]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - include/linux/memcontrol.h
mm, memcg: introduce memory.events.local
[mirror_ubuntu-kernels.git] / include / linux / memcontrol.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24
25 struct mem_cgroup;
26 struct page;
27 struct mm_struct;
28 struct kmem_cache;
29
30 /* Cgroup-specific page state, on top of universal node page state */
31 enum memcg_stat_item {
32 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
33 MEMCG_RSS,
34 MEMCG_RSS_HUGE,
35 MEMCG_SWAP,
36 MEMCG_SOCK,
37 /* XXX: why are these zone and not node counters? */
38 MEMCG_KERNEL_STACK_KB,
39 MEMCG_NR_STAT,
40 };
41
42 enum memcg_memory_event {
43 MEMCG_LOW,
44 MEMCG_HIGH,
45 MEMCG_MAX,
46 MEMCG_OOM,
47 MEMCG_OOM_KILL,
48 MEMCG_SWAP_MAX,
49 MEMCG_SWAP_FAIL,
50 MEMCG_NR_MEMORY_EVENTS,
51 };
52
53 enum mem_cgroup_protection {
54 MEMCG_PROT_NONE,
55 MEMCG_PROT_LOW,
56 MEMCG_PROT_MIN,
57 };
58
59 struct mem_cgroup_reclaim_cookie {
60 pg_data_t *pgdat;
61 int priority;
62 unsigned int generation;
63 };
64
65 #ifdef CONFIG_MEMCG
66
67 #define MEM_CGROUP_ID_SHIFT 16
68 #define MEM_CGROUP_ID_MAX USHRT_MAX
69
70 struct mem_cgroup_id {
71 int id;
72 refcount_t ref;
73 };
74
75 /*
76 * Per memcg event counter is incremented at every pagein/pageout. With THP,
77 * it will be incremated by the number of pages. This counter is used for
78 * for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 */
81 enum mem_cgroup_events_target {
82 MEM_CGROUP_TARGET_THRESH,
83 MEM_CGROUP_TARGET_SOFTLIMIT,
84 MEM_CGROUP_TARGET_NUMAINFO,
85 MEM_CGROUP_NTARGETS,
86 };
87
88 struct memcg_vmstats_percpu {
89 long stat[MEMCG_NR_STAT];
90 unsigned long events[NR_VM_EVENT_ITEMS];
91 unsigned long nr_page_events;
92 unsigned long targets[MEM_CGROUP_NTARGETS];
93 };
94
95 struct mem_cgroup_reclaim_iter {
96 struct mem_cgroup *position;
97 /* scan generation, increased every round-trip */
98 unsigned int generation;
99 };
100
101 struct lruvec_stat {
102 long count[NR_VM_NODE_STAT_ITEMS];
103 };
104
105 /*
106 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
107 * which have elements charged to this memcg.
108 */
109 struct memcg_shrinker_map {
110 struct rcu_head rcu;
111 unsigned long map[0];
112 };
113
114 /*
115 * per-zone information in memory controller.
116 */
117 struct mem_cgroup_per_node {
118 struct lruvec lruvec;
119
120 /* Legacy local VM stats */
121 struct lruvec_stat __percpu *lruvec_stat_local;
122
123 /* Subtree VM stats (batched updates) */
124 struct lruvec_stat __percpu *lruvec_stat_cpu;
125 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
126
127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
128
129 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
130
131 #ifdef CONFIG_MEMCG_KMEM
132 struct memcg_shrinker_map __rcu *shrinker_map;
133 #endif
134 struct rb_node tree_node; /* RB tree node */
135 unsigned long usage_in_excess;/* Set to the value by which */
136 /* the soft limit is exceeded*/
137 bool on_tree;
138 bool congested; /* memcg has many dirty pages */
139 /* backed by a congested BDI */
140
141 struct mem_cgroup *memcg; /* Back pointer, we cannot */
142 /* use container_of */
143 };
144
145 struct mem_cgroup_threshold {
146 struct eventfd_ctx *eventfd;
147 unsigned long threshold;
148 };
149
150 /* For threshold */
151 struct mem_cgroup_threshold_ary {
152 /* An array index points to threshold just below or equal to usage. */
153 int current_threshold;
154 /* Size of entries[] */
155 unsigned int size;
156 /* Array of thresholds */
157 struct mem_cgroup_threshold entries[0];
158 };
159
160 struct mem_cgroup_thresholds {
161 /* Primary thresholds array */
162 struct mem_cgroup_threshold_ary *primary;
163 /*
164 * Spare threshold array.
165 * This is needed to make mem_cgroup_unregister_event() "never fail".
166 * It must be able to store at least primary->size - 1 entries.
167 */
168 struct mem_cgroup_threshold_ary *spare;
169 };
170
171 enum memcg_kmem_state {
172 KMEM_NONE,
173 KMEM_ALLOCATED,
174 KMEM_ONLINE,
175 };
176
177 #if defined(CONFIG_SMP)
178 struct memcg_padding {
179 char x[0];
180 } ____cacheline_internodealigned_in_smp;
181 #define MEMCG_PADDING(name) struct memcg_padding name;
182 #else
183 #define MEMCG_PADDING(name)
184 #endif
185
186 /*
187 * The memory controller data structure. The memory controller controls both
188 * page cache and RSS per cgroup. We would eventually like to provide
189 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
190 * to help the administrator determine what knobs to tune.
191 */
192 struct mem_cgroup {
193 struct cgroup_subsys_state css;
194
195 /* Private memcg ID. Used to ID objects that outlive the cgroup */
196 struct mem_cgroup_id id;
197
198 /* Accounted resources */
199 struct page_counter memory;
200 struct page_counter swap;
201
202 /* Legacy consumer-oriented counters */
203 struct page_counter memsw;
204 struct page_counter kmem;
205 struct page_counter tcpmem;
206
207 /* Upper bound of normal memory consumption range */
208 unsigned long high;
209
210 /* Range enforcement for interrupt charges */
211 struct work_struct high_work;
212
213 unsigned long soft_limit;
214
215 /* vmpressure notifications */
216 struct vmpressure vmpressure;
217
218 /*
219 * Should the accounting and control be hierarchical, per subtree?
220 */
221 bool use_hierarchy;
222
223 /*
224 * Should the OOM killer kill all belonging tasks, had it kill one?
225 */
226 bool oom_group;
227
228 /* protected by memcg_oom_lock */
229 bool oom_lock;
230 int under_oom;
231
232 int swappiness;
233 /* OOM-Killer disable */
234 int oom_kill_disable;
235
236 /* memory.events and memory.events.local */
237 struct cgroup_file events_file;
238 struct cgroup_file events_local_file;
239
240 /* handle for "memory.swap.events" */
241 struct cgroup_file swap_events_file;
242
243 /* protect arrays of thresholds */
244 struct mutex thresholds_lock;
245
246 /* thresholds for memory usage. RCU-protected */
247 struct mem_cgroup_thresholds thresholds;
248
249 /* thresholds for mem+swap usage. RCU-protected */
250 struct mem_cgroup_thresholds memsw_thresholds;
251
252 /* For oom notifier event fd */
253 struct list_head oom_notify;
254
255 /*
256 * Should we move charges of a task when a task is moved into this
257 * mem_cgroup ? And what type of charges should we move ?
258 */
259 unsigned long move_charge_at_immigrate;
260 /* taken only while moving_account > 0 */
261 spinlock_t move_lock;
262 unsigned long move_lock_flags;
263
264 MEMCG_PADDING(_pad1_);
265
266 /*
267 * set > 0 if pages under this cgroup are moving to other cgroup.
268 */
269 atomic_t moving_account;
270 struct task_struct *move_lock_task;
271
272 /* Legacy local VM stats and events */
273 struct memcg_vmstats_percpu __percpu *vmstats_local;
274
275 /* Subtree VM stats and events (batched updates) */
276 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
277
278 MEMCG_PADDING(_pad2_);
279
280 atomic_long_t vmstats[MEMCG_NR_STAT];
281 atomic_long_t vmevents[NR_VM_EVENT_ITEMS];
282
283 /* memory.events */
284 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
285 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
286
287 unsigned long socket_pressure;
288
289 /* Legacy tcp memory accounting */
290 bool tcpmem_active;
291 int tcpmem_pressure;
292
293 #ifdef CONFIG_MEMCG_KMEM
294 /* Index in the kmem_cache->memcg_params.memcg_caches array */
295 int kmemcg_id;
296 enum memcg_kmem_state kmem_state;
297 struct list_head kmem_caches;
298 #endif
299
300 int last_scanned_node;
301 #if MAX_NUMNODES > 1
302 nodemask_t scan_nodes;
303 atomic_t numainfo_events;
304 atomic_t numainfo_updating;
305 #endif
306
307 #ifdef CONFIG_CGROUP_WRITEBACK
308 struct list_head cgwb_list;
309 struct wb_domain cgwb_domain;
310 #endif
311
312 /* List of events which userspace want to receive */
313 struct list_head event_list;
314 spinlock_t event_list_lock;
315
316 struct mem_cgroup_per_node *nodeinfo[0];
317 /* WARNING: nodeinfo must be the last member here */
318 };
319
320 /*
321 * size of first charge trial. "32" comes from vmscan.c's magic value.
322 * TODO: maybe necessary to use big numbers in big irons.
323 */
324 #define MEMCG_CHARGE_BATCH 32U
325
326 extern struct mem_cgroup *root_mem_cgroup;
327
328 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
329 {
330 return (memcg == root_mem_cgroup);
331 }
332
333 static inline bool mem_cgroup_disabled(void)
334 {
335 return !cgroup_subsys_enabled(memory_cgrp_subsys);
336 }
337
338 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
339 struct mem_cgroup *memcg);
340
341 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
342 gfp_t gfp_mask, struct mem_cgroup **memcgp,
343 bool compound);
344 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
345 gfp_t gfp_mask, struct mem_cgroup **memcgp,
346 bool compound);
347 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
348 bool lrucare, bool compound);
349 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
350 bool compound);
351 void mem_cgroup_uncharge(struct page *page);
352 void mem_cgroup_uncharge_list(struct list_head *page_list);
353
354 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
355
356 static struct mem_cgroup_per_node *
357 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
358 {
359 return memcg->nodeinfo[nid];
360 }
361
362 /**
363 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
364 * @node: node of the wanted lruvec
365 * @memcg: memcg of the wanted lruvec
366 *
367 * Returns the lru list vector holding pages for a given @node or a given
368 * @memcg and @zone. This can be the node lruvec, if the memory controller
369 * is disabled.
370 */
371 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
372 struct mem_cgroup *memcg)
373 {
374 struct mem_cgroup_per_node *mz;
375 struct lruvec *lruvec;
376
377 if (mem_cgroup_disabled()) {
378 lruvec = node_lruvec(pgdat);
379 goto out;
380 }
381
382 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
383 lruvec = &mz->lruvec;
384 out:
385 /*
386 * Since a node can be onlined after the mem_cgroup was created,
387 * we have to be prepared to initialize lruvec->pgdat here;
388 * and if offlined then reonlined, we need to reinitialize it.
389 */
390 if (unlikely(lruvec->pgdat != pgdat))
391 lruvec->pgdat = pgdat;
392 return lruvec;
393 }
394
395 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
396
397 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
398 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
399
400 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
401
402 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
403
404 static inline
405 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
406 return css ? container_of(css, struct mem_cgroup, css) : NULL;
407 }
408
409 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
410 {
411 if (memcg)
412 css_put(&memcg->css);
413 }
414
415 #define mem_cgroup_from_counter(counter, member) \
416 container_of(counter, struct mem_cgroup, member)
417
418 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
419 struct mem_cgroup *,
420 struct mem_cgroup_reclaim_cookie *);
421 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
422 int mem_cgroup_scan_tasks(struct mem_cgroup *,
423 int (*)(struct task_struct *, void *), void *);
424
425 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
426 {
427 if (mem_cgroup_disabled())
428 return 0;
429
430 return memcg->id.id;
431 }
432 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
433
434 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
435 {
436 return mem_cgroup_from_css(seq_css(m));
437 }
438
439 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
440 {
441 struct mem_cgroup_per_node *mz;
442
443 if (mem_cgroup_disabled())
444 return NULL;
445
446 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
447 return mz->memcg;
448 }
449
450 /**
451 * parent_mem_cgroup - find the accounting parent of a memcg
452 * @memcg: memcg whose parent to find
453 *
454 * Returns the parent memcg, or NULL if this is the root or the memory
455 * controller is in legacy no-hierarchy mode.
456 */
457 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
458 {
459 if (!memcg->memory.parent)
460 return NULL;
461 return mem_cgroup_from_counter(memcg->memory.parent, memory);
462 }
463
464 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
465 struct mem_cgroup *root)
466 {
467 if (root == memcg)
468 return true;
469 if (!root->use_hierarchy)
470 return false;
471 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
472 }
473
474 static inline bool mm_match_cgroup(struct mm_struct *mm,
475 struct mem_cgroup *memcg)
476 {
477 struct mem_cgroup *task_memcg;
478 bool match = false;
479
480 rcu_read_lock();
481 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
482 if (task_memcg)
483 match = mem_cgroup_is_descendant(task_memcg, memcg);
484 rcu_read_unlock();
485 return match;
486 }
487
488 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
489 ino_t page_cgroup_ino(struct page *page);
490
491 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
492 {
493 if (mem_cgroup_disabled())
494 return true;
495 return !!(memcg->css.flags & CSS_ONLINE);
496 }
497
498 /*
499 * For memory reclaim.
500 */
501 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
502
503 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
504 int zid, int nr_pages);
505
506 static inline
507 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
508 enum lru_list lru, int zone_idx)
509 {
510 struct mem_cgroup_per_node *mz;
511
512 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
513 return mz->lru_zone_size[zone_idx][lru];
514 }
515
516 void mem_cgroup_handle_over_high(void);
517
518 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
519
520 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
521 struct task_struct *p);
522
523 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
524
525 static inline void mem_cgroup_enter_user_fault(void)
526 {
527 WARN_ON(current->in_user_fault);
528 current->in_user_fault = 1;
529 }
530
531 static inline void mem_cgroup_exit_user_fault(void)
532 {
533 WARN_ON(!current->in_user_fault);
534 current->in_user_fault = 0;
535 }
536
537 static inline bool task_in_memcg_oom(struct task_struct *p)
538 {
539 return p->memcg_in_oom;
540 }
541
542 bool mem_cgroup_oom_synchronize(bool wait);
543 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
544 struct mem_cgroup *oom_domain);
545 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
546
547 #ifdef CONFIG_MEMCG_SWAP
548 extern int do_swap_account;
549 #endif
550
551 struct mem_cgroup *lock_page_memcg(struct page *page);
552 void __unlock_page_memcg(struct mem_cgroup *memcg);
553 void unlock_page_memcg(struct page *page);
554
555 /*
556 * idx can be of type enum memcg_stat_item or node_stat_item.
557 * Keep in sync with memcg_exact_page_state().
558 */
559 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
560 {
561 long x = atomic_long_read(&memcg->vmstats[idx]);
562 #ifdef CONFIG_SMP
563 if (x < 0)
564 x = 0;
565 #endif
566 return x;
567 }
568
569 /*
570 * idx can be of type enum memcg_stat_item or node_stat_item.
571 * Keep in sync with memcg_exact_page_state().
572 */
573 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
574 int idx)
575 {
576 long x = 0;
577 int cpu;
578
579 for_each_possible_cpu(cpu)
580 x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
581 #ifdef CONFIG_SMP
582 if (x < 0)
583 x = 0;
584 #endif
585 return x;
586 }
587
588 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
589
590 /* idx can be of type enum memcg_stat_item or node_stat_item */
591 static inline void mod_memcg_state(struct mem_cgroup *memcg,
592 int idx, int val)
593 {
594 unsigned long flags;
595
596 local_irq_save(flags);
597 __mod_memcg_state(memcg, idx, val);
598 local_irq_restore(flags);
599 }
600
601 /**
602 * mod_memcg_page_state - update page state statistics
603 * @page: the page
604 * @idx: page state item to account
605 * @val: number of pages (positive or negative)
606 *
607 * The @page must be locked or the caller must use lock_page_memcg()
608 * to prevent double accounting when the page is concurrently being
609 * moved to another memcg:
610 *
611 * lock_page(page) or lock_page_memcg(page)
612 * if (TestClearPageState(page))
613 * mod_memcg_page_state(page, state, -1);
614 * unlock_page(page) or unlock_page_memcg(page)
615 *
616 * Kernel pages are an exception to this, since they'll never move.
617 */
618 static inline void __mod_memcg_page_state(struct page *page,
619 int idx, int val)
620 {
621 if (page->mem_cgroup)
622 __mod_memcg_state(page->mem_cgroup, idx, val);
623 }
624
625 static inline void mod_memcg_page_state(struct page *page,
626 int idx, int val)
627 {
628 if (page->mem_cgroup)
629 mod_memcg_state(page->mem_cgroup, idx, val);
630 }
631
632 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
633 enum node_stat_item idx)
634 {
635 struct mem_cgroup_per_node *pn;
636 long x;
637
638 if (mem_cgroup_disabled())
639 return node_page_state(lruvec_pgdat(lruvec), idx);
640
641 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
642 x = atomic_long_read(&pn->lruvec_stat[idx]);
643 #ifdef CONFIG_SMP
644 if (x < 0)
645 x = 0;
646 #endif
647 return x;
648 }
649
650 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
651 enum node_stat_item idx)
652 {
653 struct mem_cgroup_per_node *pn;
654 long x = 0;
655 int cpu;
656
657 if (mem_cgroup_disabled())
658 return node_page_state(lruvec_pgdat(lruvec), idx);
659
660 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
661 for_each_possible_cpu(cpu)
662 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
663 #ifdef CONFIG_SMP
664 if (x < 0)
665 x = 0;
666 #endif
667 return x;
668 }
669
670 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
671 int val);
672
673 static inline void mod_lruvec_state(struct lruvec *lruvec,
674 enum node_stat_item idx, int val)
675 {
676 unsigned long flags;
677
678 local_irq_save(flags);
679 __mod_lruvec_state(lruvec, idx, val);
680 local_irq_restore(flags);
681 }
682
683 static inline void __mod_lruvec_page_state(struct page *page,
684 enum node_stat_item idx, int val)
685 {
686 pg_data_t *pgdat = page_pgdat(page);
687 struct lruvec *lruvec;
688
689 /* Untracked pages have no memcg, no lruvec. Update only the node */
690 if (!page->mem_cgroup) {
691 __mod_node_page_state(pgdat, idx, val);
692 return;
693 }
694
695 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup);
696 __mod_lruvec_state(lruvec, idx, val);
697 }
698
699 static inline void mod_lruvec_page_state(struct page *page,
700 enum node_stat_item idx, int val)
701 {
702 unsigned long flags;
703
704 local_irq_save(flags);
705 __mod_lruvec_page_state(page, idx, val);
706 local_irq_restore(flags);
707 }
708
709 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
710 gfp_t gfp_mask,
711 unsigned long *total_scanned);
712
713 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
714 unsigned long count);
715
716 static inline void count_memcg_events(struct mem_cgroup *memcg,
717 enum vm_event_item idx,
718 unsigned long count)
719 {
720 unsigned long flags;
721
722 local_irq_save(flags);
723 __count_memcg_events(memcg, idx, count);
724 local_irq_restore(flags);
725 }
726
727 static inline void count_memcg_page_event(struct page *page,
728 enum vm_event_item idx)
729 {
730 if (page->mem_cgroup)
731 count_memcg_events(page->mem_cgroup, idx, 1);
732 }
733
734 static inline void count_memcg_event_mm(struct mm_struct *mm,
735 enum vm_event_item idx)
736 {
737 struct mem_cgroup *memcg;
738
739 if (mem_cgroup_disabled())
740 return;
741
742 rcu_read_lock();
743 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
744 if (likely(memcg))
745 count_memcg_events(memcg, idx, 1);
746 rcu_read_unlock();
747 }
748
749 static inline void memcg_memory_event(struct mem_cgroup *memcg,
750 enum memcg_memory_event event)
751 {
752 atomic_long_inc(&memcg->memory_events_local[event]);
753 cgroup_file_notify(&memcg->events_local_file);
754
755 do {
756 atomic_long_inc(&memcg->memory_events[event]);
757 cgroup_file_notify(&memcg->events_file);
758
759 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
760 break;
761 } while ((memcg = parent_mem_cgroup(memcg)) &&
762 !mem_cgroup_is_root(memcg));
763 }
764
765 static inline void memcg_memory_event_mm(struct mm_struct *mm,
766 enum memcg_memory_event event)
767 {
768 struct mem_cgroup *memcg;
769
770 if (mem_cgroup_disabled())
771 return;
772
773 rcu_read_lock();
774 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
775 if (likely(memcg))
776 memcg_memory_event(memcg, event);
777 rcu_read_unlock();
778 }
779
780 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
781 void mem_cgroup_split_huge_fixup(struct page *head);
782 #endif
783
784 #else /* CONFIG_MEMCG */
785
786 #define MEM_CGROUP_ID_SHIFT 0
787 #define MEM_CGROUP_ID_MAX 0
788
789 struct mem_cgroup;
790
791 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
792 {
793 return true;
794 }
795
796 static inline bool mem_cgroup_disabled(void)
797 {
798 return true;
799 }
800
801 static inline void memcg_memory_event(struct mem_cgroup *memcg,
802 enum memcg_memory_event event)
803 {
804 }
805
806 static inline void memcg_memory_event_mm(struct mm_struct *mm,
807 enum memcg_memory_event event)
808 {
809 }
810
811 static inline enum mem_cgroup_protection mem_cgroup_protected(
812 struct mem_cgroup *root, struct mem_cgroup *memcg)
813 {
814 return MEMCG_PROT_NONE;
815 }
816
817 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
818 gfp_t gfp_mask,
819 struct mem_cgroup **memcgp,
820 bool compound)
821 {
822 *memcgp = NULL;
823 return 0;
824 }
825
826 static inline int mem_cgroup_try_charge_delay(struct page *page,
827 struct mm_struct *mm,
828 gfp_t gfp_mask,
829 struct mem_cgroup **memcgp,
830 bool compound)
831 {
832 *memcgp = NULL;
833 return 0;
834 }
835
836 static inline void mem_cgroup_commit_charge(struct page *page,
837 struct mem_cgroup *memcg,
838 bool lrucare, bool compound)
839 {
840 }
841
842 static inline void mem_cgroup_cancel_charge(struct page *page,
843 struct mem_cgroup *memcg,
844 bool compound)
845 {
846 }
847
848 static inline void mem_cgroup_uncharge(struct page *page)
849 {
850 }
851
852 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
853 {
854 }
855
856 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
857 {
858 }
859
860 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
861 struct mem_cgroup *memcg)
862 {
863 return node_lruvec(pgdat);
864 }
865
866 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
867 struct pglist_data *pgdat)
868 {
869 return &pgdat->lruvec;
870 }
871
872 static inline bool mm_match_cgroup(struct mm_struct *mm,
873 struct mem_cgroup *memcg)
874 {
875 return true;
876 }
877
878 static inline bool task_in_mem_cgroup(struct task_struct *task,
879 const struct mem_cgroup *memcg)
880 {
881 return true;
882 }
883
884 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
885 {
886 return NULL;
887 }
888
889 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
890 {
891 return NULL;
892 }
893
894 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
895 {
896 }
897
898 static inline struct mem_cgroup *
899 mem_cgroup_iter(struct mem_cgroup *root,
900 struct mem_cgroup *prev,
901 struct mem_cgroup_reclaim_cookie *reclaim)
902 {
903 return NULL;
904 }
905
906 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
907 struct mem_cgroup *prev)
908 {
909 }
910
911 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
912 int (*fn)(struct task_struct *, void *), void *arg)
913 {
914 return 0;
915 }
916
917 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
918 {
919 return 0;
920 }
921
922 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
923 {
924 WARN_ON_ONCE(id);
925 /* XXX: This should always return root_mem_cgroup */
926 return NULL;
927 }
928
929 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
930 {
931 return NULL;
932 }
933
934 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
935 {
936 return NULL;
937 }
938
939 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
940 {
941 return true;
942 }
943
944 static inline
945 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
946 enum lru_list lru, int zone_idx)
947 {
948 return 0;
949 }
950
951 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
952 {
953 return 0;
954 }
955
956 static inline void
957 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
958 {
959 }
960
961 static inline void
962 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
963 {
964 }
965
966 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
967 {
968 return NULL;
969 }
970
971 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
972 {
973 }
974
975 static inline void unlock_page_memcg(struct page *page)
976 {
977 }
978
979 static inline void mem_cgroup_handle_over_high(void)
980 {
981 }
982
983 static inline void mem_cgroup_enter_user_fault(void)
984 {
985 }
986
987 static inline void mem_cgroup_exit_user_fault(void)
988 {
989 }
990
991 static inline bool task_in_memcg_oom(struct task_struct *p)
992 {
993 return false;
994 }
995
996 static inline bool mem_cgroup_oom_synchronize(bool wait)
997 {
998 return false;
999 }
1000
1001 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1002 struct task_struct *victim, struct mem_cgroup *oom_domain)
1003 {
1004 return NULL;
1005 }
1006
1007 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1008 {
1009 }
1010
1011 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1012 {
1013 return 0;
1014 }
1015
1016 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1017 int idx)
1018 {
1019 return 0;
1020 }
1021
1022 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1023 int idx,
1024 int nr)
1025 {
1026 }
1027
1028 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1029 int idx,
1030 int nr)
1031 {
1032 }
1033
1034 static inline void __mod_memcg_page_state(struct page *page,
1035 int idx,
1036 int nr)
1037 {
1038 }
1039
1040 static inline void mod_memcg_page_state(struct page *page,
1041 int idx,
1042 int nr)
1043 {
1044 }
1045
1046 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1047 enum node_stat_item idx)
1048 {
1049 return node_page_state(lruvec_pgdat(lruvec), idx);
1050 }
1051
1052 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1053 enum node_stat_item idx)
1054 {
1055 return node_page_state(lruvec_pgdat(lruvec), idx);
1056 }
1057
1058 static inline void __mod_lruvec_state(struct lruvec *lruvec,
1059 enum node_stat_item idx, int val)
1060 {
1061 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1062 }
1063
1064 static inline void mod_lruvec_state(struct lruvec *lruvec,
1065 enum node_stat_item idx, int val)
1066 {
1067 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1068 }
1069
1070 static inline void __mod_lruvec_page_state(struct page *page,
1071 enum node_stat_item idx, int val)
1072 {
1073 __mod_node_page_state(page_pgdat(page), idx, val);
1074 }
1075
1076 static inline void mod_lruvec_page_state(struct page *page,
1077 enum node_stat_item idx, int val)
1078 {
1079 mod_node_page_state(page_pgdat(page), idx, val);
1080 }
1081
1082 static inline
1083 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1084 gfp_t gfp_mask,
1085 unsigned long *total_scanned)
1086 {
1087 return 0;
1088 }
1089
1090 static inline void mem_cgroup_split_huge_fixup(struct page *head)
1091 {
1092 }
1093
1094 static inline void count_memcg_events(struct mem_cgroup *memcg,
1095 enum vm_event_item idx,
1096 unsigned long count)
1097 {
1098 }
1099
1100 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1101 enum vm_event_item idx,
1102 unsigned long count)
1103 {
1104 }
1105
1106 static inline void count_memcg_page_event(struct page *page,
1107 int idx)
1108 {
1109 }
1110
1111 static inline
1112 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1113 {
1114 }
1115 #endif /* CONFIG_MEMCG */
1116
1117 /* idx can be of type enum memcg_stat_item or node_stat_item */
1118 static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1119 int idx)
1120 {
1121 __mod_memcg_state(memcg, idx, 1);
1122 }
1123
1124 /* idx can be of type enum memcg_stat_item or node_stat_item */
1125 static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1126 int idx)
1127 {
1128 __mod_memcg_state(memcg, idx, -1);
1129 }
1130
1131 /* idx can be of type enum memcg_stat_item or node_stat_item */
1132 static inline void __inc_memcg_page_state(struct page *page,
1133 int idx)
1134 {
1135 __mod_memcg_page_state(page, idx, 1);
1136 }
1137
1138 /* idx can be of type enum memcg_stat_item or node_stat_item */
1139 static inline void __dec_memcg_page_state(struct page *page,
1140 int idx)
1141 {
1142 __mod_memcg_page_state(page, idx, -1);
1143 }
1144
1145 static inline void __inc_lruvec_state(struct lruvec *lruvec,
1146 enum node_stat_item idx)
1147 {
1148 __mod_lruvec_state(lruvec, idx, 1);
1149 }
1150
1151 static inline void __dec_lruvec_state(struct lruvec *lruvec,
1152 enum node_stat_item idx)
1153 {
1154 __mod_lruvec_state(lruvec, idx, -1);
1155 }
1156
1157 static inline void __inc_lruvec_page_state(struct page *page,
1158 enum node_stat_item idx)
1159 {
1160 __mod_lruvec_page_state(page, idx, 1);
1161 }
1162
1163 static inline void __dec_lruvec_page_state(struct page *page,
1164 enum node_stat_item idx)
1165 {
1166 __mod_lruvec_page_state(page, idx, -1);
1167 }
1168
1169 /* idx can be of type enum memcg_stat_item or node_stat_item */
1170 static inline void inc_memcg_state(struct mem_cgroup *memcg,
1171 int idx)
1172 {
1173 mod_memcg_state(memcg, idx, 1);
1174 }
1175
1176 /* idx can be of type enum memcg_stat_item or node_stat_item */
1177 static inline void dec_memcg_state(struct mem_cgroup *memcg,
1178 int idx)
1179 {
1180 mod_memcg_state(memcg, idx, -1);
1181 }
1182
1183 /* idx can be of type enum memcg_stat_item or node_stat_item */
1184 static inline void inc_memcg_page_state(struct page *page,
1185 int idx)
1186 {
1187 mod_memcg_page_state(page, idx, 1);
1188 }
1189
1190 /* idx can be of type enum memcg_stat_item or node_stat_item */
1191 static inline void dec_memcg_page_state(struct page *page,
1192 int idx)
1193 {
1194 mod_memcg_page_state(page, idx, -1);
1195 }
1196
1197 static inline void inc_lruvec_state(struct lruvec *lruvec,
1198 enum node_stat_item idx)
1199 {
1200 mod_lruvec_state(lruvec, idx, 1);
1201 }
1202
1203 static inline void dec_lruvec_state(struct lruvec *lruvec,
1204 enum node_stat_item idx)
1205 {
1206 mod_lruvec_state(lruvec, idx, -1);
1207 }
1208
1209 static inline void inc_lruvec_page_state(struct page *page,
1210 enum node_stat_item idx)
1211 {
1212 mod_lruvec_page_state(page, idx, 1);
1213 }
1214
1215 static inline void dec_lruvec_page_state(struct page *page,
1216 enum node_stat_item idx)
1217 {
1218 mod_lruvec_page_state(page, idx, -1);
1219 }
1220
1221 #ifdef CONFIG_CGROUP_WRITEBACK
1222
1223 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1224 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1225 unsigned long *pheadroom, unsigned long *pdirty,
1226 unsigned long *pwriteback);
1227
1228 #else /* CONFIG_CGROUP_WRITEBACK */
1229
1230 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1231 {
1232 return NULL;
1233 }
1234
1235 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1236 unsigned long *pfilepages,
1237 unsigned long *pheadroom,
1238 unsigned long *pdirty,
1239 unsigned long *pwriteback)
1240 {
1241 }
1242
1243 #endif /* CONFIG_CGROUP_WRITEBACK */
1244
1245 struct sock;
1246 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1247 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1248 #ifdef CONFIG_MEMCG
1249 extern struct static_key_false memcg_sockets_enabled_key;
1250 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1251 void mem_cgroup_sk_alloc(struct sock *sk);
1252 void mem_cgroup_sk_free(struct sock *sk);
1253 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1254 {
1255 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1256 return true;
1257 do {
1258 if (time_before(jiffies, memcg->socket_pressure))
1259 return true;
1260 } while ((memcg = parent_mem_cgroup(memcg)));
1261 return false;
1262 }
1263 #else
1264 #define mem_cgroup_sockets_enabled 0
1265 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1266 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1267 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1268 {
1269 return false;
1270 }
1271 #endif
1272
1273 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1274 void memcg_kmem_put_cache(struct kmem_cache *cachep);
1275
1276 #ifdef CONFIG_MEMCG_KMEM
1277 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1278 void __memcg_kmem_uncharge(struct page *page, int order);
1279 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1280 struct mem_cgroup *memcg);
1281
1282 extern struct static_key_false memcg_kmem_enabled_key;
1283 extern struct workqueue_struct *memcg_kmem_cache_wq;
1284
1285 extern int memcg_nr_cache_ids;
1286 void memcg_get_cache_ids(void);
1287 void memcg_put_cache_ids(void);
1288
1289 /*
1290 * Helper macro to loop through all memcg-specific caches. Callers must still
1291 * check if the cache is valid (it is either valid or NULL).
1292 * the slab_mutex must be held when looping through those caches
1293 */
1294 #define for_each_memcg_cache_index(_idx) \
1295 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1296
1297 static inline bool memcg_kmem_enabled(void)
1298 {
1299 return static_branch_unlikely(&memcg_kmem_enabled_key);
1300 }
1301
1302 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1303 {
1304 if (memcg_kmem_enabled())
1305 return __memcg_kmem_charge(page, gfp, order);
1306 return 0;
1307 }
1308
1309 static inline void memcg_kmem_uncharge(struct page *page, int order)
1310 {
1311 if (memcg_kmem_enabled())
1312 __memcg_kmem_uncharge(page, order);
1313 }
1314
1315 static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp,
1316 int order, struct mem_cgroup *memcg)
1317 {
1318 if (memcg_kmem_enabled())
1319 return __memcg_kmem_charge_memcg(page, gfp, order, memcg);
1320 return 0;
1321 }
1322 /*
1323 * helper for accessing a memcg's index. It will be used as an index in the
1324 * child cache array in kmem_cache, and also to derive its name. This function
1325 * will return -1 when this is not a kmem-limited memcg.
1326 */
1327 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1328 {
1329 return memcg ? memcg->kmemcg_id : -1;
1330 }
1331
1332 extern int memcg_expand_shrinker_maps(int new_id);
1333
1334 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1335 int nid, int shrinker_id);
1336 #else
1337
1338 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1339 {
1340 return 0;
1341 }
1342
1343 static inline void memcg_kmem_uncharge(struct page *page, int order)
1344 {
1345 }
1346
1347 static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1348 {
1349 return 0;
1350 }
1351
1352 static inline void __memcg_kmem_uncharge(struct page *page, int order)
1353 {
1354 }
1355
1356 #define for_each_memcg_cache_index(_idx) \
1357 for (; NULL; )
1358
1359 static inline bool memcg_kmem_enabled(void)
1360 {
1361 return false;
1362 }
1363
1364 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1365 {
1366 return -1;
1367 }
1368
1369 static inline void memcg_get_cache_ids(void)
1370 {
1371 }
1372
1373 static inline void memcg_put_cache_ids(void)
1374 {
1375 }
1376
1377 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1378 int nid, int shrinker_id) { }
1379 #endif /* CONFIG_MEMCG_KMEM */
1380
1381 #endif /* _LINUX_MEMCONTROL_H */