]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/linux/memcontrol.h
Merge branch 'x86-entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-eoan-kernel.git] / include / linux / memcontrol.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24
25 struct mem_cgroup;
26 struct page;
27 struct mm_struct;
28 struct kmem_cache;
29
30 /* Cgroup-specific page state, on top of universal node page state */
31 enum memcg_stat_item {
32 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
33 MEMCG_RSS,
34 MEMCG_RSS_HUGE,
35 MEMCG_SWAP,
36 MEMCG_SOCK,
37 /* XXX: why are these zone and not node counters? */
38 MEMCG_KERNEL_STACK_KB,
39 MEMCG_NR_STAT,
40 };
41
42 enum memcg_memory_event {
43 MEMCG_LOW,
44 MEMCG_HIGH,
45 MEMCG_MAX,
46 MEMCG_OOM,
47 MEMCG_OOM_KILL,
48 MEMCG_SWAP_MAX,
49 MEMCG_SWAP_FAIL,
50 MEMCG_NR_MEMORY_EVENTS,
51 };
52
53 enum mem_cgroup_protection {
54 MEMCG_PROT_NONE,
55 MEMCG_PROT_LOW,
56 MEMCG_PROT_MIN,
57 };
58
59 struct mem_cgroup_reclaim_cookie {
60 pg_data_t *pgdat;
61 int priority;
62 unsigned int generation;
63 };
64
65 #ifdef CONFIG_MEMCG
66
67 #define MEM_CGROUP_ID_SHIFT 16
68 #define MEM_CGROUP_ID_MAX USHRT_MAX
69
70 struct mem_cgroup_id {
71 int id;
72 refcount_t ref;
73 };
74
75 /*
76 * Per memcg event counter is incremented at every pagein/pageout. With THP,
77 * it will be incremated by the number of pages. This counter is used for
78 * for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 */
81 enum mem_cgroup_events_target {
82 MEM_CGROUP_TARGET_THRESH,
83 MEM_CGROUP_TARGET_SOFTLIMIT,
84 MEM_CGROUP_TARGET_NUMAINFO,
85 MEM_CGROUP_NTARGETS,
86 };
87
88 struct memcg_vmstats_percpu {
89 long stat[MEMCG_NR_STAT];
90 unsigned long events[NR_VM_EVENT_ITEMS];
91 unsigned long nr_page_events;
92 unsigned long targets[MEM_CGROUP_NTARGETS];
93 };
94
95 struct mem_cgroup_reclaim_iter {
96 struct mem_cgroup *position;
97 /* scan generation, increased every round-trip */
98 unsigned int generation;
99 };
100
101 struct lruvec_stat {
102 long count[NR_VM_NODE_STAT_ITEMS];
103 };
104
105 /*
106 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
107 * which have elements charged to this memcg.
108 */
109 struct memcg_shrinker_map {
110 struct rcu_head rcu;
111 unsigned long map[0];
112 };
113
114 /*
115 * per-zone information in memory controller.
116 */
117 struct mem_cgroup_per_node {
118 struct lruvec lruvec;
119
120 /* Legacy local VM stats */
121 struct lruvec_stat __percpu *lruvec_stat_local;
122
123 /* Subtree VM stats (batched updates) */
124 struct lruvec_stat __percpu *lruvec_stat_cpu;
125 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
126
127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
128
129 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
130
131 #ifdef CONFIG_MEMCG_KMEM
132 struct memcg_shrinker_map __rcu *shrinker_map;
133 #endif
134 struct rb_node tree_node; /* RB tree node */
135 unsigned long usage_in_excess;/* Set to the value by which */
136 /* the soft limit is exceeded*/
137 bool on_tree;
138 bool congested; /* memcg has many dirty pages */
139 /* backed by a congested BDI */
140
141 struct mem_cgroup *memcg; /* Back pointer, we cannot */
142 /* use container_of */
143 };
144
145 struct mem_cgroup_threshold {
146 struct eventfd_ctx *eventfd;
147 unsigned long threshold;
148 };
149
150 /* For threshold */
151 struct mem_cgroup_threshold_ary {
152 /* An array index points to threshold just below or equal to usage. */
153 int current_threshold;
154 /* Size of entries[] */
155 unsigned int size;
156 /* Array of thresholds */
157 struct mem_cgroup_threshold entries[0];
158 };
159
160 struct mem_cgroup_thresholds {
161 /* Primary thresholds array */
162 struct mem_cgroup_threshold_ary *primary;
163 /*
164 * Spare threshold array.
165 * This is needed to make mem_cgroup_unregister_event() "never fail".
166 * It must be able to store at least primary->size - 1 entries.
167 */
168 struct mem_cgroup_threshold_ary *spare;
169 };
170
171 enum memcg_kmem_state {
172 KMEM_NONE,
173 KMEM_ALLOCATED,
174 KMEM_ONLINE,
175 };
176
177 #if defined(CONFIG_SMP)
178 struct memcg_padding {
179 char x[0];
180 } ____cacheline_internodealigned_in_smp;
181 #define MEMCG_PADDING(name) struct memcg_padding name;
182 #else
183 #define MEMCG_PADDING(name)
184 #endif
185
186 /*
187 * The memory controller data structure. The memory controller controls both
188 * page cache and RSS per cgroup. We would eventually like to provide
189 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
190 * to help the administrator determine what knobs to tune.
191 */
192 struct mem_cgroup {
193 struct cgroup_subsys_state css;
194
195 /* Private memcg ID. Used to ID objects that outlive the cgroup */
196 struct mem_cgroup_id id;
197
198 /* Accounted resources */
199 struct page_counter memory;
200 struct page_counter swap;
201
202 /* Legacy consumer-oriented counters */
203 struct page_counter memsw;
204 struct page_counter kmem;
205 struct page_counter tcpmem;
206
207 /* Upper bound of normal memory consumption range */
208 unsigned long high;
209
210 /* Range enforcement for interrupt charges */
211 struct work_struct high_work;
212
213 unsigned long soft_limit;
214
215 /* vmpressure notifications */
216 struct vmpressure vmpressure;
217
218 /*
219 * Should the accounting and control be hierarchical, per subtree?
220 */
221 bool use_hierarchy;
222
223 /*
224 * Should the OOM killer kill all belonging tasks, had it kill one?
225 */
226 bool oom_group;
227
228 /* protected by memcg_oom_lock */
229 bool oom_lock;
230 int under_oom;
231
232 int swappiness;
233 /* OOM-Killer disable */
234 int oom_kill_disable;
235
236 /* memory.events */
237 struct cgroup_file events_file;
238
239 /* handle for "memory.swap.events" */
240 struct cgroup_file swap_events_file;
241
242 /* protect arrays of thresholds */
243 struct mutex thresholds_lock;
244
245 /* thresholds for memory usage. RCU-protected */
246 struct mem_cgroup_thresholds thresholds;
247
248 /* thresholds for mem+swap usage. RCU-protected */
249 struct mem_cgroup_thresholds memsw_thresholds;
250
251 /* For oom notifier event fd */
252 struct list_head oom_notify;
253
254 /*
255 * Should we move charges of a task when a task is moved into this
256 * mem_cgroup ? And what type of charges should we move ?
257 */
258 unsigned long move_charge_at_immigrate;
259 /* taken only while moving_account > 0 */
260 spinlock_t move_lock;
261 unsigned long move_lock_flags;
262
263 MEMCG_PADDING(_pad1_);
264
265 /*
266 * set > 0 if pages under this cgroup are moving to other cgroup.
267 */
268 atomic_t moving_account;
269 struct task_struct *move_lock_task;
270
271 /* Legacy local VM stats and events */
272 struct memcg_vmstats_percpu __percpu *vmstats_local;
273
274 /* Subtree VM stats and events (batched updates) */
275 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
276
277 MEMCG_PADDING(_pad2_);
278
279 atomic_long_t vmstats[MEMCG_NR_STAT];
280 atomic_long_t vmevents[NR_VM_EVENT_ITEMS];
281
282 /* memory.events */
283 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
284
285 unsigned long socket_pressure;
286
287 /* Legacy tcp memory accounting */
288 bool tcpmem_active;
289 int tcpmem_pressure;
290
291 #ifdef CONFIG_MEMCG_KMEM
292 /* Index in the kmem_cache->memcg_params.memcg_caches array */
293 int kmemcg_id;
294 enum memcg_kmem_state kmem_state;
295 struct list_head kmem_caches;
296 #endif
297
298 int last_scanned_node;
299 #if MAX_NUMNODES > 1
300 nodemask_t scan_nodes;
301 atomic_t numainfo_events;
302 atomic_t numainfo_updating;
303 #endif
304
305 #ifdef CONFIG_CGROUP_WRITEBACK
306 struct list_head cgwb_list;
307 struct wb_domain cgwb_domain;
308 #endif
309
310 /* List of events which userspace want to receive */
311 struct list_head event_list;
312 spinlock_t event_list_lock;
313
314 struct mem_cgroup_per_node *nodeinfo[0];
315 /* WARNING: nodeinfo must be the last member here */
316 };
317
318 /*
319 * size of first charge trial. "32" comes from vmscan.c's magic value.
320 * TODO: maybe necessary to use big numbers in big irons.
321 */
322 #define MEMCG_CHARGE_BATCH 32U
323
324 extern struct mem_cgroup *root_mem_cgroup;
325
326 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
327 {
328 return (memcg == root_mem_cgroup);
329 }
330
331 static inline bool mem_cgroup_disabled(void)
332 {
333 return !cgroup_subsys_enabled(memory_cgrp_subsys);
334 }
335
336 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
337 struct mem_cgroup *memcg);
338
339 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
340 gfp_t gfp_mask, struct mem_cgroup **memcgp,
341 bool compound);
342 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
343 gfp_t gfp_mask, struct mem_cgroup **memcgp,
344 bool compound);
345 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
346 bool lrucare, bool compound);
347 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
348 bool compound);
349 void mem_cgroup_uncharge(struct page *page);
350 void mem_cgroup_uncharge_list(struct list_head *page_list);
351
352 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
353
354 static struct mem_cgroup_per_node *
355 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
356 {
357 return memcg->nodeinfo[nid];
358 }
359
360 /**
361 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
362 * @node: node of the wanted lruvec
363 * @memcg: memcg of the wanted lruvec
364 *
365 * Returns the lru list vector holding pages for a given @node or a given
366 * @memcg and @zone. This can be the node lruvec, if the memory controller
367 * is disabled.
368 */
369 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
370 struct mem_cgroup *memcg)
371 {
372 struct mem_cgroup_per_node *mz;
373 struct lruvec *lruvec;
374
375 if (mem_cgroup_disabled()) {
376 lruvec = node_lruvec(pgdat);
377 goto out;
378 }
379
380 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
381 lruvec = &mz->lruvec;
382 out:
383 /*
384 * Since a node can be onlined after the mem_cgroup was created,
385 * we have to be prepared to initialize lruvec->pgdat here;
386 * and if offlined then reonlined, we need to reinitialize it.
387 */
388 if (unlikely(lruvec->pgdat != pgdat))
389 lruvec->pgdat = pgdat;
390 return lruvec;
391 }
392
393 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
394
395 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
396 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
397
398 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
399
400 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
401
402 static inline
403 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
404 return css ? container_of(css, struct mem_cgroup, css) : NULL;
405 }
406
407 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
408 {
409 if (memcg)
410 css_put(&memcg->css);
411 }
412
413 #define mem_cgroup_from_counter(counter, member) \
414 container_of(counter, struct mem_cgroup, member)
415
416 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
417 struct mem_cgroup *,
418 struct mem_cgroup_reclaim_cookie *);
419 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
420 int mem_cgroup_scan_tasks(struct mem_cgroup *,
421 int (*)(struct task_struct *, void *), void *);
422
423 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
424 {
425 if (mem_cgroup_disabled())
426 return 0;
427
428 return memcg->id.id;
429 }
430 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
431
432 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
433 {
434 return mem_cgroup_from_css(seq_css(m));
435 }
436
437 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
438 {
439 struct mem_cgroup_per_node *mz;
440
441 if (mem_cgroup_disabled())
442 return NULL;
443
444 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
445 return mz->memcg;
446 }
447
448 /**
449 * parent_mem_cgroup - find the accounting parent of a memcg
450 * @memcg: memcg whose parent to find
451 *
452 * Returns the parent memcg, or NULL if this is the root or the memory
453 * controller is in legacy no-hierarchy mode.
454 */
455 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
456 {
457 if (!memcg->memory.parent)
458 return NULL;
459 return mem_cgroup_from_counter(memcg->memory.parent, memory);
460 }
461
462 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
463 struct mem_cgroup *root)
464 {
465 if (root == memcg)
466 return true;
467 if (!root->use_hierarchy)
468 return false;
469 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
470 }
471
472 static inline bool mm_match_cgroup(struct mm_struct *mm,
473 struct mem_cgroup *memcg)
474 {
475 struct mem_cgroup *task_memcg;
476 bool match = false;
477
478 rcu_read_lock();
479 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
480 if (task_memcg)
481 match = mem_cgroup_is_descendant(task_memcg, memcg);
482 rcu_read_unlock();
483 return match;
484 }
485
486 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
487 ino_t page_cgroup_ino(struct page *page);
488
489 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
490 {
491 if (mem_cgroup_disabled())
492 return true;
493 return !!(memcg->css.flags & CSS_ONLINE);
494 }
495
496 /*
497 * For memory reclaim.
498 */
499 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
500
501 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
502 int zid, int nr_pages);
503
504 static inline
505 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
506 enum lru_list lru, int zone_idx)
507 {
508 struct mem_cgroup_per_node *mz;
509
510 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
511 return mz->lru_zone_size[zone_idx][lru];
512 }
513
514 void mem_cgroup_handle_over_high(void);
515
516 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
517
518 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
519 struct task_struct *p);
520
521 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
522
523 static inline void mem_cgroup_enter_user_fault(void)
524 {
525 WARN_ON(current->in_user_fault);
526 current->in_user_fault = 1;
527 }
528
529 static inline void mem_cgroup_exit_user_fault(void)
530 {
531 WARN_ON(!current->in_user_fault);
532 current->in_user_fault = 0;
533 }
534
535 static inline bool task_in_memcg_oom(struct task_struct *p)
536 {
537 return p->memcg_in_oom;
538 }
539
540 bool mem_cgroup_oom_synchronize(bool wait);
541 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
542 struct mem_cgroup *oom_domain);
543 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
544
545 #ifdef CONFIG_MEMCG_SWAP
546 extern int do_swap_account;
547 #endif
548
549 struct mem_cgroup *lock_page_memcg(struct page *page);
550 void __unlock_page_memcg(struct mem_cgroup *memcg);
551 void unlock_page_memcg(struct page *page);
552
553 /*
554 * idx can be of type enum memcg_stat_item or node_stat_item.
555 * Keep in sync with memcg_exact_page_state().
556 */
557 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
558 {
559 long x = atomic_long_read(&memcg->vmstats[idx]);
560 #ifdef CONFIG_SMP
561 if (x < 0)
562 x = 0;
563 #endif
564 return x;
565 }
566
567 /*
568 * idx can be of type enum memcg_stat_item or node_stat_item.
569 * Keep in sync with memcg_exact_page_state().
570 */
571 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
572 int idx)
573 {
574 long x = 0;
575 int cpu;
576
577 for_each_possible_cpu(cpu)
578 x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
579 #ifdef CONFIG_SMP
580 if (x < 0)
581 x = 0;
582 #endif
583 return x;
584 }
585
586 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
587
588 /* idx can be of type enum memcg_stat_item or node_stat_item */
589 static inline void mod_memcg_state(struct mem_cgroup *memcg,
590 int idx, int val)
591 {
592 unsigned long flags;
593
594 local_irq_save(flags);
595 __mod_memcg_state(memcg, idx, val);
596 local_irq_restore(flags);
597 }
598
599 /**
600 * mod_memcg_page_state - update page state statistics
601 * @page: the page
602 * @idx: page state item to account
603 * @val: number of pages (positive or negative)
604 *
605 * The @page must be locked or the caller must use lock_page_memcg()
606 * to prevent double accounting when the page is concurrently being
607 * moved to another memcg:
608 *
609 * lock_page(page) or lock_page_memcg(page)
610 * if (TestClearPageState(page))
611 * mod_memcg_page_state(page, state, -1);
612 * unlock_page(page) or unlock_page_memcg(page)
613 *
614 * Kernel pages are an exception to this, since they'll never move.
615 */
616 static inline void __mod_memcg_page_state(struct page *page,
617 int idx, int val)
618 {
619 if (page->mem_cgroup)
620 __mod_memcg_state(page->mem_cgroup, idx, val);
621 }
622
623 static inline void mod_memcg_page_state(struct page *page,
624 int idx, int val)
625 {
626 if (page->mem_cgroup)
627 mod_memcg_state(page->mem_cgroup, idx, val);
628 }
629
630 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
631 enum node_stat_item idx)
632 {
633 struct mem_cgroup_per_node *pn;
634 long x;
635
636 if (mem_cgroup_disabled())
637 return node_page_state(lruvec_pgdat(lruvec), idx);
638
639 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
640 x = atomic_long_read(&pn->lruvec_stat[idx]);
641 #ifdef CONFIG_SMP
642 if (x < 0)
643 x = 0;
644 #endif
645 return x;
646 }
647
648 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
649 enum node_stat_item idx)
650 {
651 struct mem_cgroup_per_node *pn;
652 long x = 0;
653 int cpu;
654
655 if (mem_cgroup_disabled())
656 return node_page_state(lruvec_pgdat(lruvec), idx);
657
658 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
659 for_each_possible_cpu(cpu)
660 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
661 #ifdef CONFIG_SMP
662 if (x < 0)
663 x = 0;
664 #endif
665 return x;
666 }
667
668 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
669 int val);
670
671 static inline void mod_lruvec_state(struct lruvec *lruvec,
672 enum node_stat_item idx, int val)
673 {
674 unsigned long flags;
675
676 local_irq_save(flags);
677 __mod_lruvec_state(lruvec, idx, val);
678 local_irq_restore(flags);
679 }
680
681 static inline void __mod_lruvec_page_state(struct page *page,
682 enum node_stat_item idx, int val)
683 {
684 pg_data_t *pgdat = page_pgdat(page);
685 struct lruvec *lruvec;
686
687 /* Untracked pages have no memcg, no lruvec. Update only the node */
688 if (!page->mem_cgroup) {
689 __mod_node_page_state(pgdat, idx, val);
690 return;
691 }
692
693 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup);
694 __mod_lruvec_state(lruvec, idx, val);
695 }
696
697 static inline void mod_lruvec_page_state(struct page *page,
698 enum node_stat_item idx, int val)
699 {
700 unsigned long flags;
701
702 local_irq_save(flags);
703 __mod_lruvec_page_state(page, idx, val);
704 local_irq_restore(flags);
705 }
706
707 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
708 gfp_t gfp_mask,
709 unsigned long *total_scanned);
710
711 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
712 unsigned long count);
713
714 static inline void count_memcg_events(struct mem_cgroup *memcg,
715 enum vm_event_item idx,
716 unsigned long count)
717 {
718 unsigned long flags;
719
720 local_irq_save(flags);
721 __count_memcg_events(memcg, idx, count);
722 local_irq_restore(flags);
723 }
724
725 static inline void count_memcg_page_event(struct page *page,
726 enum vm_event_item idx)
727 {
728 if (page->mem_cgroup)
729 count_memcg_events(page->mem_cgroup, idx, 1);
730 }
731
732 static inline void count_memcg_event_mm(struct mm_struct *mm,
733 enum vm_event_item idx)
734 {
735 struct mem_cgroup *memcg;
736
737 if (mem_cgroup_disabled())
738 return;
739
740 rcu_read_lock();
741 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
742 if (likely(memcg))
743 count_memcg_events(memcg, idx, 1);
744 rcu_read_unlock();
745 }
746
747 static inline void memcg_memory_event(struct mem_cgroup *memcg,
748 enum memcg_memory_event event)
749 {
750 do {
751 atomic_long_inc(&memcg->memory_events[event]);
752 cgroup_file_notify(&memcg->events_file);
753
754 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
755 break;
756 } while ((memcg = parent_mem_cgroup(memcg)) &&
757 !mem_cgroup_is_root(memcg));
758 }
759
760 static inline void memcg_memory_event_mm(struct mm_struct *mm,
761 enum memcg_memory_event event)
762 {
763 struct mem_cgroup *memcg;
764
765 if (mem_cgroup_disabled())
766 return;
767
768 rcu_read_lock();
769 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
770 if (likely(memcg))
771 memcg_memory_event(memcg, event);
772 rcu_read_unlock();
773 }
774
775 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
776 void mem_cgroup_split_huge_fixup(struct page *head);
777 #endif
778
779 #else /* CONFIG_MEMCG */
780
781 #define MEM_CGROUP_ID_SHIFT 0
782 #define MEM_CGROUP_ID_MAX 0
783
784 struct mem_cgroup;
785
786 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
787 {
788 return true;
789 }
790
791 static inline bool mem_cgroup_disabled(void)
792 {
793 return true;
794 }
795
796 static inline void memcg_memory_event(struct mem_cgroup *memcg,
797 enum memcg_memory_event event)
798 {
799 }
800
801 static inline void memcg_memory_event_mm(struct mm_struct *mm,
802 enum memcg_memory_event event)
803 {
804 }
805
806 static inline enum mem_cgroup_protection mem_cgroup_protected(
807 struct mem_cgroup *root, struct mem_cgroup *memcg)
808 {
809 return MEMCG_PROT_NONE;
810 }
811
812 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
813 gfp_t gfp_mask,
814 struct mem_cgroup **memcgp,
815 bool compound)
816 {
817 *memcgp = NULL;
818 return 0;
819 }
820
821 static inline int mem_cgroup_try_charge_delay(struct page *page,
822 struct mm_struct *mm,
823 gfp_t gfp_mask,
824 struct mem_cgroup **memcgp,
825 bool compound)
826 {
827 *memcgp = NULL;
828 return 0;
829 }
830
831 static inline void mem_cgroup_commit_charge(struct page *page,
832 struct mem_cgroup *memcg,
833 bool lrucare, bool compound)
834 {
835 }
836
837 static inline void mem_cgroup_cancel_charge(struct page *page,
838 struct mem_cgroup *memcg,
839 bool compound)
840 {
841 }
842
843 static inline void mem_cgroup_uncharge(struct page *page)
844 {
845 }
846
847 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
848 {
849 }
850
851 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
852 {
853 }
854
855 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
856 struct mem_cgroup *memcg)
857 {
858 return node_lruvec(pgdat);
859 }
860
861 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
862 struct pglist_data *pgdat)
863 {
864 return &pgdat->lruvec;
865 }
866
867 static inline bool mm_match_cgroup(struct mm_struct *mm,
868 struct mem_cgroup *memcg)
869 {
870 return true;
871 }
872
873 static inline bool task_in_mem_cgroup(struct task_struct *task,
874 const struct mem_cgroup *memcg)
875 {
876 return true;
877 }
878
879 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
880 {
881 return NULL;
882 }
883
884 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
885 {
886 return NULL;
887 }
888
889 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
890 {
891 }
892
893 static inline struct mem_cgroup *
894 mem_cgroup_iter(struct mem_cgroup *root,
895 struct mem_cgroup *prev,
896 struct mem_cgroup_reclaim_cookie *reclaim)
897 {
898 return NULL;
899 }
900
901 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
902 struct mem_cgroup *prev)
903 {
904 }
905
906 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
907 int (*fn)(struct task_struct *, void *), void *arg)
908 {
909 return 0;
910 }
911
912 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
913 {
914 return 0;
915 }
916
917 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
918 {
919 WARN_ON_ONCE(id);
920 /* XXX: This should always return root_mem_cgroup */
921 return NULL;
922 }
923
924 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
925 {
926 return NULL;
927 }
928
929 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
930 {
931 return NULL;
932 }
933
934 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
935 {
936 return true;
937 }
938
939 static inline
940 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
941 enum lru_list lru, int zone_idx)
942 {
943 return 0;
944 }
945
946 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
947 {
948 return 0;
949 }
950
951 static inline void
952 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
953 {
954 }
955
956 static inline void
957 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
958 {
959 }
960
961 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
962 {
963 return NULL;
964 }
965
966 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
967 {
968 }
969
970 static inline void unlock_page_memcg(struct page *page)
971 {
972 }
973
974 static inline void mem_cgroup_handle_over_high(void)
975 {
976 }
977
978 static inline void mem_cgroup_enter_user_fault(void)
979 {
980 }
981
982 static inline void mem_cgroup_exit_user_fault(void)
983 {
984 }
985
986 static inline bool task_in_memcg_oom(struct task_struct *p)
987 {
988 return false;
989 }
990
991 static inline bool mem_cgroup_oom_synchronize(bool wait)
992 {
993 return false;
994 }
995
996 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
997 struct task_struct *victim, struct mem_cgroup *oom_domain)
998 {
999 return NULL;
1000 }
1001
1002 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1003 {
1004 }
1005
1006 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1007 {
1008 return 0;
1009 }
1010
1011 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1012 int idx)
1013 {
1014 return 0;
1015 }
1016
1017 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1018 int idx,
1019 int nr)
1020 {
1021 }
1022
1023 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1024 int idx,
1025 int nr)
1026 {
1027 }
1028
1029 static inline void __mod_memcg_page_state(struct page *page,
1030 int idx,
1031 int nr)
1032 {
1033 }
1034
1035 static inline void mod_memcg_page_state(struct page *page,
1036 int idx,
1037 int nr)
1038 {
1039 }
1040
1041 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1042 enum node_stat_item idx)
1043 {
1044 return node_page_state(lruvec_pgdat(lruvec), idx);
1045 }
1046
1047 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1048 enum node_stat_item idx)
1049 {
1050 return node_page_state(lruvec_pgdat(lruvec), idx);
1051 }
1052
1053 static inline void __mod_lruvec_state(struct lruvec *lruvec,
1054 enum node_stat_item idx, int val)
1055 {
1056 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1057 }
1058
1059 static inline void mod_lruvec_state(struct lruvec *lruvec,
1060 enum node_stat_item idx, int val)
1061 {
1062 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1063 }
1064
1065 static inline void __mod_lruvec_page_state(struct page *page,
1066 enum node_stat_item idx, int val)
1067 {
1068 __mod_node_page_state(page_pgdat(page), idx, val);
1069 }
1070
1071 static inline void mod_lruvec_page_state(struct page *page,
1072 enum node_stat_item idx, int val)
1073 {
1074 mod_node_page_state(page_pgdat(page), idx, val);
1075 }
1076
1077 static inline
1078 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1079 gfp_t gfp_mask,
1080 unsigned long *total_scanned)
1081 {
1082 return 0;
1083 }
1084
1085 static inline void mem_cgroup_split_huge_fixup(struct page *head)
1086 {
1087 }
1088
1089 static inline void count_memcg_events(struct mem_cgroup *memcg,
1090 enum vm_event_item idx,
1091 unsigned long count)
1092 {
1093 }
1094
1095 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1096 enum vm_event_item idx,
1097 unsigned long count)
1098 {
1099 }
1100
1101 static inline void count_memcg_page_event(struct page *page,
1102 int idx)
1103 {
1104 }
1105
1106 static inline
1107 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1108 {
1109 }
1110 #endif /* CONFIG_MEMCG */
1111
1112 /* idx can be of type enum memcg_stat_item or node_stat_item */
1113 static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1114 int idx)
1115 {
1116 __mod_memcg_state(memcg, idx, 1);
1117 }
1118
1119 /* idx can be of type enum memcg_stat_item or node_stat_item */
1120 static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1121 int idx)
1122 {
1123 __mod_memcg_state(memcg, idx, -1);
1124 }
1125
1126 /* idx can be of type enum memcg_stat_item or node_stat_item */
1127 static inline void __inc_memcg_page_state(struct page *page,
1128 int idx)
1129 {
1130 __mod_memcg_page_state(page, idx, 1);
1131 }
1132
1133 /* idx can be of type enum memcg_stat_item or node_stat_item */
1134 static inline void __dec_memcg_page_state(struct page *page,
1135 int idx)
1136 {
1137 __mod_memcg_page_state(page, idx, -1);
1138 }
1139
1140 static inline void __inc_lruvec_state(struct lruvec *lruvec,
1141 enum node_stat_item idx)
1142 {
1143 __mod_lruvec_state(lruvec, idx, 1);
1144 }
1145
1146 static inline void __dec_lruvec_state(struct lruvec *lruvec,
1147 enum node_stat_item idx)
1148 {
1149 __mod_lruvec_state(lruvec, idx, -1);
1150 }
1151
1152 static inline void __inc_lruvec_page_state(struct page *page,
1153 enum node_stat_item idx)
1154 {
1155 __mod_lruvec_page_state(page, idx, 1);
1156 }
1157
1158 static inline void __dec_lruvec_page_state(struct page *page,
1159 enum node_stat_item idx)
1160 {
1161 __mod_lruvec_page_state(page, idx, -1);
1162 }
1163
1164 /* idx can be of type enum memcg_stat_item or node_stat_item */
1165 static inline void inc_memcg_state(struct mem_cgroup *memcg,
1166 int idx)
1167 {
1168 mod_memcg_state(memcg, idx, 1);
1169 }
1170
1171 /* idx can be of type enum memcg_stat_item or node_stat_item */
1172 static inline void dec_memcg_state(struct mem_cgroup *memcg,
1173 int idx)
1174 {
1175 mod_memcg_state(memcg, idx, -1);
1176 }
1177
1178 /* idx can be of type enum memcg_stat_item or node_stat_item */
1179 static inline void inc_memcg_page_state(struct page *page,
1180 int idx)
1181 {
1182 mod_memcg_page_state(page, idx, 1);
1183 }
1184
1185 /* idx can be of type enum memcg_stat_item or node_stat_item */
1186 static inline void dec_memcg_page_state(struct page *page,
1187 int idx)
1188 {
1189 mod_memcg_page_state(page, idx, -1);
1190 }
1191
1192 static inline void inc_lruvec_state(struct lruvec *lruvec,
1193 enum node_stat_item idx)
1194 {
1195 mod_lruvec_state(lruvec, idx, 1);
1196 }
1197
1198 static inline void dec_lruvec_state(struct lruvec *lruvec,
1199 enum node_stat_item idx)
1200 {
1201 mod_lruvec_state(lruvec, idx, -1);
1202 }
1203
1204 static inline void inc_lruvec_page_state(struct page *page,
1205 enum node_stat_item idx)
1206 {
1207 mod_lruvec_page_state(page, idx, 1);
1208 }
1209
1210 static inline void dec_lruvec_page_state(struct page *page,
1211 enum node_stat_item idx)
1212 {
1213 mod_lruvec_page_state(page, idx, -1);
1214 }
1215
1216 #ifdef CONFIG_CGROUP_WRITEBACK
1217
1218 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1219 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1220 unsigned long *pheadroom, unsigned long *pdirty,
1221 unsigned long *pwriteback);
1222
1223 #else /* CONFIG_CGROUP_WRITEBACK */
1224
1225 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1226 {
1227 return NULL;
1228 }
1229
1230 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1231 unsigned long *pfilepages,
1232 unsigned long *pheadroom,
1233 unsigned long *pdirty,
1234 unsigned long *pwriteback)
1235 {
1236 }
1237
1238 #endif /* CONFIG_CGROUP_WRITEBACK */
1239
1240 struct sock;
1241 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1242 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1243 #ifdef CONFIG_MEMCG
1244 extern struct static_key_false memcg_sockets_enabled_key;
1245 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1246 void mem_cgroup_sk_alloc(struct sock *sk);
1247 void mem_cgroup_sk_free(struct sock *sk);
1248 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1249 {
1250 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1251 return true;
1252 do {
1253 if (time_before(jiffies, memcg->socket_pressure))
1254 return true;
1255 } while ((memcg = parent_mem_cgroup(memcg)));
1256 return false;
1257 }
1258 #else
1259 #define mem_cgroup_sockets_enabled 0
1260 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1261 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1262 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1263 {
1264 return false;
1265 }
1266 #endif
1267
1268 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1269 void memcg_kmem_put_cache(struct kmem_cache *cachep);
1270
1271 #ifdef CONFIG_MEMCG_KMEM
1272 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1273 void __memcg_kmem_uncharge(struct page *page, int order);
1274 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1275 struct mem_cgroup *memcg);
1276
1277 extern struct static_key_false memcg_kmem_enabled_key;
1278 extern struct workqueue_struct *memcg_kmem_cache_wq;
1279
1280 extern int memcg_nr_cache_ids;
1281 void memcg_get_cache_ids(void);
1282 void memcg_put_cache_ids(void);
1283
1284 /*
1285 * Helper macro to loop through all memcg-specific caches. Callers must still
1286 * check if the cache is valid (it is either valid or NULL).
1287 * the slab_mutex must be held when looping through those caches
1288 */
1289 #define for_each_memcg_cache_index(_idx) \
1290 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1291
1292 static inline bool memcg_kmem_enabled(void)
1293 {
1294 return static_branch_unlikely(&memcg_kmem_enabled_key);
1295 }
1296
1297 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1298 {
1299 if (memcg_kmem_enabled())
1300 return __memcg_kmem_charge(page, gfp, order);
1301 return 0;
1302 }
1303
1304 static inline void memcg_kmem_uncharge(struct page *page, int order)
1305 {
1306 if (memcg_kmem_enabled())
1307 __memcg_kmem_uncharge(page, order);
1308 }
1309
1310 static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp,
1311 int order, struct mem_cgroup *memcg)
1312 {
1313 if (memcg_kmem_enabled())
1314 return __memcg_kmem_charge_memcg(page, gfp, order, memcg);
1315 return 0;
1316 }
1317 /*
1318 * helper for accessing a memcg's index. It will be used as an index in the
1319 * child cache array in kmem_cache, and also to derive its name. This function
1320 * will return -1 when this is not a kmem-limited memcg.
1321 */
1322 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1323 {
1324 return memcg ? memcg->kmemcg_id : -1;
1325 }
1326
1327 extern int memcg_expand_shrinker_maps(int new_id);
1328
1329 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1330 int nid, int shrinker_id);
1331 #else
1332
1333 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1334 {
1335 return 0;
1336 }
1337
1338 static inline void memcg_kmem_uncharge(struct page *page, int order)
1339 {
1340 }
1341
1342 static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1343 {
1344 return 0;
1345 }
1346
1347 static inline void __memcg_kmem_uncharge(struct page *page, int order)
1348 {
1349 }
1350
1351 #define for_each_memcg_cache_index(_idx) \
1352 for (; NULL; )
1353
1354 static inline bool memcg_kmem_enabled(void)
1355 {
1356 return false;
1357 }
1358
1359 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1360 {
1361 return -1;
1362 }
1363
1364 static inline void memcg_get_cache_ids(void)
1365 {
1366 }
1367
1368 static inline void memcg_put_cache_ids(void)
1369 {
1370 }
1371
1372 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1373 int nid, int shrinker_id) { }
1374 #endif /* CONFIG_MEMCG_KMEM */
1375
1376 #endif /* _LINUX_MEMCONTROL_H */