]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/kvm_host.h
kvm: fix warning for CONFIG_HAVE_KVM_EVENTFD builds
[mirror_ubuntu-bionic-kernel.git] / include / linux / kvm_host.h
1 #ifndef __KVM_HOST_H
2 #define __KVM_HOST_H
3
4 /*
5 * This work is licensed under the terms of the GNU GPL, version 2. See
6 * the COPYING file in the top-level directory.
7 */
8
9 #include <linux/types.h>
10 #include <linux/hardirq.h>
11 #include <linux/list.h>
12 #include <linux/mutex.h>
13 #include <linux/spinlock.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/bug.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/preempt.h>
20 #include <linux/msi.h>
21 #include <linux/slab.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/swait.h>
29 #include <linux/refcount.h>
30 #include <asm/signal.h>
31
32 #include <linux/kvm.h>
33 #include <linux/kvm_para.h>
34
35 #include <linux/kvm_types.h>
36
37 #include <asm/kvm_host.h>
38
39 #ifndef KVM_MAX_VCPU_ID
40 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
41 #endif
42
43 /*
44 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
45 * in kvm, other bits are visible for userspace which are defined in
46 * include/linux/kvm_h.
47 */
48 #define KVM_MEMSLOT_INVALID (1UL << 16)
49
50 /* Two fragments for cross MMIO pages. */
51 #define KVM_MAX_MMIO_FRAGMENTS 2
52
53 #ifndef KVM_ADDRESS_SPACE_NUM
54 #define KVM_ADDRESS_SPACE_NUM 1
55 #endif
56
57 /*
58 * For the normal pfn, the highest 12 bits should be zero,
59 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
60 * mask bit 63 to indicate the noslot pfn.
61 */
62 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
63 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
64 #define KVM_PFN_NOSLOT (0x1ULL << 63)
65
66 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
67 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
68 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
69
70 /*
71 * error pfns indicate that the gfn is in slot but faild to
72 * translate it to pfn on host.
73 */
74 static inline bool is_error_pfn(kvm_pfn_t pfn)
75 {
76 return !!(pfn & KVM_PFN_ERR_MASK);
77 }
78
79 /*
80 * error_noslot pfns indicate that the gfn can not be
81 * translated to pfn - it is not in slot or failed to
82 * translate it to pfn.
83 */
84 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
85 {
86 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
87 }
88
89 /* noslot pfn indicates that the gfn is not in slot. */
90 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
91 {
92 return pfn == KVM_PFN_NOSLOT;
93 }
94
95 /*
96 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
97 * provide own defines and kvm_is_error_hva
98 */
99 #ifndef KVM_HVA_ERR_BAD
100
101 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
102 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
103
104 static inline bool kvm_is_error_hva(unsigned long addr)
105 {
106 return addr >= PAGE_OFFSET;
107 }
108
109 #endif
110
111 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
112
113 static inline bool is_error_page(struct page *page)
114 {
115 return IS_ERR(page);
116 }
117
118 #define KVM_REQUEST_MASK GENMASK(7,0)
119 #define KVM_REQUEST_NO_WAKEUP BIT(8)
120 #define KVM_REQUEST_WAIT BIT(9)
121 /*
122 * Architecture-independent vcpu->requests bit members
123 * Bits 4-7 are reserved for more arch-independent bits.
124 */
125 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
126 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
127 #define KVM_REQ_PENDING_TIMER 2
128 #define KVM_REQ_UNHALT 3
129 #define KVM_REQUEST_ARCH_BASE 8
130
131 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
132 BUILD_BUG_ON((unsigned)(nr) >= 32 - KVM_REQUEST_ARCH_BASE); \
133 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
134 })
135 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
136
137 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
138 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
139
140 extern struct kmem_cache *kvm_vcpu_cache;
141
142 extern spinlock_t kvm_lock;
143 extern struct list_head vm_list;
144
145 struct kvm_io_range {
146 gpa_t addr;
147 int len;
148 struct kvm_io_device *dev;
149 };
150
151 #define NR_IOBUS_DEVS 1000
152
153 struct kvm_io_bus {
154 int dev_count;
155 int ioeventfd_count;
156 struct kvm_io_range range[];
157 };
158
159 enum kvm_bus {
160 KVM_MMIO_BUS,
161 KVM_PIO_BUS,
162 KVM_VIRTIO_CCW_NOTIFY_BUS,
163 KVM_FAST_MMIO_BUS,
164 KVM_NR_BUSES
165 };
166
167 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
168 int len, const void *val);
169 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
170 gpa_t addr, int len, const void *val, long cookie);
171 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
172 int len, void *val);
173 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
174 int len, struct kvm_io_device *dev);
175 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
176 struct kvm_io_device *dev);
177 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
178 gpa_t addr);
179
180 #ifdef CONFIG_KVM_ASYNC_PF
181 struct kvm_async_pf {
182 struct work_struct work;
183 struct list_head link;
184 struct list_head queue;
185 struct kvm_vcpu *vcpu;
186 struct mm_struct *mm;
187 gva_t gva;
188 unsigned long addr;
189 struct kvm_arch_async_pf arch;
190 bool wakeup_all;
191 };
192
193 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
194 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
195 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva,
196 struct kvm_arch_async_pf *arch);
197 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
198 #endif
199
200 enum {
201 OUTSIDE_GUEST_MODE,
202 IN_GUEST_MODE,
203 EXITING_GUEST_MODE,
204 READING_SHADOW_PAGE_TABLES,
205 };
206
207 /*
208 * Sometimes a large or cross-page mmio needs to be broken up into separate
209 * exits for userspace servicing.
210 */
211 struct kvm_mmio_fragment {
212 gpa_t gpa;
213 void *data;
214 unsigned len;
215 };
216
217 struct kvm_vcpu {
218 struct kvm *kvm;
219 #ifdef CONFIG_PREEMPT_NOTIFIERS
220 struct preempt_notifier preempt_notifier;
221 #endif
222 int cpu;
223 int vcpu_id;
224 int srcu_idx;
225 int mode;
226 unsigned long requests;
227 unsigned long guest_debug;
228
229 int pre_pcpu;
230 struct list_head blocked_vcpu_list;
231
232 struct mutex mutex;
233 struct kvm_run *run;
234
235 int guest_xcr0_loaded;
236 struct swait_queue_head wq;
237 struct pid __rcu *pid;
238 int sigset_active;
239 sigset_t sigset;
240 struct kvm_vcpu_stat stat;
241 unsigned int halt_poll_ns;
242 bool valid_wakeup;
243
244 #ifdef CONFIG_HAS_IOMEM
245 int mmio_needed;
246 int mmio_read_completed;
247 int mmio_is_write;
248 int mmio_cur_fragment;
249 int mmio_nr_fragments;
250 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
251 #endif
252
253 #ifdef CONFIG_KVM_ASYNC_PF
254 struct {
255 u32 queued;
256 struct list_head queue;
257 struct list_head done;
258 spinlock_t lock;
259 } async_pf;
260 #endif
261
262 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
263 /*
264 * Cpu relax intercept or pause loop exit optimization
265 * in_spin_loop: set when a vcpu does a pause loop exit
266 * or cpu relax intercepted.
267 * dy_eligible: indicates whether vcpu is eligible for directed yield.
268 */
269 struct {
270 bool in_spin_loop;
271 bool dy_eligible;
272 } spin_loop;
273 #endif
274 bool preempted;
275 struct kvm_vcpu_arch arch;
276 struct dentry *debugfs_dentry;
277 };
278
279 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
280 {
281 /*
282 * The memory barrier ensures a previous write to vcpu->requests cannot
283 * be reordered with the read of vcpu->mode. It pairs with the general
284 * memory barrier following the write of vcpu->mode in VCPU RUN.
285 */
286 smp_mb__before_atomic();
287 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
288 }
289
290 /*
291 * Some of the bitops functions do not support too long bitmaps.
292 * This number must be determined not to exceed such limits.
293 */
294 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
295
296 struct kvm_memory_slot {
297 gfn_t base_gfn;
298 unsigned long npages;
299 unsigned long *dirty_bitmap;
300 struct kvm_arch_memory_slot arch;
301 unsigned long userspace_addr;
302 u32 flags;
303 short id;
304 };
305
306 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
307 {
308 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
309 }
310
311 struct kvm_s390_adapter_int {
312 u64 ind_addr;
313 u64 summary_addr;
314 u64 ind_offset;
315 u32 summary_offset;
316 u32 adapter_id;
317 };
318
319 struct kvm_hv_sint {
320 u32 vcpu;
321 u32 sint;
322 };
323
324 struct kvm_kernel_irq_routing_entry {
325 u32 gsi;
326 u32 type;
327 int (*set)(struct kvm_kernel_irq_routing_entry *e,
328 struct kvm *kvm, int irq_source_id, int level,
329 bool line_status);
330 union {
331 struct {
332 unsigned irqchip;
333 unsigned pin;
334 } irqchip;
335 struct {
336 u32 address_lo;
337 u32 address_hi;
338 u32 data;
339 u32 flags;
340 u32 devid;
341 } msi;
342 struct kvm_s390_adapter_int adapter;
343 struct kvm_hv_sint hv_sint;
344 };
345 struct hlist_node link;
346 };
347
348 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
349 struct kvm_irq_routing_table {
350 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
351 u32 nr_rt_entries;
352 /*
353 * Array indexed by gsi. Each entry contains list of irq chips
354 * the gsi is connected to.
355 */
356 struct hlist_head map[0];
357 };
358 #endif
359
360 #ifndef KVM_PRIVATE_MEM_SLOTS
361 #define KVM_PRIVATE_MEM_SLOTS 0
362 #endif
363
364 #ifndef KVM_MEM_SLOTS_NUM
365 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
366 #endif
367
368 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
369 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
370 {
371 return 0;
372 }
373 #endif
374
375 /*
376 * Note:
377 * memslots are not sorted by id anymore, please use id_to_memslot()
378 * to get the memslot by its id.
379 */
380 struct kvm_memslots {
381 u64 generation;
382 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM];
383 /* The mapping table from slot id to the index in memslots[]. */
384 short id_to_index[KVM_MEM_SLOTS_NUM];
385 atomic_t lru_slot;
386 int used_slots;
387 };
388
389 struct kvm {
390 spinlock_t mmu_lock;
391 struct mutex slots_lock;
392 struct mm_struct *mm; /* userspace tied to this vm */
393 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
394 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
395
396 /*
397 * created_vcpus is protected by kvm->lock, and is incremented
398 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
399 * incremented after storing the kvm_vcpu pointer in vcpus,
400 * and is accessed atomically.
401 */
402 atomic_t online_vcpus;
403 int created_vcpus;
404 int last_boosted_vcpu;
405 struct list_head vm_list;
406 struct mutex lock;
407 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
408 #ifdef CONFIG_HAVE_KVM_EVENTFD
409 struct {
410 spinlock_t lock;
411 struct list_head items;
412 struct list_head resampler_list;
413 struct mutex resampler_lock;
414 } irqfds;
415 struct list_head ioeventfds;
416 #endif
417 struct kvm_vm_stat stat;
418 struct kvm_arch arch;
419 refcount_t users_count;
420 #ifdef CONFIG_KVM_MMIO
421 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
422 spinlock_t ring_lock;
423 struct list_head coalesced_zones;
424 #endif
425
426 struct mutex irq_lock;
427 #ifdef CONFIG_HAVE_KVM_IRQCHIP
428 /*
429 * Update side is protected by irq_lock.
430 */
431 struct kvm_irq_routing_table __rcu *irq_routing;
432 #endif
433 #ifdef CONFIG_HAVE_KVM_IRQFD
434 struct hlist_head irq_ack_notifier_list;
435 #endif
436
437 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
438 struct mmu_notifier mmu_notifier;
439 unsigned long mmu_notifier_seq;
440 long mmu_notifier_count;
441 #endif
442 long tlbs_dirty;
443 struct list_head devices;
444 struct dentry *debugfs_dentry;
445 struct kvm_stat_data **debugfs_stat_data;
446 struct srcu_struct srcu;
447 struct srcu_struct irq_srcu;
448 pid_t userspace_pid;
449 };
450
451 #define kvm_err(fmt, ...) \
452 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
453 #define kvm_info(fmt, ...) \
454 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
455 #define kvm_debug(fmt, ...) \
456 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
457 #define kvm_debug_ratelimited(fmt, ...) \
458 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
459 ## __VA_ARGS__)
460 #define kvm_pr_unimpl(fmt, ...) \
461 pr_err_ratelimited("kvm [%i]: " fmt, \
462 task_tgid_nr(current), ## __VA_ARGS__)
463
464 /* The guest did something we don't support. */
465 #define vcpu_unimpl(vcpu, fmt, ...) \
466 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
467 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
468
469 #define vcpu_debug(vcpu, fmt, ...) \
470 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
471 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
472 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
473 ## __VA_ARGS__)
474 #define vcpu_err(vcpu, fmt, ...) \
475 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
476
477 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
478 {
479 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
480 lockdep_is_held(&kvm->slots_lock) ||
481 !refcount_read(&kvm->users_count));
482 }
483
484 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
485 {
486 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu, in case
487 * the caller has read kvm->online_vcpus before (as is the case
488 * for kvm_for_each_vcpu, for example).
489 */
490 smp_rmb();
491 return kvm->vcpus[i];
492 }
493
494 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
495 for (idx = 0; \
496 idx < atomic_read(&kvm->online_vcpus) && \
497 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
498 idx++)
499
500 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
501 {
502 struct kvm_vcpu *vcpu = NULL;
503 int i;
504
505 if (id < 0)
506 return NULL;
507 if (id < KVM_MAX_VCPUS)
508 vcpu = kvm_get_vcpu(kvm, id);
509 if (vcpu && vcpu->vcpu_id == id)
510 return vcpu;
511 kvm_for_each_vcpu(i, vcpu, kvm)
512 if (vcpu->vcpu_id == id)
513 return vcpu;
514 return NULL;
515 }
516
517 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
518 {
519 struct kvm_vcpu *tmp;
520 int idx;
521
522 kvm_for_each_vcpu(idx, tmp, vcpu->kvm)
523 if (tmp == vcpu)
524 return idx;
525 BUG();
526 }
527
528 #define kvm_for_each_memslot(memslot, slots) \
529 for (memslot = &slots->memslots[0]; \
530 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\
531 memslot++)
532
533 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id);
534 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu);
535
536 int __must_check vcpu_load(struct kvm_vcpu *vcpu);
537 void vcpu_put(struct kvm_vcpu *vcpu);
538
539 #ifdef __KVM_HAVE_IOAPIC
540 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
541 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
542 #else
543 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
544 {
545 }
546 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
547 {
548 }
549 #endif
550
551 #ifdef CONFIG_HAVE_KVM_IRQFD
552 int kvm_irqfd_init(void);
553 void kvm_irqfd_exit(void);
554 #else
555 static inline int kvm_irqfd_init(void)
556 {
557 return 0;
558 }
559
560 static inline void kvm_irqfd_exit(void)
561 {
562 }
563 #endif
564 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
565 struct module *module);
566 void kvm_exit(void);
567
568 void kvm_get_kvm(struct kvm *kvm);
569 void kvm_put_kvm(struct kvm *kvm);
570
571 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
572 {
573 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
574 lockdep_is_held(&kvm->slots_lock) ||
575 !refcount_read(&kvm->users_count));
576 }
577
578 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
579 {
580 return __kvm_memslots(kvm, 0);
581 }
582
583 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
584 {
585 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
586
587 return __kvm_memslots(vcpu->kvm, as_id);
588 }
589
590 static inline struct kvm_memory_slot *
591 id_to_memslot(struct kvm_memslots *slots, int id)
592 {
593 int index = slots->id_to_index[id];
594 struct kvm_memory_slot *slot;
595
596 slot = &slots->memslots[index];
597
598 WARN_ON(slot->id != id);
599 return slot;
600 }
601
602 /*
603 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
604 * - create a new memory slot
605 * - delete an existing memory slot
606 * - modify an existing memory slot
607 * -- move it in the guest physical memory space
608 * -- just change its flags
609 *
610 * Since flags can be changed by some of these operations, the following
611 * differentiation is the best we can do for __kvm_set_memory_region():
612 */
613 enum kvm_mr_change {
614 KVM_MR_CREATE,
615 KVM_MR_DELETE,
616 KVM_MR_MOVE,
617 KVM_MR_FLAGS_ONLY,
618 };
619
620 int kvm_set_memory_region(struct kvm *kvm,
621 const struct kvm_userspace_memory_region *mem);
622 int __kvm_set_memory_region(struct kvm *kvm,
623 const struct kvm_userspace_memory_region *mem);
624 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
625 struct kvm_memory_slot *dont);
626 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
627 unsigned long npages);
628 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots);
629 int kvm_arch_prepare_memory_region(struct kvm *kvm,
630 struct kvm_memory_slot *memslot,
631 const struct kvm_userspace_memory_region *mem,
632 enum kvm_mr_change change);
633 void kvm_arch_commit_memory_region(struct kvm *kvm,
634 const struct kvm_userspace_memory_region *mem,
635 const struct kvm_memory_slot *old,
636 const struct kvm_memory_slot *new,
637 enum kvm_mr_change change);
638 bool kvm_largepages_enabled(void);
639 void kvm_disable_largepages(void);
640 /* flush all memory translations */
641 void kvm_arch_flush_shadow_all(struct kvm *kvm);
642 /* flush memory translations pointing to 'slot' */
643 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
644 struct kvm_memory_slot *slot);
645
646 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
647 struct page **pages, int nr_pages);
648
649 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
650 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
651 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
652 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
653 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
654 bool *writable);
655 void kvm_release_page_clean(struct page *page);
656 void kvm_release_page_dirty(struct page *page);
657 void kvm_set_page_accessed(struct page *page);
658
659 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn);
660 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
661 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
662 bool *writable);
663 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
664 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
665 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
666 bool atomic, bool *async, bool write_fault,
667 bool *writable);
668
669 void kvm_release_pfn_clean(kvm_pfn_t pfn);
670 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
671 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
672 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
673 void kvm_get_pfn(kvm_pfn_t pfn);
674
675 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
676 int len);
677 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
678 unsigned long len);
679 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
680 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
681 void *data, unsigned long len);
682 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
683 int offset, int len);
684 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
685 unsigned long len);
686 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
687 void *data, unsigned long len);
688 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
689 void *data, int offset, unsigned long len);
690 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
691 gpa_t gpa, unsigned long len);
692 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
693 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
694 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
695 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
696 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn);
697 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
698
699 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
700 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
701 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
702 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
703 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
704 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
705 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
706 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
707 int len);
708 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
709 unsigned long len);
710 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
711 unsigned long len);
712 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
713 int offset, int len);
714 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
715 unsigned long len);
716 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
717
718 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
719 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
720
721 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
722 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
723 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
724 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
725 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
726 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
727 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
728 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu);
729 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu);
730
731 void kvm_flush_remote_tlbs(struct kvm *kvm);
732 void kvm_reload_remote_mmus(struct kvm *kvm);
733 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
734
735 long kvm_arch_dev_ioctl(struct file *filp,
736 unsigned int ioctl, unsigned long arg);
737 long kvm_arch_vcpu_ioctl(struct file *filp,
738 unsigned int ioctl, unsigned long arg);
739 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
740
741 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
742
743 int kvm_get_dirty_log(struct kvm *kvm,
744 struct kvm_dirty_log *log, int *is_dirty);
745
746 int kvm_get_dirty_log_protect(struct kvm *kvm,
747 struct kvm_dirty_log *log, bool *is_dirty);
748
749 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
750 struct kvm_memory_slot *slot,
751 gfn_t gfn_offset,
752 unsigned long mask);
753
754 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
755 struct kvm_dirty_log *log);
756
757 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
758 bool line_status);
759 long kvm_arch_vm_ioctl(struct file *filp,
760 unsigned int ioctl, unsigned long arg);
761
762 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
763 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
764
765 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
766 struct kvm_translation *tr);
767
768 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
769 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
770 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
771 struct kvm_sregs *sregs);
772 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
773 struct kvm_sregs *sregs);
774 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
775 struct kvm_mp_state *mp_state);
776 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
777 struct kvm_mp_state *mp_state);
778 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
779 struct kvm_guest_debug *dbg);
780 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
781
782 int kvm_arch_init(void *opaque);
783 void kvm_arch_exit(void);
784
785 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu);
786 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu);
787
788 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
789
790 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu);
791 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
792 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
793 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id);
794 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu);
795 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
796 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
797
798 bool kvm_arch_has_vcpu_debugfs(void);
799 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu);
800
801 int kvm_arch_hardware_enable(void);
802 void kvm_arch_hardware_disable(void);
803 int kvm_arch_hardware_setup(void);
804 void kvm_arch_hardware_unsetup(void);
805 void kvm_arch_check_processor_compat(void *rtn);
806 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
807 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
808 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
809
810 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
811 static inline struct kvm *kvm_arch_alloc_vm(void)
812 {
813 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
814 }
815
816 static inline void kvm_arch_free_vm(struct kvm *kvm)
817 {
818 kfree(kvm);
819 }
820 #endif
821
822 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
823 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
824 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
825 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
826 #else
827 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
828 {
829 }
830
831 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
832 {
833 }
834
835 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
836 {
837 return false;
838 }
839 #endif
840 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
841 void kvm_arch_start_assignment(struct kvm *kvm);
842 void kvm_arch_end_assignment(struct kvm *kvm);
843 bool kvm_arch_has_assigned_device(struct kvm *kvm);
844 #else
845 static inline void kvm_arch_start_assignment(struct kvm *kvm)
846 {
847 }
848
849 static inline void kvm_arch_end_assignment(struct kvm *kvm)
850 {
851 }
852
853 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
854 {
855 return false;
856 }
857 #endif
858
859 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu)
860 {
861 #ifdef __KVM_HAVE_ARCH_WQP
862 return vcpu->arch.wqp;
863 #else
864 return &vcpu->wq;
865 #endif
866 }
867
868 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
869 /*
870 * returns true if the virtual interrupt controller is initialized and
871 * ready to accept virtual IRQ. On some architectures the virtual interrupt
872 * controller is dynamically instantiated and this is not always true.
873 */
874 bool kvm_arch_intc_initialized(struct kvm *kvm);
875 #else
876 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
877 {
878 return true;
879 }
880 #endif
881
882 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
883 void kvm_arch_destroy_vm(struct kvm *kvm);
884 void kvm_arch_sync_events(struct kvm *kvm);
885
886 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
887 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
888
889 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
890
891 struct kvm_irq_ack_notifier {
892 struct hlist_node link;
893 unsigned gsi;
894 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
895 };
896
897 int kvm_irq_map_gsi(struct kvm *kvm,
898 struct kvm_kernel_irq_routing_entry *entries, int gsi);
899 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
900
901 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
902 bool line_status);
903 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
904 int irq_source_id, int level, bool line_status);
905 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
906 struct kvm *kvm, int irq_source_id,
907 int level, bool line_status);
908 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
909 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
910 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
911 void kvm_register_irq_ack_notifier(struct kvm *kvm,
912 struct kvm_irq_ack_notifier *kian);
913 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
914 struct kvm_irq_ack_notifier *kian);
915 int kvm_request_irq_source_id(struct kvm *kvm);
916 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
917
918 /*
919 * search_memslots() and __gfn_to_memslot() are here because they are
920 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
921 * gfn_to_memslot() itself isn't here as an inline because that would
922 * bloat other code too much.
923 */
924 static inline struct kvm_memory_slot *
925 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
926 {
927 int start = 0, end = slots->used_slots;
928 int slot = atomic_read(&slots->lru_slot);
929 struct kvm_memory_slot *memslots = slots->memslots;
930
931 if (gfn >= memslots[slot].base_gfn &&
932 gfn < memslots[slot].base_gfn + memslots[slot].npages)
933 return &memslots[slot];
934
935 while (start < end) {
936 slot = start + (end - start) / 2;
937
938 if (gfn >= memslots[slot].base_gfn)
939 end = slot;
940 else
941 start = slot + 1;
942 }
943
944 if (gfn >= memslots[start].base_gfn &&
945 gfn < memslots[start].base_gfn + memslots[start].npages) {
946 atomic_set(&slots->lru_slot, start);
947 return &memslots[start];
948 }
949
950 return NULL;
951 }
952
953 static inline struct kvm_memory_slot *
954 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
955 {
956 return search_memslots(slots, gfn);
957 }
958
959 static inline unsigned long
960 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
961 {
962 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
963 }
964
965 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
966 {
967 return gfn_to_memslot(kvm, gfn)->id;
968 }
969
970 static inline gfn_t
971 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
972 {
973 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
974
975 return slot->base_gfn + gfn_offset;
976 }
977
978 static inline gpa_t gfn_to_gpa(gfn_t gfn)
979 {
980 return (gpa_t)gfn << PAGE_SHIFT;
981 }
982
983 static inline gfn_t gpa_to_gfn(gpa_t gpa)
984 {
985 return (gfn_t)(gpa >> PAGE_SHIFT);
986 }
987
988 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
989 {
990 return (hpa_t)pfn << PAGE_SHIFT;
991 }
992
993 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
994 gpa_t gpa)
995 {
996 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
997 }
998
999 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1000 {
1001 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1002
1003 return kvm_is_error_hva(hva);
1004 }
1005
1006 enum kvm_stat_kind {
1007 KVM_STAT_VM,
1008 KVM_STAT_VCPU,
1009 };
1010
1011 struct kvm_stat_data {
1012 int offset;
1013 struct kvm *kvm;
1014 };
1015
1016 struct kvm_stats_debugfs_item {
1017 const char *name;
1018 int offset;
1019 enum kvm_stat_kind kind;
1020 };
1021 extern struct kvm_stats_debugfs_item debugfs_entries[];
1022 extern struct dentry *kvm_debugfs_dir;
1023
1024 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1025 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1026 {
1027 if (unlikely(kvm->mmu_notifier_count))
1028 return 1;
1029 /*
1030 * Ensure the read of mmu_notifier_count happens before the read
1031 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1032 * mmu_notifier_invalidate_range_end to make sure that the caller
1033 * either sees the old (non-zero) value of mmu_notifier_count or
1034 * the new (incremented) value of mmu_notifier_seq.
1035 * PowerPC Book3s HV KVM calls this under a per-page lock
1036 * rather than under kvm->mmu_lock, for scalability, so
1037 * can't rely on kvm->mmu_lock to keep things ordered.
1038 */
1039 smp_rmb();
1040 if (kvm->mmu_notifier_seq != mmu_seq)
1041 return 1;
1042 return 0;
1043 }
1044 #endif
1045
1046 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1047
1048 #ifdef CONFIG_S390
1049 #define KVM_MAX_IRQ_ROUTES 4096 //FIXME: we can have more than that...
1050 #elif defined(CONFIG_ARM64)
1051 #define KVM_MAX_IRQ_ROUTES 4096
1052 #elif defined(CONFIG_X86)
1053 #define KVM_MAX_IRQ_ROUTES 2048
1054 #else
1055 #define KVM_MAX_IRQ_ROUTES 1024
1056 #endif
1057
1058 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1059 int kvm_set_irq_routing(struct kvm *kvm,
1060 const struct kvm_irq_routing_entry *entries,
1061 unsigned nr,
1062 unsigned flags);
1063 int kvm_set_routing_entry(struct kvm *kvm,
1064 struct kvm_kernel_irq_routing_entry *e,
1065 const struct kvm_irq_routing_entry *ue);
1066 void kvm_free_irq_routing(struct kvm *kvm);
1067
1068 #else
1069
1070 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1071
1072 #endif
1073
1074 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1075
1076 #ifdef CONFIG_HAVE_KVM_EVENTFD
1077
1078 void kvm_eventfd_init(struct kvm *kvm);
1079 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1080
1081 #ifdef CONFIG_HAVE_KVM_IRQFD
1082 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1083 void kvm_irqfd_release(struct kvm *kvm);
1084 void kvm_irq_routing_update(struct kvm *);
1085 #else
1086 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1087 {
1088 return -EINVAL;
1089 }
1090
1091 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1092 #endif
1093
1094 #else
1095
1096 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1097
1098 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1099 {
1100 return -EINVAL;
1101 }
1102
1103 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1104
1105 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1106 static inline void kvm_irq_routing_update(struct kvm *kvm)
1107 {
1108 }
1109 #endif
1110
1111 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1112 {
1113 return -ENOSYS;
1114 }
1115
1116 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1117
1118 void kvm_arch_irq_routing_update(struct kvm *kvm);
1119
1120 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1121 {
1122 /*
1123 * Ensure the rest of the request is published to kvm_check_request's
1124 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1125 */
1126 smp_wmb();
1127 set_bit(req & KVM_REQUEST_MASK, &vcpu->requests);
1128 }
1129
1130 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1131 {
1132 return READ_ONCE(vcpu->requests);
1133 }
1134
1135 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1136 {
1137 return test_bit(req & KVM_REQUEST_MASK, &vcpu->requests);
1138 }
1139
1140 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1141 {
1142 clear_bit(req & KVM_REQUEST_MASK, &vcpu->requests);
1143 }
1144
1145 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1146 {
1147 if (kvm_test_request(req, vcpu)) {
1148 kvm_clear_request(req, vcpu);
1149
1150 /*
1151 * Ensure the rest of the request is visible to kvm_check_request's
1152 * caller. Paired with the smp_wmb in kvm_make_request.
1153 */
1154 smp_mb__after_atomic();
1155 return true;
1156 } else {
1157 return false;
1158 }
1159 }
1160
1161 extern bool kvm_rebooting;
1162
1163 extern unsigned int halt_poll_ns;
1164 extern unsigned int halt_poll_ns_grow;
1165 extern unsigned int halt_poll_ns_shrink;
1166
1167 struct kvm_device {
1168 struct kvm_device_ops *ops;
1169 struct kvm *kvm;
1170 void *private;
1171 struct list_head vm_node;
1172 };
1173
1174 /* create, destroy, and name are mandatory */
1175 struct kvm_device_ops {
1176 const char *name;
1177
1178 /*
1179 * create is called holding kvm->lock and any operations not suitable
1180 * to do while holding the lock should be deferred to init (see
1181 * below).
1182 */
1183 int (*create)(struct kvm_device *dev, u32 type);
1184
1185 /*
1186 * init is called after create if create is successful and is called
1187 * outside of holding kvm->lock.
1188 */
1189 void (*init)(struct kvm_device *dev);
1190
1191 /*
1192 * Destroy is responsible for freeing dev.
1193 *
1194 * Destroy may be called before or after destructors are called
1195 * on emulated I/O regions, depending on whether a reference is
1196 * held by a vcpu or other kvm component that gets destroyed
1197 * after the emulated I/O.
1198 */
1199 void (*destroy)(struct kvm_device *dev);
1200
1201 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1202 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1203 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1204 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1205 unsigned long arg);
1206 };
1207
1208 void kvm_device_get(struct kvm_device *dev);
1209 void kvm_device_put(struct kvm_device *dev);
1210 struct kvm_device *kvm_device_from_filp(struct file *filp);
1211 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type);
1212 void kvm_unregister_device_ops(u32 type);
1213
1214 extern struct kvm_device_ops kvm_mpic_ops;
1215 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1216 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1217
1218 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1219
1220 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1221 {
1222 vcpu->spin_loop.in_spin_loop = val;
1223 }
1224 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1225 {
1226 vcpu->spin_loop.dy_eligible = val;
1227 }
1228
1229 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1230
1231 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1232 {
1233 }
1234
1235 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1236 {
1237 }
1238 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1239
1240 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1241 bool kvm_arch_has_irq_bypass(void);
1242 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1243 struct irq_bypass_producer *);
1244 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1245 struct irq_bypass_producer *);
1246 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1247 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1248 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1249 uint32_t guest_irq, bool set);
1250 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1251
1252 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1253 /* If we wakeup during the poll time, was it a sucessful poll? */
1254 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1255 {
1256 return vcpu->valid_wakeup;
1257 }
1258
1259 #else
1260 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1261 {
1262 return true;
1263 }
1264 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1265
1266 #endif