endif
1058
1059 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1060 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1061 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1062 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1063 #else
1064 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1065 {
1066 }
1067
1068 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1069 {
1070 }
1071
1072 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1073 {
1074 return false;
1075 }
1076 #endif
1077 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1078 void kvm_arch_start_assignment(struct kvm *kvm);
1079 void kvm_arch_end_assignment(struct kvm *kvm);
1080 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1081 #else
1082 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1083 {
1084 }
1085
1086 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1087 {
1088 }
1089
1090 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1091 {
1092 return false;
1093 }
1094 #endif
1095
1096 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1097 {
1098 #ifdef __KVM_HAVE_ARCH_WQP
1099 return vcpu->arch.waitp;
1100 #else
1101 return &vcpu->wait;
1102 #endif
1103 }
1104
1105 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1106 /*
1107 * returns true if the virtual interrupt controller is initialized and
1108 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1109 * controller is dynamically instantiated and this is not always true.
1110 */
1111 bool kvm_arch_intc_initialized(struct kvm *kvm);
1112 #else
1113 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1114 {
1115 return true;
1116 }
1117 #endif
1118
1119 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1120 void kvm_arch_destroy_vm(struct kvm *kvm);
1121 void kvm_arch_sync_events(struct kvm *kvm);
1122
1123 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1124
1125 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1126 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1127 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1128
1129 struct kvm_irq_ack_notifier {
1130 struct hlist_node link;
1131 unsigned gsi;
1132 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1133 };
1134
1135 int kvm_irq_map_gsi(struct kvm *kvm,
1136 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1137 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1138
1139 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1140 bool line_status);
1141 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1142 int irq_source_id, int level, bool line_status);
1143 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1144 struct kvm *kvm, int irq_source_id,
1145 int level, bool line_status);
1146 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1147 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1148 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1149 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1150 struct kvm_irq_ack_notifier *kian);
1151 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1152 struct kvm_irq_ack_notifier *kian);
1153 int kvm_request_irq_source_id(struct kvm *kvm);
1154 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1155 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1156
1157 /*
1158 * search_memslots() and __gfn_to_memslot() are here because they are
1159 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1160 * gfn_to_memslot() itself isn't here as an inline because that would
1161 * bloat other code too much.
1162 *
1163 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1164 */
1165 static inline struct kvm_memory_slot *
1166 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1167 {
1168 int start = 0, end = slots->used_slots;
1169 int slot = atomic_read(&slots->lru_slot);
1170 struct kvm_memory_slot *memslots = slots->memslots;
1171
1172 if (unlikely(!slots->used_slots))
1173 return NULL;
1174
1175 if (gfn >= memslots[slot].base_gfn &&
1176 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1177 return &memslots[slot];
1178
1179 while (start < end) {
1180 slot = start + (end - start) / 2;
1181
1182 if (gfn >= memslots[slot].base_gfn)
1183 end = slot;
1184 else
1185 start = slot + 1;
1186 }
1187
1188 if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1189 gfn < memslots[start].base_gfn + memslots[start].npages) {
1190 atomic_set(&slots->lru_slot, start);
1191 return &memslots[start];
1192 }
1193
1194 return NULL;
1195 }
1196
1197 static inline struct kvm_memory_slot *
1198 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1199 {
1200 return search_memslots(slots, gfn);
1201 }
1202
1203 static inline unsigned long
1204 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1205 {
1206 /*
1207 * The index was checked originally in search_memslots. To avoid
1208 * that a malicious guest builds a Spectre gadget out of e.g. page
1209 * table walks, do not let the processor speculate loads outside
1210 * the guest's registered memslots.
1211 */
1212 unsigned long offset = gfn - slot->base_gfn;
1213 offset = array_index_nospec(offset, slot->npages);
1214 return slot->userspace_addr + offset * PAGE_SIZE;
1215 }
1216
1217 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1218 {
1219 return gfn_to_memslot(kvm, gfn)->id;
1220 }
1221
1222 static inline gfn_t
1223 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1224 {
1225 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1226
1227 return slot->base_gfn + gfn_offset;
1228 }
1229
1230 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1231 {
1232 return (gpa_t)gfn << PAGE_SHIFT;
1233 }
1234
1235 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1236 {
1237 return (gfn_t)(gpa >> PAGE_SHIFT);
1238 }
1239
1240 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1241 {
1242 return (hpa_t)pfn << PAGE_SHIFT;
1243 }
1244
1245 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1246 gpa_t gpa)
1247 {
1248 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1249 }
1250
1251 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1252 {
1253 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1254
1255 return kvm_is_error_hva(hva);
1256 }
1257
1258 enum kvm_stat_kind {
1259 KVM_STAT_VM,
1260 KVM_STAT_VCPU,
1261 };
1262
1263 struct kvm_stat_data {
1264 struct kvm *kvm;
1265 struct kvm_stats_debugfs_item *dbgfs_item;
1266 };
1267
1268 struct kvm_stats_debugfs_item {
1269 const char *name;
1270 int offset;
1271 enum kvm_stat_kind kind;
1272 int mode;
1273 };
1274
1275 struct _kvm_stats_desc {
1276 struct kvm_stats_desc desc;
1277 char name[KVM_STATS_NAME_SIZE];
1278 };
1279
1280 #define KVM_DBGFS_GET_MODE(dbgfs_item) \
1281 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1282
1283 #define VM_STAT(n, x, ...) \
1284 { n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1285 #define VCPU_STAT(n, x, ...) \
1286 { n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1287
1288 #define STATS_DESC_COMMON(type, unit, base, exp) \
1289 .flags = type | unit | base | \
1290 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1291 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1292 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1293 .exponent = exp, \
1294 .size = 1
1295
1296 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp) \
1297 { \
1298 { \
1299 STATS_DESC_COMMON(type, unit, base, exp), \
1300 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1301 }, \
1302 .name = #stat, \
1303 }
1304 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp) \
1305 { \
1306 { \
1307 STATS_DESC_COMMON(type, unit, base, exp), \
1308 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1309 }, \
1310 .name = #stat, \
1311 }
1312 #define VM_STATS_DESC(stat, type, unit, base, exp) \
1313 { \
1314 { \
1315 STATS_DESC_COMMON(type, unit, base, exp), \
1316 .offset = offsetof(struct kvm_vm_stat, stat) \
1317 }, \
1318 .name = #stat, \
1319 }
1320 #define VCPU_STATS_DESC(stat, type, unit, base, exp) \
1321 { \
1322 { \
1323 STATS_DESC_COMMON(type, unit, base, exp), \
1324 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1325 }, \
1326 .name = #stat, \
1327 }
1328 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1329 #define STATS_DESC(SCOPE, stat, type, unit, base, exp) \
1330 SCOPE##_STATS_DESC(stat, type, unit, base, exp)
1331
1332 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1333 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, unit, base, exponent)
1334 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1335 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, unit, base, exponent)
1336 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1337 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, unit, base, exponent)
1338
1339 /* Cumulative counter, read/write */
1340 #define STATS_DESC_COUNTER(SCOPE, name) \
1341 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1342 KVM_STATS_BASE_POW10, 0)
1343 /* Instantaneous counter, read only */
1344 #define STATS_DESC_ICOUNTER(SCOPE, name) \
1345 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1346 KVM_STATS_BASE_POW10, 0)
1347 /* Peak counter, read/write */
1348 #define STATS_DESC_PCOUNTER(SCOPE, name) \
1349 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1350 KVM_STATS_BASE_POW10, 0)
1351
1352 /* Cumulative time in nanosecond */
1353 #define STATS_DESC_TIME_NSEC(SCOPE, name) \
1354 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1355 KVM_STATS_BASE_POW10, -9)
1356
1357 extern struct kvm_stats_debugfs_item debugfs_entries[];
1358 extern struct dentry *kvm_debugfs_dir;
1359 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1360 const struct _kvm_stats_desc *desc,
1361 void *stats, size_t size_stats,
1362 char __user *user_buffer, size_t size, loff_t *offset);
1363
1364 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1365 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1366 {
1367 if (unlikely(kvm->mmu_notifier_count))
1368 return 1;
1369 /*
1370 * Ensure the read of mmu_notifier_count happens before the read
1371 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1372 * mmu_notifier_invalidate_range_end to make sure that the caller
1373 * either sees the old (non-zero) value of mmu_notifier_count or
1374 * the new (incremented) value of mmu_notifier_seq.
1375 * PowerPC Book3s HV KVM calls this under a per-page lock
1376 * rather than under kvm->mmu_lock, for scalability, so
1377 * can't rely on kvm->mmu_lock to keep things ordered.
1378 */
1379 smp_rmb();
1380 if (kvm->mmu_notifier_seq != mmu_seq)
1381 return 1;
1382 return 0;
1383 }
1384
1385 static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1386 unsigned long mmu_seq,
1387 unsigned long hva)
1388 {
1389 lockdep_assert_held(&kvm->mmu_lock);
1390 /*
1391 * If mmu_notifier_count is non-zero, then the range maintained by
1392 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1393 * might be being invalidated. Note that it may include some false
1394 * positives, due to shortcuts when handing concurrent invalidations.
1395 */
1396 if (unlikely(kvm->mmu_notifier_count) &&
1397 hva >= kvm->mmu_notifier_range_start &&
1398 hva < kvm->mmu_notifier_range_end)
1399 return 1;
1400 if (kvm->mmu_notifier_seq != mmu_seq)
1401 return 1;
1402 return 0;
1403 }
1404 #endif
1405
1406 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1407
1408 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1409
1410 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1411 int kvm_set_irq_routing(struct kvm *kvm,
1412 const struct kvm_irq_routing_entry *entries,
1413 unsigned nr,
1414 unsigned flags);
1415 int kvm_set_routing_entry(struct kvm *kvm,
1416 struct kvm_kernel_irq_routing_entry *e,
1417 const struct kvm_irq_routing_entry *ue);
1418 void kvm_free_irq_routing(struct kvm *kvm);
1419
1420 #else
1421
1422 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1423
1424 #endif
1425
1426 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1427
1428 #ifdef CONFIG_HAVE_KVM_EVENTFD
1429
1430 void kvm_eventfd_init(struct kvm *kvm);
1431 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1432
1433 #ifdef CONFIG_HAVE_KVM_IRQFD
1434 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1435 void kvm_irqfd_release(struct kvm *kvm);
1436 void kvm_irq_routing_update(struct kvm *);
1437 #else
1438 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1439 {
1440 return -EINVAL;
1441 }
1442
1443 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1444 #endif
1445
1446 #else
1447
1448 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1449
1450 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1451 {
1452 return -EINVAL;
1453 }
1454
1455 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1456
1457 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1458 static inline void kvm_irq_routing_update(struct kvm *kvm)
1459 {
1460 }
1461 #endif
1462
1463 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1464 {
1465 return -ENOSYS;
1466 }
1467
1468 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1469
1470 void kvm_arch_irq_routing_update(struct kvm *kvm);
1471
1472 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1473 {
1474 /*
1475 * Ensure the rest of the request is published to kvm_check_request's
1476 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1477 */
1478 smp_wmb();
1479 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1480 }
1481
1482 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1483 {
1484 return READ_ONCE(vcpu->requests);
1485 }
1486
1487 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1488 {
1489 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1490 }
1491
1492 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1493 {
1494 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1495 }
1496
1497 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1498 {
1499 if (kvm_test_request(req, vcpu)) {
1500 kvm_clear_request(req, vcpu);
1501
1502 /*
1503 * Ensure the rest of the request is visible to kvm_check_request's
1504 * caller. Paired with the smp_wmb in kvm_make_request.
1505 */
1506 smp_mb__after_atomic();
1507 return true;
1508 } else {
1509 return false;
1510 }
1511 }
1512
1513 extern bool kvm_rebooting;
1514
1515 extern unsigned int halt_poll_ns;
1516 extern unsigned int halt_poll_ns_grow;
1517 extern unsigned int halt_poll_ns_grow_start;
1518 extern unsigned int halt_poll_ns_shrink;
1519
1520 struct kvm_device {
1521 const struct kvm_device_ops *ops;
1522 struct kvm *kvm;
1523 void *private;
1524 struct list_head vm_node;
1525 };
1526
1527 /* create, destroy, and name are mandatory */
1528 struct kvm_device_ops {
1529 const char *name;
1530
1531 /*
1532 * create is called holding kvm->lock and any operations not suitable
1533 * to do while holding the lock should be deferred to init (see
1534 * below).
1535 */
1536 int (*create)(struct kvm_device *dev, u32 type);
1537
1538 /*
1539 * init is called after create if create is successful and is called
1540 * outside of holding kvm->lock.
1541 */
1542 void (*init)(struct kvm_device *dev);
1543
1544 /*
1545 * Destroy is responsible for freeing dev.
1546 *
1547 * Destroy may be called before or after destructors are called
1548 * on emulated I/O regions, depending on whether a reference is
1549 * held by a vcpu or other kvm component that gets destroyed
1550 * after the emulated I/O.
1551 */
1552 void (*destroy)(struct kvm_device *dev);
1553
1554 /*
1555 * Release is an alternative method to free the device. It is
1556 * called when the device file descriptor is closed. Once
1557 * release is called, the destroy method will not be called
1558 * anymore as the device is removed from the device list of
1559 * the VM. kvm->lock is held.
1560 */
1561 void (*release)(struct kvm_device *dev);
1562
1563 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1564 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1565 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1566 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1567 unsigned long arg);
1568 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1569 };
1570
1571 void kvm_device_get(struct kvm_device *dev);
1572 void kvm_device_put(struct kvm_device *dev);
1573 struct kvm_device *kvm_device_from_filp(struct file *filp);
1574 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1575 void kvm_unregister_device_ops(u32 type);
1576
1577 extern struct kvm_device_ops kvm_mpic_ops;
1578 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1579 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1580
1581 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1582
1583 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1584 {
1585 vcpu->spin_loop.in_spin_loop = val;
1586 }
1587 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1588 {
1589 vcpu->spin_loop.dy_eligible = val;
1590 }
1591
1592 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1593
1594 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1595 {
1596 }
1597
1598 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1599 {
1600 }
1601 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1602
1603 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1604 {
1605 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1606 !(memslot->flags & KVM_MEMSLOT_INVALID));
1607 }
1608
1609 struct kvm_vcpu *kvm_get_running_vcpu(void);
1610 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1611
1612 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1613 bool kvm_arch_has_irq_bypass(void);
1614 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1615 struct irq_bypass_producer *);
1616 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1617 struct irq_bypass_producer *);
1618 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1619 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1620 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1621 uint32_t guest_irq, bool set);
1622 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1623
1624 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1625 /* If we wakeup during the poll time, was it a sucessful poll? */
1626 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1627 {
1628 return vcpu->valid_wakeup;
1629 }
1630
1631 #else
1632 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1633 {
1634 return true;
1635 }
1636 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1637
1638 #ifdef CONFIG_HAVE_KVM_NO_POLL
1639 /* Callback that tells if we must not poll */
1640 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1641 #else
1642 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1643 {
1644 return false;
1645 }
1646 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1647
1648 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1649 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1650 unsigned int ioctl, unsigned long arg);
1651 #else
1652 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1653 unsigned int ioctl,
1654 unsigned long arg)
1655 {
1656 return -ENOIOCTLCMD;
1657 }
1658 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1659
1660 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1661 unsigned long start, unsigned long end);
1662
1663 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1664 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1665 #else
1666 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1667 {
1668 return 0;
1669 }
1670 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1671
1672 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1673
1674 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1675 uintptr_t data, const char *name,
1676 struct task_struct **thread_ptr);
1677
1678 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
1679 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1680 {
1681 vcpu->run->exit_reason = KVM_EXIT_INTR;
1682 vcpu->stat.signal_exits++;
1683 }
1684 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1685
1686 /*
1687 * This defines how many reserved entries we want to keep before we
1688 * kick the vcpu to the userspace to avoid dirty ring full. This
1689 * value can be tuned to higher if e.g. PML is enabled on the host.
1690 */
1691 #define KVM_DIRTY_RING_RSVD_ENTRIES 64
1692
1693 /* Max number of entries allowed for each kvm dirty ring */
1694 #define KVM_DIRTY_RING_MAX_ENTRIES 65536
1695
1696 #endif