]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/list.h
[PATCH] Numerous fixes to kernel-doc info in source files.
[mirror_ubuntu-artful-kernel.git] / include / linux / list.h
1 #ifndef _LINUX_LIST_H
2 #define _LINUX_LIST_H
3
4 #ifdef __KERNEL__
5
6 #include <linux/stddef.h>
7 #include <linux/poison.h>
8 #include <linux/prefetch.h>
9 #include <asm/system.h>
10
11 /*
12 * Simple doubly linked list implementation.
13 *
14 * Some of the internal functions ("__xxx") are useful when
15 * manipulating whole lists rather than single entries, as
16 * sometimes we already know the next/prev entries and we can
17 * generate better code by using them directly rather than
18 * using the generic single-entry routines.
19 */
20
21 struct list_head {
22 struct list_head *next, *prev;
23 };
24
25 #define LIST_HEAD_INIT(name) { &(name), &(name) }
26
27 #define LIST_HEAD(name) \
28 struct list_head name = LIST_HEAD_INIT(name)
29
30 static inline void INIT_LIST_HEAD(struct list_head *list)
31 {
32 list->next = list;
33 list->prev = list;
34 }
35
36 /*
37 * Insert a new entry between two known consecutive entries.
38 *
39 * This is only for internal list manipulation where we know
40 * the prev/next entries already!
41 */
42 #ifndef CONFIG_DEBUG_LIST
43 static inline void __list_add(struct list_head *new,
44 struct list_head *prev,
45 struct list_head *next)
46 {
47 next->prev = new;
48 new->next = next;
49 new->prev = prev;
50 prev->next = new;
51 }
52 #else
53 extern void __list_add(struct list_head *new,
54 struct list_head *prev,
55 struct list_head *next);
56 #endif
57
58 /**
59 * list_add - add a new entry
60 * @new: new entry to be added
61 * @head: list head to add it after
62 *
63 * Insert a new entry after the specified head.
64 * This is good for implementing stacks.
65 */
66 #ifndef CONFIG_DEBUG_LIST
67 static inline void list_add(struct list_head *new, struct list_head *head)
68 {
69 __list_add(new, head, head->next);
70 }
71 #else
72 extern void list_add(struct list_head *new, struct list_head *head);
73 #endif
74
75
76 /**
77 * list_add_tail - add a new entry
78 * @new: new entry to be added
79 * @head: list head to add it before
80 *
81 * Insert a new entry before the specified head.
82 * This is useful for implementing queues.
83 */
84 static inline void list_add_tail(struct list_head *new, struct list_head *head)
85 {
86 __list_add(new, head->prev, head);
87 }
88
89 /*
90 * Insert a new entry between two known consecutive entries.
91 *
92 * This is only for internal list manipulation where we know
93 * the prev/next entries already!
94 */
95 static inline void __list_add_rcu(struct list_head * new,
96 struct list_head * prev, struct list_head * next)
97 {
98 new->next = next;
99 new->prev = prev;
100 smp_wmb();
101 next->prev = new;
102 prev->next = new;
103 }
104
105 /**
106 * list_add_rcu - add a new entry to rcu-protected list
107 * @new: new entry to be added
108 * @head: list head to add it after
109 *
110 * Insert a new entry after the specified head.
111 * This is good for implementing stacks.
112 *
113 * The caller must take whatever precautions are necessary
114 * (such as holding appropriate locks) to avoid racing
115 * with another list-mutation primitive, such as list_add_rcu()
116 * or list_del_rcu(), running on this same list.
117 * However, it is perfectly legal to run concurrently with
118 * the _rcu list-traversal primitives, such as
119 * list_for_each_entry_rcu().
120 */
121 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
122 {
123 __list_add_rcu(new, head, head->next);
124 }
125
126 /**
127 * list_add_tail_rcu - add a new entry to rcu-protected list
128 * @new: new entry to be added
129 * @head: list head to add it before
130 *
131 * Insert a new entry before the specified head.
132 * This is useful for implementing queues.
133 *
134 * The caller must take whatever precautions are necessary
135 * (such as holding appropriate locks) to avoid racing
136 * with another list-mutation primitive, such as list_add_tail_rcu()
137 * or list_del_rcu(), running on this same list.
138 * However, it is perfectly legal to run concurrently with
139 * the _rcu list-traversal primitives, such as
140 * list_for_each_entry_rcu().
141 */
142 static inline void list_add_tail_rcu(struct list_head *new,
143 struct list_head *head)
144 {
145 __list_add_rcu(new, head->prev, head);
146 }
147
148 /*
149 * Delete a list entry by making the prev/next entries
150 * point to each other.
151 *
152 * This is only for internal list manipulation where we know
153 * the prev/next entries already!
154 */
155 static inline void __list_del(struct list_head * prev, struct list_head * next)
156 {
157 next->prev = prev;
158 prev->next = next;
159 }
160
161 /**
162 * list_del - deletes entry from list.
163 * @entry: the element to delete from the list.
164 * Note: list_empty() on entry does not return true after this, the entry is
165 * in an undefined state.
166 */
167 #ifndef CONFIG_DEBUG_LIST
168 static inline void list_del(struct list_head *entry)
169 {
170 __list_del(entry->prev, entry->next);
171 entry->next = LIST_POISON1;
172 entry->prev = LIST_POISON2;
173 }
174 #else
175 extern void list_del(struct list_head *entry);
176 #endif
177
178 /**
179 * list_del_rcu - deletes entry from list without re-initialization
180 * @entry: the element to delete from the list.
181 *
182 * Note: list_empty() on entry does not return true after this,
183 * the entry is in an undefined state. It is useful for RCU based
184 * lockfree traversal.
185 *
186 * In particular, it means that we can not poison the forward
187 * pointers that may still be used for walking the list.
188 *
189 * The caller must take whatever precautions are necessary
190 * (such as holding appropriate locks) to avoid racing
191 * with another list-mutation primitive, such as list_del_rcu()
192 * or list_add_rcu(), running on this same list.
193 * However, it is perfectly legal to run concurrently with
194 * the _rcu list-traversal primitives, such as
195 * list_for_each_entry_rcu().
196 *
197 * Note that the caller is not permitted to immediately free
198 * the newly deleted entry. Instead, either synchronize_rcu()
199 * or call_rcu() must be used to defer freeing until an RCU
200 * grace period has elapsed.
201 */
202 static inline void list_del_rcu(struct list_head *entry)
203 {
204 __list_del(entry->prev, entry->next);
205 entry->prev = LIST_POISON2;
206 }
207
208 /**
209 * list_replace - replace old entry by new one
210 * @old : the element to be replaced
211 * @new : the new element to insert
212 *
213 * If @old was empty, it will be overwritten.
214 */
215 static inline void list_replace(struct list_head *old,
216 struct list_head *new)
217 {
218 new->next = old->next;
219 new->next->prev = new;
220 new->prev = old->prev;
221 new->prev->next = new;
222 }
223
224 static inline void list_replace_init(struct list_head *old,
225 struct list_head *new)
226 {
227 list_replace(old, new);
228 INIT_LIST_HEAD(old);
229 }
230
231 /**
232 * list_replace_rcu - replace old entry by new one
233 * @old : the element to be replaced
234 * @new : the new element to insert
235 *
236 * The @old entry will be replaced with the @new entry atomically.
237 * Note: @old should not be empty.
238 */
239 static inline void list_replace_rcu(struct list_head *old,
240 struct list_head *new)
241 {
242 new->next = old->next;
243 new->prev = old->prev;
244 smp_wmb();
245 new->next->prev = new;
246 new->prev->next = new;
247 old->prev = LIST_POISON2;
248 }
249
250 /**
251 * list_del_init - deletes entry from list and reinitialize it.
252 * @entry: the element to delete from the list.
253 */
254 static inline void list_del_init(struct list_head *entry)
255 {
256 __list_del(entry->prev, entry->next);
257 INIT_LIST_HEAD(entry);
258 }
259
260 /**
261 * list_move - delete from one list and add as another's head
262 * @list: the entry to move
263 * @head: the head that will precede our entry
264 */
265 static inline void list_move(struct list_head *list, struct list_head *head)
266 {
267 __list_del(list->prev, list->next);
268 list_add(list, head);
269 }
270
271 /**
272 * list_move_tail - delete from one list and add as another's tail
273 * @list: the entry to move
274 * @head: the head that will follow our entry
275 */
276 static inline void list_move_tail(struct list_head *list,
277 struct list_head *head)
278 {
279 __list_del(list->prev, list->next);
280 list_add_tail(list, head);
281 }
282
283 /**
284 * list_is_last - tests whether @list is the last entry in list @head
285 * @list: the entry to test
286 * @head: the head of the list
287 */
288 static inline int list_is_last(const struct list_head *list,
289 const struct list_head *head)
290 {
291 return list->next == head;
292 }
293
294 /**
295 * list_empty - tests whether a list is empty
296 * @head: the list to test.
297 */
298 static inline int list_empty(const struct list_head *head)
299 {
300 return head->next == head;
301 }
302
303 /**
304 * list_empty_careful - tests whether a list is empty and not being modified
305 * @head: the list to test
306 *
307 * Description:
308 * tests whether a list is empty _and_ checks that no other CPU might be
309 * in the process of modifying either member (next or prev)
310 *
311 * NOTE: using list_empty_careful() without synchronization
312 * can only be safe if the only activity that can happen
313 * to the list entry is list_del_init(). Eg. it cannot be used
314 * if another CPU could re-list_add() it.
315 */
316 static inline int list_empty_careful(const struct list_head *head)
317 {
318 struct list_head *next = head->next;
319 return (next == head) && (next == head->prev);
320 }
321
322 static inline void __list_splice(struct list_head *list,
323 struct list_head *head)
324 {
325 struct list_head *first = list->next;
326 struct list_head *last = list->prev;
327 struct list_head *at = head->next;
328
329 first->prev = head;
330 head->next = first;
331
332 last->next = at;
333 at->prev = last;
334 }
335
336 /**
337 * list_splice - join two lists
338 * @list: the new list to add.
339 * @head: the place to add it in the first list.
340 */
341 static inline void list_splice(struct list_head *list, struct list_head *head)
342 {
343 if (!list_empty(list))
344 __list_splice(list, head);
345 }
346
347 /**
348 * list_splice_init - join two lists and reinitialise the emptied list.
349 * @list: the new list to add.
350 * @head: the place to add it in the first list.
351 *
352 * The list at @list is reinitialised
353 */
354 static inline void list_splice_init(struct list_head *list,
355 struct list_head *head)
356 {
357 if (!list_empty(list)) {
358 __list_splice(list, head);
359 INIT_LIST_HEAD(list);
360 }
361 }
362
363 /**
364 * list_splice_init_rcu - splice an RCU-protected list into an existing list.
365 * @list: the RCU-protected list to splice
366 * @head: the place in the list to splice the first list into
367 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ...
368 *
369 * @head can be RCU-read traversed concurrently with this function.
370 *
371 * Note that this function blocks.
372 *
373 * Important note: the caller must take whatever action is necessary to
374 * prevent any other updates to @head. In principle, it is possible
375 * to modify the list as soon as sync() begins execution.
376 * If this sort of thing becomes necessary, an alternative version
377 * based on call_rcu() could be created. But only if -really-
378 * needed -- there is no shortage of RCU API members.
379 */
380 static inline void list_splice_init_rcu(struct list_head *list,
381 struct list_head *head,
382 void (*sync)(void))
383 {
384 struct list_head *first = list->next;
385 struct list_head *last = list->prev;
386 struct list_head *at = head->next;
387
388 if (list_empty(head))
389 return;
390
391 /* "first" and "last" tracking list, so initialize it. */
392
393 INIT_LIST_HEAD(list);
394
395 /*
396 * At this point, the list body still points to the source list.
397 * Wait for any readers to finish using the list before splicing
398 * the list body into the new list. Any new readers will see
399 * an empty list.
400 */
401
402 sync();
403
404 /*
405 * Readers are finished with the source list, so perform splice.
406 * The order is important if the new list is global and accessible
407 * to concurrent RCU readers. Note that RCU readers are not
408 * permitted to traverse the prev pointers without excluding
409 * this function.
410 */
411
412 last->next = at;
413 smp_wmb();
414 head->next = first;
415 first->prev = head;
416 at->prev = last;
417 }
418
419 /**
420 * list_entry - get the struct for this entry
421 * @ptr: the &struct list_head pointer.
422 * @type: the type of the struct this is embedded in.
423 * @member: the name of the list_struct within the struct.
424 */
425 #define list_entry(ptr, type, member) \
426 container_of(ptr, type, member)
427
428 /**
429 * list_for_each - iterate over a list
430 * @pos: the &struct list_head to use as a loop cursor.
431 * @head: the head for your list.
432 */
433 #define list_for_each(pos, head) \
434 for (pos = (head)->next; prefetch(pos->next), pos != (head); \
435 pos = pos->next)
436
437 /**
438 * __list_for_each - iterate over a list
439 * @pos: the &struct list_head to use as a loop cursor.
440 * @head: the head for your list.
441 *
442 * This variant differs from list_for_each() in that it's the
443 * simplest possible list iteration code, no prefetching is done.
444 * Use this for code that knows the list to be very short (empty
445 * or 1 entry) most of the time.
446 */
447 #define __list_for_each(pos, head) \
448 for (pos = (head)->next; pos != (head); pos = pos->next)
449
450 /**
451 * list_for_each_prev - iterate over a list backwards
452 * @pos: the &struct list_head to use as a loop cursor.
453 * @head: the head for your list.
454 */
455 #define list_for_each_prev(pos, head) \
456 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
457 pos = pos->prev)
458
459 /**
460 * list_for_each_safe - iterate over a list safe against removal of list entry
461 * @pos: the &struct list_head to use as a loop cursor.
462 * @n: another &struct list_head to use as temporary storage
463 * @head: the head for your list.
464 */
465 #define list_for_each_safe(pos, n, head) \
466 for (pos = (head)->next, n = pos->next; pos != (head); \
467 pos = n, n = pos->next)
468
469 /**
470 * list_for_each_entry - iterate over list of given type
471 * @pos: the type * to use as a loop cursor.
472 * @head: the head for your list.
473 * @member: the name of the list_struct within the struct.
474 */
475 #define list_for_each_entry(pos, head, member) \
476 for (pos = list_entry((head)->next, typeof(*pos), member); \
477 prefetch(pos->member.next), &pos->member != (head); \
478 pos = list_entry(pos->member.next, typeof(*pos), member))
479
480 /**
481 * list_for_each_entry_reverse - iterate backwards over list of given type.
482 * @pos: the type * to use as a loop cursor.
483 * @head: the head for your list.
484 * @member: the name of the list_struct within the struct.
485 */
486 #define list_for_each_entry_reverse(pos, head, member) \
487 for (pos = list_entry((head)->prev, typeof(*pos), member); \
488 prefetch(pos->member.prev), &pos->member != (head); \
489 pos = list_entry(pos->member.prev, typeof(*pos), member))
490
491 /**
492 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
493 * @pos: the type * to use as a start point
494 * @head: the head of the list
495 * @member: the name of the list_struct within the struct.
496 *
497 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
498 */
499 #define list_prepare_entry(pos, head, member) \
500 ((pos) ? : list_entry(head, typeof(*pos), member))
501
502 /**
503 * list_for_each_entry_continue - continue iteration over list of given type
504 * @pos: the type * to use as a loop cursor.
505 * @head: the head for your list.
506 * @member: the name of the list_struct within the struct.
507 *
508 * Continue to iterate over list of given type, continuing after
509 * the current position.
510 */
511 #define list_for_each_entry_continue(pos, head, member) \
512 for (pos = list_entry(pos->member.next, typeof(*pos), member); \
513 prefetch(pos->member.next), &pos->member != (head); \
514 pos = list_entry(pos->member.next, typeof(*pos), member))
515
516 /**
517 * list_for_each_entry_from - iterate over list of given type from the current point
518 * @pos: the type * to use as a loop cursor.
519 * @head: the head for your list.
520 * @member: the name of the list_struct within the struct.
521 *
522 * Iterate over list of given type, continuing from current position.
523 */
524 #define list_for_each_entry_from(pos, head, member) \
525 for (; prefetch(pos->member.next), &pos->member != (head); \
526 pos = list_entry(pos->member.next, typeof(*pos), member))
527
528 /**
529 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
530 * @pos: the type * to use as a loop cursor.
531 * @n: another type * to use as temporary storage
532 * @head: the head for your list.
533 * @member: the name of the list_struct within the struct.
534 */
535 #define list_for_each_entry_safe(pos, n, head, member) \
536 for (pos = list_entry((head)->next, typeof(*pos), member), \
537 n = list_entry(pos->member.next, typeof(*pos), member); \
538 &pos->member != (head); \
539 pos = n, n = list_entry(n->member.next, typeof(*n), member))
540
541 /**
542 * list_for_each_entry_safe_continue
543 * @pos: the type * to use as a loop cursor.
544 * @n: another type * to use as temporary storage
545 * @head: the head for your list.
546 * @member: the name of the list_struct within the struct.
547 *
548 * Iterate over list of given type, continuing after current point,
549 * safe against removal of list entry.
550 */
551 #define list_for_each_entry_safe_continue(pos, n, head, member) \
552 for (pos = list_entry(pos->member.next, typeof(*pos), member), \
553 n = list_entry(pos->member.next, typeof(*pos), member); \
554 &pos->member != (head); \
555 pos = n, n = list_entry(n->member.next, typeof(*n), member))
556
557 /**
558 * list_for_each_entry_safe_from
559 * @pos: the type * to use as a loop cursor.
560 * @n: another type * to use as temporary storage
561 * @head: the head for your list.
562 * @member: the name of the list_struct within the struct.
563 *
564 * Iterate over list of given type from current point, safe against
565 * removal of list entry.
566 */
567 #define list_for_each_entry_safe_from(pos, n, head, member) \
568 for (n = list_entry(pos->member.next, typeof(*pos), member); \
569 &pos->member != (head); \
570 pos = n, n = list_entry(n->member.next, typeof(*n), member))
571
572 /**
573 * list_for_each_entry_safe_reverse
574 * @pos: the type * to use as a loop cursor.
575 * @n: another type * to use as temporary storage
576 * @head: the head for your list.
577 * @member: the name of the list_struct within the struct.
578 *
579 * Iterate backwards over list of given type, safe against removal
580 * of list entry.
581 */
582 #define list_for_each_entry_safe_reverse(pos, n, head, member) \
583 for (pos = list_entry((head)->prev, typeof(*pos), member), \
584 n = list_entry(pos->member.prev, typeof(*pos), member); \
585 &pos->member != (head); \
586 pos = n, n = list_entry(n->member.prev, typeof(*n), member))
587
588 /**
589 * list_for_each_rcu - iterate over an rcu-protected list
590 * @pos: the &struct list_head to use as a loop cursor.
591 * @head: the head for your list.
592 *
593 * This list-traversal primitive may safely run concurrently with
594 * the _rcu list-mutation primitives such as list_add_rcu()
595 * as long as the traversal is guarded by rcu_read_lock().
596 */
597 #define list_for_each_rcu(pos, head) \
598 for (pos = (head)->next; \
599 prefetch(rcu_dereference(pos)->next), pos != (head); \
600 pos = pos->next)
601
602 #define __list_for_each_rcu(pos, head) \
603 for (pos = (head)->next; \
604 rcu_dereference(pos) != (head); \
605 pos = pos->next)
606
607 /**
608 * list_for_each_safe_rcu
609 * @pos: the &struct list_head to use as a loop cursor.
610 * @n: another &struct list_head to use as temporary storage
611 * @head: the head for your list.
612 *
613 * Iterate over an rcu-protected list, safe against removal of list entry.
614 *
615 * This list-traversal primitive may safely run concurrently with
616 * the _rcu list-mutation primitives such as list_add_rcu()
617 * as long as the traversal is guarded by rcu_read_lock().
618 */
619 #define list_for_each_safe_rcu(pos, n, head) \
620 for (pos = (head)->next; \
621 n = rcu_dereference(pos)->next, pos != (head); \
622 pos = n)
623
624 /**
625 * list_for_each_entry_rcu - iterate over rcu list of given type
626 * @pos: the type * to use as a loop cursor.
627 * @head: the head for your list.
628 * @member: the name of the list_struct within the struct.
629 *
630 * This list-traversal primitive may safely run concurrently with
631 * the _rcu list-mutation primitives such as list_add_rcu()
632 * as long as the traversal is guarded by rcu_read_lock().
633 */
634 #define list_for_each_entry_rcu(pos, head, member) \
635 for (pos = list_entry((head)->next, typeof(*pos), member); \
636 prefetch(rcu_dereference(pos)->member.next), \
637 &pos->member != (head); \
638 pos = list_entry(pos->member.next, typeof(*pos), member))
639
640
641 /**
642 * list_for_each_continue_rcu
643 * @pos: the &struct list_head to use as a loop cursor.
644 * @head: the head for your list.
645 *
646 * Iterate over an rcu-protected list, continuing after current point.
647 *
648 * This list-traversal primitive may safely run concurrently with
649 * the _rcu list-mutation primitives such as list_add_rcu()
650 * as long as the traversal is guarded by rcu_read_lock().
651 */
652 #define list_for_each_continue_rcu(pos, head) \
653 for ((pos) = (pos)->next; \
654 prefetch(rcu_dereference((pos))->next), (pos) != (head); \
655 (pos) = (pos)->next)
656
657 /*
658 * Double linked lists with a single pointer list head.
659 * Mostly useful for hash tables where the two pointer list head is
660 * too wasteful.
661 * You lose the ability to access the tail in O(1).
662 */
663
664 struct hlist_head {
665 struct hlist_node *first;
666 };
667
668 struct hlist_node {
669 struct hlist_node *next, **pprev;
670 };
671
672 #define HLIST_HEAD_INIT { .first = NULL }
673 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
674 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
675 static inline void INIT_HLIST_NODE(struct hlist_node *h)
676 {
677 h->next = NULL;
678 h->pprev = NULL;
679 }
680
681 static inline int hlist_unhashed(const struct hlist_node *h)
682 {
683 return !h->pprev;
684 }
685
686 static inline int hlist_empty(const struct hlist_head *h)
687 {
688 return !h->first;
689 }
690
691 static inline void __hlist_del(struct hlist_node *n)
692 {
693 struct hlist_node *next = n->next;
694 struct hlist_node **pprev = n->pprev;
695 *pprev = next;
696 if (next)
697 next->pprev = pprev;
698 }
699
700 static inline void hlist_del(struct hlist_node *n)
701 {
702 __hlist_del(n);
703 n->next = LIST_POISON1;
704 n->pprev = LIST_POISON2;
705 }
706
707 /**
708 * hlist_del_rcu - deletes entry from hash list without re-initialization
709 * @n: the element to delete from the hash list.
710 *
711 * Note: list_unhashed() on entry does not return true after this,
712 * the entry is in an undefined state. It is useful for RCU based
713 * lockfree traversal.
714 *
715 * In particular, it means that we can not poison the forward
716 * pointers that may still be used for walking the hash list.
717 *
718 * The caller must take whatever precautions are necessary
719 * (such as holding appropriate locks) to avoid racing
720 * with another list-mutation primitive, such as hlist_add_head_rcu()
721 * or hlist_del_rcu(), running on this same list.
722 * However, it is perfectly legal to run concurrently with
723 * the _rcu list-traversal primitives, such as
724 * hlist_for_each_entry().
725 */
726 static inline void hlist_del_rcu(struct hlist_node *n)
727 {
728 __hlist_del(n);
729 n->pprev = LIST_POISON2;
730 }
731
732 static inline void hlist_del_init(struct hlist_node *n)
733 {
734 if (!hlist_unhashed(n)) {
735 __hlist_del(n);
736 INIT_HLIST_NODE(n);
737 }
738 }
739
740 /**
741 * hlist_replace_rcu - replace old entry by new one
742 * @old : the element to be replaced
743 * @new : the new element to insert
744 *
745 * The @old entry will be replaced with the @new entry atomically.
746 */
747 static inline void hlist_replace_rcu(struct hlist_node *old,
748 struct hlist_node *new)
749 {
750 struct hlist_node *next = old->next;
751
752 new->next = next;
753 new->pprev = old->pprev;
754 smp_wmb();
755 if (next)
756 new->next->pprev = &new->next;
757 *new->pprev = new;
758 old->pprev = LIST_POISON2;
759 }
760
761 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
762 {
763 struct hlist_node *first = h->first;
764 n->next = first;
765 if (first)
766 first->pprev = &n->next;
767 h->first = n;
768 n->pprev = &h->first;
769 }
770
771
772 /**
773 * hlist_add_head_rcu
774 * @n: the element to add to the hash list.
775 * @h: the list to add to.
776 *
777 * Description:
778 * Adds the specified element to the specified hlist,
779 * while permitting racing traversals.
780 *
781 * The caller must take whatever precautions are necessary
782 * (such as holding appropriate locks) to avoid racing
783 * with another list-mutation primitive, such as hlist_add_head_rcu()
784 * or hlist_del_rcu(), running on this same list.
785 * However, it is perfectly legal to run concurrently with
786 * the _rcu list-traversal primitives, such as
787 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
788 * problems on Alpha CPUs. Regardless of the type of CPU, the
789 * list-traversal primitive must be guarded by rcu_read_lock().
790 */
791 static inline void hlist_add_head_rcu(struct hlist_node *n,
792 struct hlist_head *h)
793 {
794 struct hlist_node *first = h->first;
795 n->next = first;
796 n->pprev = &h->first;
797 smp_wmb();
798 if (first)
799 first->pprev = &n->next;
800 h->first = n;
801 }
802
803 /* next must be != NULL */
804 static inline void hlist_add_before(struct hlist_node *n,
805 struct hlist_node *next)
806 {
807 n->pprev = next->pprev;
808 n->next = next;
809 next->pprev = &n->next;
810 *(n->pprev) = n;
811 }
812
813 static inline void hlist_add_after(struct hlist_node *n,
814 struct hlist_node *next)
815 {
816 next->next = n->next;
817 n->next = next;
818 next->pprev = &n->next;
819
820 if(next->next)
821 next->next->pprev = &next->next;
822 }
823
824 /**
825 * hlist_add_before_rcu
826 * @n: the new element to add to the hash list.
827 * @next: the existing element to add the new element before.
828 *
829 * Description:
830 * Adds the specified element to the specified hlist
831 * before the specified node while permitting racing traversals.
832 *
833 * The caller must take whatever precautions are necessary
834 * (such as holding appropriate locks) to avoid racing
835 * with another list-mutation primitive, such as hlist_add_head_rcu()
836 * or hlist_del_rcu(), running on this same list.
837 * However, it is perfectly legal to run concurrently with
838 * the _rcu list-traversal primitives, such as
839 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
840 * problems on Alpha CPUs.
841 */
842 static inline void hlist_add_before_rcu(struct hlist_node *n,
843 struct hlist_node *next)
844 {
845 n->pprev = next->pprev;
846 n->next = next;
847 smp_wmb();
848 next->pprev = &n->next;
849 *(n->pprev) = n;
850 }
851
852 /**
853 * hlist_add_after_rcu
854 * @prev: the existing element to add the new element after.
855 * @n: the new element to add to the hash list.
856 *
857 * Description:
858 * Adds the specified element to the specified hlist
859 * after the specified node while permitting racing traversals.
860 *
861 * The caller must take whatever precautions are necessary
862 * (such as holding appropriate locks) to avoid racing
863 * with another list-mutation primitive, such as hlist_add_head_rcu()
864 * or hlist_del_rcu(), running on this same list.
865 * However, it is perfectly legal to run concurrently with
866 * the _rcu list-traversal primitives, such as
867 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
868 * problems on Alpha CPUs.
869 */
870 static inline void hlist_add_after_rcu(struct hlist_node *prev,
871 struct hlist_node *n)
872 {
873 n->next = prev->next;
874 n->pprev = &prev->next;
875 smp_wmb();
876 prev->next = n;
877 if (n->next)
878 n->next->pprev = &n->next;
879 }
880
881 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
882
883 #define hlist_for_each(pos, head) \
884 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
885 pos = pos->next)
886
887 #define hlist_for_each_safe(pos, n, head) \
888 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
889 pos = n)
890
891 /**
892 * hlist_for_each_entry - iterate over list of given type
893 * @tpos: the type * to use as a loop cursor.
894 * @pos: the &struct hlist_node to use as a loop cursor.
895 * @head: the head for your list.
896 * @member: the name of the hlist_node within the struct.
897 */
898 #define hlist_for_each_entry(tpos, pos, head, member) \
899 for (pos = (head)->first; \
900 pos && ({ prefetch(pos->next); 1;}) && \
901 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
902 pos = pos->next)
903
904 /**
905 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
906 * @tpos: the type * to use as a loop cursor.
907 * @pos: the &struct hlist_node to use as a loop cursor.
908 * @member: the name of the hlist_node within the struct.
909 */
910 #define hlist_for_each_entry_continue(tpos, pos, member) \
911 for (pos = (pos)->next; \
912 pos && ({ prefetch(pos->next); 1;}) && \
913 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
914 pos = pos->next)
915
916 /**
917 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
918 * @tpos: the type * to use as a loop cursor.
919 * @pos: the &struct hlist_node to use as a loop cursor.
920 * @member: the name of the hlist_node within the struct.
921 */
922 #define hlist_for_each_entry_from(tpos, pos, member) \
923 for (; pos && ({ prefetch(pos->next); 1;}) && \
924 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
925 pos = pos->next)
926
927 /**
928 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
929 * @tpos: the type * to use as a loop cursor.
930 * @pos: the &struct hlist_node to use as a loop cursor.
931 * @n: another &struct hlist_node to use as temporary storage
932 * @head: the head for your list.
933 * @member: the name of the hlist_node within the struct.
934 */
935 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) \
936 for (pos = (head)->first; \
937 pos && ({ n = pos->next; 1; }) && \
938 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
939 pos = n)
940
941 /**
942 * hlist_for_each_entry_rcu - iterate over rcu list of given type
943 * @tpos: the type * to use as a loop cursor.
944 * @pos: the &struct hlist_node to use as a loop cursor.
945 * @head: the head for your list.
946 * @member: the name of the hlist_node within the struct.
947 *
948 * This list-traversal primitive may safely run concurrently with
949 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
950 * as long as the traversal is guarded by rcu_read_lock().
951 */
952 #define hlist_for_each_entry_rcu(tpos, pos, head, member) \
953 for (pos = (head)->first; \
954 rcu_dereference(pos) && ({ prefetch(pos->next); 1;}) && \
955 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
956 pos = pos->next)
957
958 #else
959 #warning "don't include kernel headers in userspace"
960 #endif /* __KERNEL__ */
961 #endif