]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/linux/kvm_host.h
Merge tag 'csky-for-linus-5.2-fixup-gcc-unwind' of git://github.com/c-sky/csky-linux
[mirror_ubuntu-eoan-kernel.git] / include / linux / kvm_host.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <linux/mm.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/preempt.h>
17 #include <linux/msi.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/rcupdate.h>
21 #include <linux/ratelimit.h>
22 #include <linux/err.h>
23 #include <linux/irqflags.h>
24 #include <linux/context_tracking.h>
25 #include <linux/irqbypass.h>
26 #include <linux/swait.h>
27 #include <linux/refcount.h>
28 #include <linux/nospec.h>
29 #include <asm/signal.h>
30
31 #include <linux/kvm.h>
32 #include <linux/kvm_para.h>
33
34 #include <linux/kvm_types.h>
35
36 #include <asm/kvm_host.h>
37
38 #ifndef KVM_MAX_VCPU_ID
39 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
40 #endif
41
42 /*
43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
44 * in kvm, other bits are visible for userspace which are defined in
45 * include/linux/kvm_h.
46 */
47 #define KVM_MEMSLOT_INVALID (1UL << 16)
48
49 /*
50 * Bit 63 of the memslot generation number is an "update in-progress flag",
51 * e.g. is temporarily set for the duration of install_new_memslots().
52 * This flag effectively creates a unique generation number that is used to
53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
54 * i.e. may (or may not) have come from the previous memslots generation.
55 *
56 * This is necessary because the actual memslots update is not atomic with
57 * respect to the generation number update. Updating the generation number
58 * first would allow a vCPU to cache a spte from the old memslots using the
59 * new generation number, and updating the generation number after switching
60 * to the new memslots would allow cache hits using the old generation number
61 * to reference the defunct memslots.
62 *
63 * This mechanism is used to prevent getting hits in KVM's caches while a
64 * memslot update is in-progress, and to prevent cache hits *after* updating
65 * the actual generation number against accesses that were inserted into the
66 * cache *before* the memslots were updated.
67 */
68 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
69
70 /* Two fragments for cross MMIO pages. */
71 #define KVM_MAX_MMIO_FRAGMENTS 2
72
73 #ifndef KVM_ADDRESS_SPACE_NUM
74 #define KVM_ADDRESS_SPACE_NUM 1
75 #endif
76
77 /*
78 * For the normal pfn, the highest 12 bits should be zero,
79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
80 * mask bit 63 to indicate the noslot pfn.
81 */
82 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
83 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
84 #define KVM_PFN_NOSLOT (0x1ULL << 63)
85
86 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
87 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
88 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
89
90 /*
91 * error pfns indicate that the gfn is in slot but faild to
92 * translate it to pfn on host.
93 */
94 static inline bool is_error_pfn(kvm_pfn_t pfn)
95 {
96 return !!(pfn & KVM_PFN_ERR_MASK);
97 }
98
99 /*
100 * error_noslot pfns indicate that the gfn can not be
101 * translated to pfn - it is not in slot or failed to
102 * translate it to pfn.
103 */
104 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
105 {
106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
107 }
108
109 /* noslot pfn indicates that the gfn is not in slot. */
110 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
111 {
112 return pfn == KVM_PFN_NOSLOT;
113 }
114
115 /*
116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
117 * provide own defines and kvm_is_error_hva
118 */
119 #ifndef KVM_HVA_ERR_BAD
120
121 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
122 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
123
124 static inline bool kvm_is_error_hva(unsigned long addr)
125 {
126 return addr >= PAGE_OFFSET;
127 }
128
129 #endif
130
131 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
132
133 static inline bool is_error_page(struct page *page)
134 {
135 return IS_ERR(page);
136 }
137
138 #define KVM_REQUEST_MASK GENMASK(7,0)
139 #define KVM_REQUEST_NO_WAKEUP BIT(8)
140 #define KVM_REQUEST_WAIT BIT(9)
141 /*
142 * Architecture-independent vcpu->requests bit members
143 * Bits 4-7 are reserved for more arch-independent bits.
144 */
145 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
146 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
147 #define KVM_REQ_PENDING_TIMER 2
148 #define KVM_REQ_UNHALT 3
149 #define KVM_REQUEST_ARCH_BASE 8
150
151 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
152 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
154 })
155 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
156
157 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
158 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
159
160 extern struct kmem_cache *kvm_vcpu_cache;
161
162 extern spinlock_t kvm_lock;
163 extern struct list_head vm_list;
164
165 struct kvm_io_range {
166 gpa_t addr;
167 int len;
168 struct kvm_io_device *dev;
169 };
170
171 #define NR_IOBUS_DEVS 1000
172
173 struct kvm_io_bus {
174 int dev_count;
175 int ioeventfd_count;
176 struct kvm_io_range range[];
177 };
178
179 enum kvm_bus {
180 KVM_MMIO_BUS,
181 KVM_PIO_BUS,
182 KVM_VIRTIO_CCW_NOTIFY_BUS,
183 KVM_FAST_MMIO_BUS,
184 KVM_NR_BUSES
185 };
186
187 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
188 int len, const void *val);
189 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
190 gpa_t addr, int len, const void *val, long cookie);
191 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
192 int len, void *val);
193 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
194 int len, struct kvm_io_device *dev);
195 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 struct kvm_io_device *dev);
197 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
198 gpa_t addr);
199
200 #ifdef CONFIG_KVM_ASYNC_PF
201 struct kvm_async_pf {
202 struct work_struct work;
203 struct list_head link;
204 struct list_head queue;
205 struct kvm_vcpu *vcpu;
206 struct mm_struct *mm;
207 gva_t gva;
208 unsigned long addr;
209 struct kvm_arch_async_pf arch;
210 bool wakeup_all;
211 };
212
213 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
214 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
215 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva,
216 struct kvm_arch_async_pf *arch);
217 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
218 #endif
219
220 enum {
221 OUTSIDE_GUEST_MODE,
222 IN_GUEST_MODE,
223 EXITING_GUEST_MODE,
224 READING_SHADOW_PAGE_TABLES,
225 };
226
227 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
228
229 struct kvm_host_map {
230 /*
231 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
232 * a 'struct page' for it. When using mem= kernel parameter some memory
233 * can be used as guest memory but they are not managed by host
234 * kernel).
235 * If 'pfn' is not managed by the host kernel, this field is
236 * initialized to KVM_UNMAPPED_PAGE.
237 */
238 struct page *page;
239 void *hva;
240 kvm_pfn_t pfn;
241 kvm_pfn_t gfn;
242 };
243
244 /*
245 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
246 * directly to check for that.
247 */
248 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
249 {
250 return !!map->hva;
251 }
252
253 /*
254 * Sometimes a large or cross-page mmio needs to be broken up into separate
255 * exits for userspace servicing.
256 */
257 struct kvm_mmio_fragment {
258 gpa_t gpa;
259 void *data;
260 unsigned len;
261 };
262
263 struct kvm_vcpu {
264 struct kvm *kvm;
265 #ifdef CONFIG_PREEMPT_NOTIFIERS
266 struct preempt_notifier preempt_notifier;
267 #endif
268 int cpu;
269 int vcpu_id;
270 int srcu_idx;
271 int mode;
272 u64 requests;
273 unsigned long guest_debug;
274
275 int pre_pcpu;
276 struct list_head blocked_vcpu_list;
277
278 struct mutex mutex;
279 struct kvm_run *run;
280
281 int guest_xcr0_loaded;
282 struct swait_queue_head wq;
283 struct pid __rcu *pid;
284 int sigset_active;
285 sigset_t sigset;
286 struct kvm_vcpu_stat stat;
287 unsigned int halt_poll_ns;
288 bool valid_wakeup;
289
290 #ifdef CONFIG_HAS_IOMEM
291 int mmio_needed;
292 int mmio_read_completed;
293 int mmio_is_write;
294 int mmio_cur_fragment;
295 int mmio_nr_fragments;
296 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
297 #endif
298
299 #ifdef CONFIG_KVM_ASYNC_PF
300 struct {
301 u32 queued;
302 struct list_head queue;
303 struct list_head done;
304 spinlock_t lock;
305 } async_pf;
306 #endif
307
308 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
309 /*
310 * Cpu relax intercept or pause loop exit optimization
311 * in_spin_loop: set when a vcpu does a pause loop exit
312 * or cpu relax intercepted.
313 * dy_eligible: indicates whether vcpu is eligible for directed yield.
314 */
315 struct {
316 bool in_spin_loop;
317 bool dy_eligible;
318 } spin_loop;
319 #endif
320 bool preempted;
321 struct kvm_vcpu_arch arch;
322 struct dentry *debugfs_dentry;
323 };
324
325 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
326 {
327 /*
328 * The memory barrier ensures a previous write to vcpu->requests cannot
329 * be reordered with the read of vcpu->mode. It pairs with the general
330 * memory barrier following the write of vcpu->mode in VCPU RUN.
331 */
332 smp_mb__before_atomic();
333 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
334 }
335
336 /*
337 * Some of the bitops functions do not support too long bitmaps.
338 * This number must be determined not to exceed such limits.
339 */
340 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
341
342 struct kvm_memory_slot {
343 gfn_t base_gfn;
344 unsigned long npages;
345 unsigned long *dirty_bitmap;
346 struct kvm_arch_memory_slot arch;
347 unsigned long userspace_addr;
348 u32 flags;
349 short id;
350 };
351
352 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
353 {
354 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
355 }
356
357 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
358 {
359 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
360
361 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
362 }
363
364 struct kvm_s390_adapter_int {
365 u64 ind_addr;
366 u64 summary_addr;
367 u64 ind_offset;
368 u32 summary_offset;
369 u32 adapter_id;
370 };
371
372 struct kvm_hv_sint {
373 u32 vcpu;
374 u32 sint;
375 };
376
377 struct kvm_kernel_irq_routing_entry {
378 u32 gsi;
379 u32 type;
380 int (*set)(struct kvm_kernel_irq_routing_entry *e,
381 struct kvm *kvm, int irq_source_id, int level,
382 bool line_status);
383 union {
384 struct {
385 unsigned irqchip;
386 unsigned pin;
387 } irqchip;
388 struct {
389 u32 address_lo;
390 u32 address_hi;
391 u32 data;
392 u32 flags;
393 u32 devid;
394 } msi;
395 struct kvm_s390_adapter_int adapter;
396 struct kvm_hv_sint hv_sint;
397 };
398 struct hlist_node link;
399 };
400
401 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
402 struct kvm_irq_routing_table {
403 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
404 u32 nr_rt_entries;
405 /*
406 * Array indexed by gsi. Each entry contains list of irq chips
407 * the gsi is connected to.
408 */
409 struct hlist_head map[0];
410 };
411 #endif
412
413 #ifndef KVM_PRIVATE_MEM_SLOTS
414 #define KVM_PRIVATE_MEM_SLOTS 0
415 #endif
416
417 #ifndef KVM_MEM_SLOTS_NUM
418 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
419 #endif
420
421 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
422 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
423 {
424 return 0;
425 }
426 #endif
427
428 /*
429 * Note:
430 * memslots are not sorted by id anymore, please use id_to_memslot()
431 * to get the memslot by its id.
432 */
433 struct kvm_memslots {
434 u64 generation;
435 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM];
436 /* The mapping table from slot id to the index in memslots[]. */
437 short id_to_index[KVM_MEM_SLOTS_NUM];
438 atomic_t lru_slot;
439 int used_slots;
440 };
441
442 struct kvm {
443 spinlock_t mmu_lock;
444 struct mutex slots_lock;
445 struct mm_struct *mm; /* userspace tied to this vm */
446 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
447 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
448
449 /*
450 * created_vcpus is protected by kvm->lock, and is incremented
451 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
452 * incremented after storing the kvm_vcpu pointer in vcpus,
453 * and is accessed atomically.
454 */
455 atomic_t online_vcpus;
456 int created_vcpus;
457 int last_boosted_vcpu;
458 struct list_head vm_list;
459 struct mutex lock;
460 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
461 #ifdef CONFIG_HAVE_KVM_EVENTFD
462 struct {
463 spinlock_t lock;
464 struct list_head items;
465 struct list_head resampler_list;
466 struct mutex resampler_lock;
467 } irqfds;
468 struct list_head ioeventfds;
469 #endif
470 struct kvm_vm_stat stat;
471 struct kvm_arch arch;
472 refcount_t users_count;
473 #ifdef CONFIG_KVM_MMIO
474 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
475 spinlock_t ring_lock;
476 struct list_head coalesced_zones;
477 #endif
478
479 struct mutex irq_lock;
480 #ifdef CONFIG_HAVE_KVM_IRQCHIP
481 /*
482 * Update side is protected by irq_lock.
483 */
484 struct kvm_irq_routing_table __rcu *irq_routing;
485 #endif
486 #ifdef CONFIG_HAVE_KVM_IRQFD
487 struct hlist_head irq_ack_notifier_list;
488 #endif
489
490 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
491 struct mmu_notifier mmu_notifier;
492 unsigned long mmu_notifier_seq;
493 long mmu_notifier_count;
494 #endif
495 long tlbs_dirty;
496 struct list_head devices;
497 bool manual_dirty_log_protect;
498 struct dentry *debugfs_dentry;
499 struct kvm_stat_data **debugfs_stat_data;
500 struct srcu_struct srcu;
501 struct srcu_struct irq_srcu;
502 pid_t userspace_pid;
503 };
504
505 #define kvm_err(fmt, ...) \
506 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
507 #define kvm_info(fmt, ...) \
508 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
509 #define kvm_debug(fmt, ...) \
510 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
511 #define kvm_debug_ratelimited(fmt, ...) \
512 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
513 ## __VA_ARGS__)
514 #define kvm_pr_unimpl(fmt, ...) \
515 pr_err_ratelimited("kvm [%i]: " fmt, \
516 task_tgid_nr(current), ## __VA_ARGS__)
517
518 /* The guest did something we don't support. */
519 #define vcpu_unimpl(vcpu, fmt, ...) \
520 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
521 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
522
523 #define vcpu_debug(vcpu, fmt, ...) \
524 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
525 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
526 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
527 ## __VA_ARGS__)
528 #define vcpu_err(vcpu, fmt, ...) \
529 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
530
531 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
532 {
533 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
534 lockdep_is_held(&kvm->slots_lock) ||
535 !refcount_read(&kvm->users_count));
536 }
537
538 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
539 {
540 int num_vcpus = atomic_read(&kvm->online_vcpus);
541 i = array_index_nospec(i, num_vcpus);
542
543 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
544 smp_rmb();
545 return kvm->vcpus[i];
546 }
547
548 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
549 for (idx = 0; \
550 idx < atomic_read(&kvm->online_vcpus) && \
551 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
552 idx++)
553
554 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
555 {
556 struct kvm_vcpu *vcpu = NULL;
557 int i;
558
559 if (id < 0)
560 return NULL;
561 if (id < KVM_MAX_VCPUS)
562 vcpu = kvm_get_vcpu(kvm, id);
563 if (vcpu && vcpu->vcpu_id == id)
564 return vcpu;
565 kvm_for_each_vcpu(i, vcpu, kvm)
566 if (vcpu->vcpu_id == id)
567 return vcpu;
568 return NULL;
569 }
570
571 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
572 {
573 struct kvm_vcpu *tmp;
574 int idx;
575
576 kvm_for_each_vcpu(idx, tmp, vcpu->kvm)
577 if (tmp == vcpu)
578 return idx;
579 BUG();
580 }
581
582 #define kvm_for_each_memslot(memslot, slots) \
583 for (memslot = &slots->memslots[0]; \
584 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\
585 memslot++)
586
587 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id);
588 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu);
589
590 void vcpu_load(struct kvm_vcpu *vcpu);
591 void vcpu_put(struct kvm_vcpu *vcpu);
592
593 #ifdef __KVM_HAVE_IOAPIC
594 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
595 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
596 #else
597 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
598 {
599 }
600 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
601 {
602 }
603 #endif
604
605 #ifdef CONFIG_HAVE_KVM_IRQFD
606 int kvm_irqfd_init(void);
607 void kvm_irqfd_exit(void);
608 #else
609 static inline int kvm_irqfd_init(void)
610 {
611 return 0;
612 }
613
614 static inline void kvm_irqfd_exit(void)
615 {
616 }
617 #endif
618 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
619 struct module *module);
620 void kvm_exit(void);
621
622 void kvm_get_kvm(struct kvm *kvm);
623 void kvm_put_kvm(struct kvm *kvm);
624
625 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
626 {
627 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
628 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
629 lockdep_is_held(&kvm->slots_lock) ||
630 !refcount_read(&kvm->users_count));
631 }
632
633 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
634 {
635 return __kvm_memslots(kvm, 0);
636 }
637
638 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
639 {
640 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
641
642 return __kvm_memslots(vcpu->kvm, as_id);
643 }
644
645 static inline struct kvm_memory_slot *
646 id_to_memslot(struct kvm_memslots *slots, int id)
647 {
648 int index = slots->id_to_index[id];
649 struct kvm_memory_slot *slot;
650
651 slot = &slots->memslots[index];
652
653 WARN_ON(slot->id != id);
654 return slot;
655 }
656
657 /*
658 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
659 * - create a new memory slot
660 * - delete an existing memory slot
661 * - modify an existing memory slot
662 * -- move it in the guest physical memory space
663 * -- just change its flags
664 *
665 * Since flags can be changed by some of these operations, the following
666 * differentiation is the best we can do for __kvm_set_memory_region():
667 */
668 enum kvm_mr_change {
669 KVM_MR_CREATE,
670 KVM_MR_DELETE,
671 KVM_MR_MOVE,
672 KVM_MR_FLAGS_ONLY,
673 };
674
675 int kvm_set_memory_region(struct kvm *kvm,
676 const struct kvm_userspace_memory_region *mem);
677 int __kvm_set_memory_region(struct kvm *kvm,
678 const struct kvm_userspace_memory_region *mem);
679 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
680 struct kvm_memory_slot *dont);
681 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
682 unsigned long npages);
683 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
684 int kvm_arch_prepare_memory_region(struct kvm *kvm,
685 struct kvm_memory_slot *memslot,
686 const struct kvm_userspace_memory_region *mem,
687 enum kvm_mr_change change);
688 void kvm_arch_commit_memory_region(struct kvm *kvm,
689 const struct kvm_userspace_memory_region *mem,
690 const struct kvm_memory_slot *old,
691 const struct kvm_memory_slot *new,
692 enum kvm_mr_change change);
693 bool kvm_largepages_enabled(void);
694 void kvm_disable_largepages(void);
695 /* flush all memory translations */
696 void kvm_arch_flush_shadow_all(struct kvm *kvm);
697 /* flush memory translations pointing to 'slot' */
698 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
699 struct kvm_memory_slot *slot);
700
701 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
702 struct page **pages, int nr_pages);
703
704 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
705 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
706 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
707 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
708 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
709 bool *writable);
710 void kvm_release_page_clean(struct page *page);
711 void kvm_release_page_dirty(struct page *page);
712 void kvm_set_page_accessed(struct page *page);
713
714 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn);
715 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
716 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
717 bool *writable);
718 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
719 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
720 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
721 bool atomic, bool *async, bool write_fault,
722 bool *writable);
723
724 void kvm_release_pfn_clean(kvm_pfn_t pfn);
725 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
726 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
727 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
728 void kvm_get_pfn(kvm_pfn_t pfn);
729
730 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
731 int len);
732 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
733 unsigned long len);
734 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
735 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
736 void *data, unsigned long len);
737 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
738 int offset, int len);
739 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
740 unsigned long len);
741 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
742 void *data, unsigned long len);
743 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
744 void *data, unsigned int offset,
745 unsigned long len);
746 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
747 gpa_t gpa, unsigned long len);
748 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
749 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
750 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
751 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
752 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn);
753 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
754
755 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
756 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
757 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
758 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
759 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
760 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
761 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
762 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
763 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
764 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
765 int len);
766 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
767 unsigned long len);
768 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
769 unsigned long len);
770 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
771 int offset, int len);
772 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
773 unsigned long len);
774 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
775
776 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
777 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
778
779 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
780 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
781 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
782 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
783 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
784 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
785 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
786
787 void kvm_flush_remote_tlbs(struct kvm *kvm);
788 void kvm_reload_remote_mmus(struct kvm *kvm);
789
790 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
791 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
792 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
793
794 long kvm_arch_dev_ioctl(struct file *filp,
795 unsigned int ioctl, unsigned long arg);
796 long kvm_arch_vcpu_ioctl(struct file *filp,
797 unsigned int ioctl, unsigned long arg);
798 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
799
800 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
801
802 int kvm_get_dirty_log(struct kvm *kvm,
803 struct kvm_dirty_log *log, int *is_dirty);
804
805 int kvm_get_dirty_log_protect(struct kvm *kvm,
806 struct kvm_dirty_log *log, bool *flush);
807 int kvm_clear_dirty_log_protect(struct kvm *kvm,
808 struct kvm_clear_dirty_log *log, bool *flush);
809
810 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
811 struct kvm_memory_slot *slot,
812 gfn_t gfn_offset,
813 unsigned long mask);
814
815 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
816 struct kvm_dirty_log *log);
817 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
818 struct kvm_clear_dirty_log *log);
819
820 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
821 bool line_status);
822 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
823 struct kvm_enable_cap *cap);
824 long kvm_arch_vm_ioctl(struct file *filp,
825 unsigned int ioctl, unsigned long arg);
826
827 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
828 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
829
830 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
831 struct kvm_translation *tr);
832
833 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
834 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
835 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
836 struct kvm_sregs *sregs);
837 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
838 struct kvm_sregs *sregs);
839 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
840 struct kvm_mp_state *mp_state);
841 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
842 struct kvm_mp_state *mp_state);
843 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
844 struct kvm_guest_debug *dbg);
845 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
846
847 int kvm_arch_init(void *opaque);
848 void kvm_arch_exit(void);
849
850 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu);
851 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu);
852
853 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
854
855 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu);
856 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
857 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
858 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id);
859 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu);
860 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
861 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
862
863 bool kvm_arch_has_vcpu_debugfs(void);
864 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu);
865
866 int kvm_arch_hardware_enable(void);
867 void kvm_arch_hardware_disable(void);
868 int kvm_arch_hardware_setup(void);
869 void kvm_arch_hardware_unsetup(void);
870 void kvm_arch_check_processor_compat(void *rtn);
871 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
872 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
873 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
874
875 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
876 /*
877 * All architectures that want to use vzalloc currently also
878 * need their own kvm_arch_alloc_vm implementation.
879 */
880 static inline struct kvm *kvm_arch_alloc_vm(void)
881 {
882 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
883 }
884
885 static inline void kvm_arch_free_vm(struct kvm *kvm)
886 {
887 kfree(kvm);
888 }
889 #endif
890
891 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
892 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
893 {
894 return -ENOTSUPP;
895 }
896 #endif
897
898 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
899 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
900 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
901 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
902 #else
903 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
904 {
905 }
906
907 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
908 {
909 }
910
911 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
912 {
913 return false;
914 }
915 #endif
916 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
917 void kvm_arch_start_assignment(struct kvm *kvm);
918 void kvm_arch_end_assignment(struct kvm *kvm);
919 bool kvm_arch_has_assigned_device(struct kvm *kvm);
920 #else
921 static inline void kvm_arch_start_assignment(struct kvm *kvm)
922 {
923 }
924
925 static inline void kvm_arch_end_assignment(struct kvm *kvm)
926 {
927 }
928
929 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
930 {
931 return false;
932 }
933 #endif
934
935 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu)
936 {
937 #ifdef __KVM_HAVE_ARCH_WQP
938 return vcpu->arch.wqp;
939 #else
940 return &vcpu->wq;
941 #endif
942 }
943
944 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
945 /*
946 * returns true if the virtual interrupt controller is initialized and
947 * ready to accept virtual IRQ. On some architectures the virtual interrupt
948 * controller is dynamically instantiated and this is not always true.
949 */
950 bool kvm_arch_intc_initialized(struct kvm *kvm);
951 #else
952 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
953 {
954 return true;
955 }
956 #endif
957
958 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
959 void kvm_arch_destroy_vm(struct kvm *kvm);
960 void kvm_arch_sync_events(struct kvm *kvm);
961
962 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
963 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
964
965 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
966
967 struct kvm_irq_ack_notifier {
968 struct hlist_node link;
969 unsigned gsi;
970 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
971 };
972
973 int kvm_irq_map_gsi(struct kvm *kvm,
974 struct kvm_kernel_irq_routing_entry *entries, int gsi);
975 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
976
977 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
978 bool line_status);
979 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
980 int irq_source_id, int level, bool line_status);
981 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
982 struct kvm *kvm, int irq_source_id,
983 int level, bool line_status);
984 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
985 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
986 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
987 void kvm_register_irq_ack_notifier(struct kvm *kvm,
988 struct kvm_irq_ack_notifier *kian);
989 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
990 struct kvm_irq_ack_notifier *kian);
991 int kvm_request_irq_source_id(struct kvm *kvm);
992 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
993
994 /*
995 * search_memslots() and __gfn_to_memslot() are here because they are
996 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
997 * gfn_to_memslot() itself isn't here as an inline because that would
998 * bloat other code too much.
999 */
1000 static inline struct kvm_memory_slot *
1001 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1002 {
1003 int start = 0, end = slots->used_slots;
1004 int slot = atomic_read(&slots->lru_slot);
1005 struct kvm_memory_slot *memslots = slots->memslots;
1006
1007 if (gfn >= memslots[slot].base_gfn &&
1008 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1009 return &memslots[slot];
1010
1011 while (start < end) {
1012 slot = start + (end - start) / 2;
1013
1014 if (gfn >= memslots[slot].base_gfn)
1015 end = slot;
1016 else
1017 start = slot + 1;
1018 }
1019
1020 if (gfn >= memslots[start].base_gfn &&
1021 gfn < memslots[start].base_gfn + memslots[start].npages) {
1022 atomic_set(&slots->lru_slot, start);
1023 return &memslots[start];
1024 }
1025
1026 return NULL;
1027 }
1028
1029 static inline struct kvm_memory_slot *
1030 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1031 {
1032 return search_memslots(slots, gfn);
1033 }
1034
1035 static inline unsigned long
1036 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1037 {
1038 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1039 }
1040
1041 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1042 {
1043 return gfn_to_memslot(kvm, gfn)->id;
1044 }
1045
1046 static inline gfn_t
1047 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1048 {
1049 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1050
1051 return slot->base_gfn + gfn_offset;
1052 }
1053
1054 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1055 {
1056 return (gpa_t)gfn << PAGE_SHIFT;
1057 }
1058
1059 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1060 {
1061 return (gfn_t)(gpa >> PAGE_SHIFT);
1062 }
1063
1064 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1065 {
1066 return (hpa_t)pfn << PAGE_SHIFT;
1067 }
1068
1069 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1070 gpa_t gpa)
1071 {
1072 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1073 }
1074
1075 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1076 {
1077 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1078
1079 return kvm_is_error_hva(hva);
1080 }
1081
1082 enum kvm_stat_kind {
1083 KVM_STAT_VM,
1084 KVM_STAT_VCPU,
1085 };
1086
1087 struct kvm_stat_data {
1088 int offset;
1089 struct kvm *kvm;
1090 };
1091
1092 struct kvm_stats_debugfs_item {
1093 const char *name;
1094 int offset;
1095 enum kvm_stat_kind kind;
1096 };
1097 extern struct kvm_stats_debugfs_item debugfs_entries[];
1098 extern struct dentry *kvm_debugfs_dir;
1099
1100 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1101 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1102 {
1103 if (unlikely(kvm->mmu_notifier_count))
1104 return 1;
1105 /*
1106 * Ensure the read of mmu_notifier_count happens before the read
1107 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1108 * mmu_notifier_invalidate_range_end to make sure that the caller
1109 * either sees the old (non-zero) value of mmu_notifier_count or
1110 * the new (incremented) value of mmu_notifier_seq.
1111 * PowerPC Book3s HV KVM calls this under a per-page lock
1112 * rather than under kvm->mmu_lock, for scalability, so
1113 * can't rely on kvm->mmu_lock to keep things ordered.
1114 */
1115 smp_rmb();
1116 if (kvm->mmu_notifier_seq != mmu_seq)
1117 return 1;
1118 return 0;
1119 }
1120 #endif
1121
1122 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1123
1124 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1125
1126 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1127 int kvm_set_irq_routing(struct kvm *kvm,
1128 const struct kvm_irq_routing_entry *entries,
1129 unsigned nr,
1130 unsigned flags);
1131 int kvm_set_routing_entry(struct kvm *kvm,
1132 struct kvm_kernel_irq_routing_entry *e,
1133 const struct kvm_irq_routing_entry *ue);
1134 void kvm_free_irq_routing(struct kvm *kvm);
1135
1136 #else
1137
1138 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1139
1140 #endif
1141
1142 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1143
1144 #ifdef CONFIG_HAVE_KVM_EVENTFD
1145
1146 void kvm_eventfd_init(struct kvm *kvm);
1147 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1148
1149 #ifdef CONFIG_HAVE_KVM_IRQFD
1150 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1151 void kvm_irqfd_release(struct kvm *kvm);
1152 void kvm_irq_routing_update(struct kvm *);
1153 #else
1154 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1155 {
1156 return -EINVAL;
1157 }
1158
1159 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1160 #endif
1161
1162 #else
1163
1164 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1165
1166 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1167 {
1168 return -EINVAL;
1169 }
1170
1171 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1172
1173 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1174 static inline void kvm_irq_routing_update(struct kvm *kvm)
1175 {
1176 }
1177 #endif
1178
1179 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1180 {
1181 return -ENOSYS;
1182 }
1183
1184 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1185
1186 void kvm_arch_irq_routing_update(struct kvm *kvm);
1187
1188 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1189 {
1190 /*
1191 * Ensure the rest of the request is published to kvm_check_request's
1192 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1193 */
1194 smp_wmb();
1195 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1196 }
1197
1198 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1199 {
1200 return READ_ONCE(vcpu->requests);
1201 }
1202
1203 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1204 {
1205 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1206 }
1207
1208 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1209 {
1210 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1211 }
1212
1213 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1214 {
1215 if (kvm_test_request(req, vcpu)) {
1216 kvm_clear_request(req, vcpu);
1217
1218 /*
1219 * Ensure the rest of the request is visible to kvm_check_request's
1220 * caller. Paired with the smp_wmb in kvm_make_request.
1221 */
1222 smp_mb__after_atomic();
1223 return true;
1224 } else {
1225 return false;
1226 }
1227 }
1228
1229 extern bool kvm_rebooting;
1230
1231 extern unsigned int halt_poll_ns;
1232 extern unsigned int halt_poll_ns_grow;
1233 extern unsigned int halt_poll_ns_grow_start;
1234 extern unsigned int halt_poll_ns_shrink;
1235
1236 struct kvm_device {
1237 struct kvm_device_ops *ops;
1238 struct kvm *kvm;
1239 void *private;
1240 struct list_head vm_node;
1241 };
1242
1243 /* create, destroy, and name are mandatory */
1244 struct kvm_device_ops {
1245 const char *name;
1246
1247 /*
1248 * create is called holding kvm->lock and any operations not suitable
1249 * to do while holding the lock should be deferred to init (see
1250 * below).
1251 */
1252 int (*create)(struct kvm_device *dev, u32 type);
1253
1254 /*
1255 * init is called after create if create is successful and is called
1256 * outside of holding kvm->lock.
1257 */
1258 void (*init)(struct kvm_device *dev);
1259
1260 /*
1261 * Destroy is responsible for freeing dev.
1262 *
1263 * Destroy may be called before or after destructors are called
1264 * on emulated I/O regions, depending on whether a reference is
1265 * held by a vcpu or other kvm component that gets destroyed
1266 * after the emulated I/O.
1267 */
1268 void (*destroy)(struct kvm_device *dev);
1269
1270 /*
1271 * Release is an alternative method to free the device. It is
1272 * called when the device file descriptor is closed. Once
1273 * release is called, the destroy method will not be called
1274 * anymore as the device is removed from the device list of
1275 * the VM. kvm->lock is held.
1276 */
1277 void (*release)(struct kvm_device *dev);
1278
1279 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1280 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1281 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1282 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1283 unsigned long arg);
1284 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1285 };
1286
1287 void kvm_device_get(struct kvm_device *dev);
1288 void kvm_device_put(struct kvm_device *dev);
1289 struct kvm_device *kvm_device_from_filp(struct file *filp);
1290 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type);
1291 void kvm_unregister_device_ops(u32 type);
1292
1293 extern struct kvm_device_ops kvm_mpic_ops;
1294 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1295 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1296
1297 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1298
1299 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1300 {
1301 vcpu->spin_loop.in_spin_loop = val;
1302 }
1303 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1304 {
1305 vcpu->spin_loop.dy_eligible = val;
1306 }
1307
1308 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1309
1310 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1311 {
1312 }
1313
1314 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1315 {
1316 }
1317 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1318
1319 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1320 bool kvm_arch_has_irq_bypass(void);
1321 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1322 struct irq_bypass_producer *);
1323 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1324 struct irq_bypass_producer *);
1325 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1326 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1327 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1328 uint32_t guest_irq, bool set);
1329 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1330
1331 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1332 /* If we wakeup during the poll time, was it a sucessful poll? */
1333 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1334 {
1335 return vcpu->valid_wakeup;
1336 }
1337
1338 #else
1339 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1340 {
1341 return true;
1342 }
1343 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1344
1345 #ifdef CONFIG_HAVE_KVM_NO_POLL
1346 /* Callback that tells if we must not poll */
1347 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1348 #else
1349 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1350 {
1351 return false;
1352 }
1353 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1354
1355 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1356 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1357 unsigned int ioctl, unsigned long arg);
1358 #else
1359 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1360 unsigned int ioctl,
1361 unsigned long arg)
1362 {
1363 return -ENOIOCTLCMD;
1364 }
1365 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1366
1367 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1368 unsigned long start, unsigned long end, bool blockable);
1369
1370 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1371 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1372 #else
1373 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1374 {
1375 return 0;
1376 }
1377 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1378
1379 #endif