]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/memcontrol.h
Merge branch 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[mirror_ubuntu-bionic-kernel.git] / include / linux / memcontrol.h
1 /* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 #include <linux/page_counter.h>
27 #include <linux/vmpressure.h>
28 #include <linux/eventfd.h>
29 #include <linux/mmzone.h>
30 #include <linux/writeback.h>
31
32 struct mem_cgroup;
33 struct page;
34 struct mm_struct;
35 struct kmem_cache;
36
37 /*
38 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
39 * These two lists should keep in accord with each other.
40 */
41 enum mem_cgroup_stat_index {
42 /*
43 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
44 */
45 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
46 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
47 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
48 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
49 MEM_CGROUP_STAT_DIRTY, /* # of dirty pages in page cache */
50 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */
51 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
52 MEM_CGROUP_STAT_NSTATS,
53 /* default hierarchy stats */
54 MEMCG_SOCK,
55 MEMCG_NR_STAT,
56 };
57
58 struct mem_cgroup_reclaim_cookie {
59 struct zone *zone;
60 int priority;
61 unsigned int generation;
62 };
63
64 enum mem_cgroup_events_index {
65 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
66 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
67 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
68 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
69 MEM_CGROUP_EVENTS_NSTATS,
70 /* default hierarchy events */
71 MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS,
72 MEMCG_HIGH,
73 MEMCG_MAX,
74 MEMCG_OOM,
75 MEMCG_NR_EVENTS,
76 };
77
78 /*
79 * Per memcg event counter is incremented at every pagein/pageout. With THP,
80 * it will be incremated by the number of pages. This counter is used for
81 * for trigger some periodic events. This is straightforward and better
82 * than using jiffies etc. to handle periodic memcg event.
83 */
84 enum mem_cgroup_events_target {
85 MEM_CGROUP_TARGET_THRESH,
86 MEM_CGROUP_TARGET_SOFTLIMIT,
87 MEM_CGROUP_TARGET_NUMAINFO,
88 MEM_CGROUP_NTARGETS,
89 };
90
91 #ifdef CONFIG_MEMCG
92 struct mem_cgroup_stat_cpu {
93 long count[MEMCG_NR_STAT];
94 unsigned long events[MEMCG_NR_EVENTS];
95 unsigned long nr_page_events;
96 unsigned long targets[MEM_CGROUP_NTARGETS];
97 };
98
99 struct mem_cgroup_reclaim_iter {
100 struct mem_cgroup *position;
101 /* scan generation, increased every round-trip */
102 unsigned int generation;
103 };
104
105 /*
106 * per-zone information in memory controller.
107 */
108 struct mem_cgroup_per_zone {
109 struct lruvec lruvec;
110 unsigned long lru_size[NR_LRU_LISTS];
111
112 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
113
114 struct rb_node tree_node; /* RB tree node */
115 unsigned long usage_in_excess;/* Set to the value by which */
116 /* the soft limit is exceeded*/
117 bool on_tree;
118 struct mem_cgroup *memcg; /* Back pointer, we cannot */
119 /* use container_of */
120 };
121
122 struct mem_cgroup_per_node {
123 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
124 };
125
126 struct mem_cgroup_threshold {
127 struct eventfd_ctx *eventfd;
128 unsigned long threshold;
129 };
130
131 /* For threshold */
132 struct mem_cgroup_threshold_ary {
133 /* An array index points to threshold just below or equal to usage. */
134 int current_threshold;
135 /* Size of entries[] */
136 unsigned int size;
137 /* Array of thresholds */
138 struct mem_cgroup_threshold entries[0];
139 };
140
141 struct mem_cgroup_thresholds {
142 /* Primary thresholds array */
143 struct mem_cgroup_threshold_ary *primary;
144 /*
145 * Spare threshold array.
146 * This is needed to make mem_cgroup_unregister_event() "never fail".
147 * It must be able to store at least primary->size - 1 entries.
148 */
149 struct mem_cgroup_threshold_ary *spare;
150 };
151
152 enum memcg_kmem_state {
153 KMEM_NONE,
154 KMEM_ALLOCATED,
155 KMEM_ONLINE,
156 };
157
158 /*
159 * The memory controller data structure. The memory controller controls both
160 * page cache and RSS per cgroup. We would eventually like to provide
161 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
162 * to help the administrator determine what knobs to tune.
163 */
164 struct mem_cgroup {
165 struct cgroup_subsys_state css;
166
167 /* Accounted resources */
168 struct page_counter memory;
169 struct page_counter swap;
170
171 /* Legacy consumer-oriented counters */
172 struct page_counter memsw;
173 struct page_counter kmem;
174 struct page_counter tcpmem;
175
176 /* Normal memory consumption range */
177 unsigned long low;
178 unsigned long high;
179
180 /* Range enforcement for interrupt charges */
181 struct work_struct high_work;
182
183 unsigned long soft_limit;
184
185 /* vmpressure notifications */
186 struct vmpressure vmpressure;
187
188 /*
189 * Should the accounting and control be hierarchical, per subtree?
190 */
191 bool use_hierarchy;
192
193 /* protected by memcg_oom_lock */
194 bool oom_lock;
195 int under_oom;
196
197 int swappiness;
198 /* OOM-Killer disable */
199 int oom_kill_disable;
200
201 /* handle for "memory.events" */
202 struct cgroup_file events_file;
203
204 /* protect arrays of thresholds */
205 struct mutex thresholds_lock;
206
207 /* thresholds for memory usage. RCU-protected */
208 struct mem_cgroup_thresholds thresholds;
209
210 /* thresholds for mem+swap usage. RCU-protected */
211 struct mem_cgroup_thresholds memsw_thresholds;
212
213 /* For oom notifier event fd */
214 struct list_head oom_notify;
215
216 /*
217 * Should we move charges of a task when a task is moved into this
218 * mem_cgroup ? And what type of charges should we move ?
219 */
220 unsigned long move_charge_at_immigrate;
221 /*
222 * set > 0 if pages under this cgroup are moving to other cgroup.
223 */
224 atomic_t moving_account;
225 /* taken only while moving_account > 0 */
226 spinlock_t move_lock;
227 struct task_struct *move_lock_task;
228 unsigned long move_lock_flags;
229 /*
230 * percpu counter.
231 */
232 struct mem_cgroup_stat_cpu __percpu *stat;
233
234 unsigned long socket_pressure;
235
236 /* Legacy tcp memory accounting */
237 bool tcpmem_active;
238 int tcpmem_pressure;
239
240 #ifndef CONFIG_SLOB
241 /* Index in the kmem_cache->memcg_params.memcg_caches array */
242 int kmemcg_id;
243 enum memcg_kmem_state kmem_state;
244 #endif
245
246 int last_scanned_node;
247 #if MAX_NUMNODES > 1
248 nodemask_t scan_nodes;
249 atomic_t numainfo_events;
250 atomic_t numainfo_updating;
251 #endif
252
253 #ifdef CONFIG_CGROUP_WRITEBACK
254 struct list_head cgwb_list;
255 struct wb_domain cgwb_domain;
256 #endif
257
258 /* List of events which userspace want to receive */
259 struct list_head event_list;
260 spinlock_t event_list_lock;
261
262 struct mem_cgroup_per_node *nodeinfo[0];
263 /* WARNING: nodeinfo must be the last member here */
264 };
265
266 extern struct mem_cgroup *root_mem_cgroup;
267
268 /**
269 * mem_cgroup_events - count memory events against a cgroup
270 * @memcg: the memory cgroup
271 * @idx: the event index
272 * @nr: the number of events to account for
273 */
274 static inline void mem_cgroup_events(struct mem_cgroup *memcg,
275 enum mem_cgroup_events_index idx,
276 unsigned int nr)
277 {
278 this_cpu_add(memcg->stat->events[idx], nr);
279 cgroup_file_notify(&memcg->events_file);
280 }
281
282 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
283
284 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
285 gfp_t gfp_mask, struct mem_cgroup **memcgp,
286 bool compound);
287 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
288 bool lrucare, bool compound);
289 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
290 bool compound);
291 void mem_cgroup_uncharge(struct page *page);
292 void mem_cgroup_uncharge_list(struct list_head *page_list);
293
294 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage);
295
296 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
297 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
298
299 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
300 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
301
302 static inline
303 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
304 return css ? container_of(css, struct mem_cgroup, css) : NULL;
305 }
306
307 #define mem_cgroup_from_counter(counter, member) \
308 container_of(counter, struct mem_cgroup, member)
309
310 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
311 struct mem_cgroup *,
312 struct mem_cgroup_reclaim_cookie *);
313 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
314
315 /**
316 * parent_mem_cgroup - find the accounting parent of a memcg
317 * @memcg: memcg whose parent to find
318 *
319 * Returns the parent memcg, or NULL if this is the root or the memory
320 * controller is in legacy no-hierarchy mode.
321 */
322 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
323 {
324 if (!memcg->memory.parent)
325 return NULL;
326 return mem_cgroup_from_counter(memcg->memory.parent, memory);
327 }
328
329 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
330 struct mem_cgroup *root)
331 {
332 if (root == memcg)
333 return true;
334 if (!root->use_hierarchy)
335 return false;
336 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
337 }
338
339 static inline bool mm_match_cgroup(struct mm_struct *mm,
340 struct mem_cgroup *memcg)
341 {
342 struct mem_cgroup *task_memcg;
343 bool match = false;
344
345 rcu_read_lock();
346 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
347 if (task_memcg)
348 match = mem_cgroup_is_descendant(task_memcg, memcg);
349 rcu_read_unlock();
350 return match;
351 }
352
353 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
354 ino_t page_cgroup_ino(struct page *page);
355
356 static inline bool mem_cgroup_disabled(void)
357 {
358 return !cgroup_subsys_enabled(memory_cgrp_subsys);
359 }
360
361 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
362 {
363 if (mem_cgroup_disabled())
364 return true;
365 return !!(memcg->css.flags & CSS_ONLINE);
366 }
367
368 /*
369 * For memory reclaim.
370 */
371 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
372
373 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
374 int nr_pages);
375
376 static inline
377 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
378 {
379 struct mem_cgroup_per_zone *mz;
380
381 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
382 return mz->lru_size[lru];
383 }
384
385 static inline bool mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
386 {
387 unsigned long inactive_ratio;
388 unsigned long inactive;
389 unsigned long active;
390 unsigned long gb;
391
392 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
393 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
394
395 gb = (inactive + active) >> (30 - PAGE_SHIFT);
396 if (gb)
397 inactive_ratio = int_sqrt(10 * gb);
398 else
399 inactive_ratio = 1;
400
401 return inactive * inactive_ratio < active;
402 }
403
404 void mem_cgroup_handle_over_high(void);
405
406 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
407 struct task_struct *p);
408
409 static inline void mem_cgroup_oom_enable(void)
410 {
411 WARN_ON(current->memcg_may_oom);
412 current->memcg_may_oom = 1;
413 }
414
415 static inline void mem_cgroup_oom_disable(void)
416 {
417 WARN_ON(!current->memcg_may_oom);
418 current->memcg_may_oom = 0;
419 }
420
421 static inline bool task_in_memcg_oom(struct task_struct *p)
422 {
423 return p->memcg_in_oom;
424 }
425
426 bool mem_cgroup_oom_synchronize(bool wait);
427
428 #ifdef CONFIG_MEMCG_SWAP
429 extern int do_swap_account;
430 #endif
431
432 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page);
433 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg);
434
435 /**
436 * mem_cgroup_update_page_stat - update page state statistics
437 * @memcg: memcg to account against
438 * @idx: page state item to account
439 * @val: number of pages (positive or negative)
440 *
441 * See mem_cgroup_begin_page_stat() for locking requirements.
442 */
443 static inline void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
444 enum mem_cgroup_stat_index idx, int val)
445 {
446 VM_BUG_ON(!rcu_read_lock_held());
447
448 if (memcg)
449 this_cpu_add(memcg->stat->count[idx], val);
450 }
451
452 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
453 enum mem_cgroup_stat_index idx)
454 {
455 mem_cgroup_update_page_stat(memcg, idx, 1);
456 }
457
458 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
459 enum mem_cgroup_stat_index idx)
460 {
461 mem_cgroup_update_page_stat(memcg, idx, -1);
462 }
463
464 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
465 gfp_t gfp_mask,
466 unsigned long *total_scanned);
467
468 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
469 enum vm_event_item idx)
470 {
471 struct mem_cgroup *memcg;
472
473 if (mem_cgroup_disabled())
474 return;
475
476 rcu_read_lock();
477 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
478 if (unlikely(!memcg))
479 goto out;
480
481 switch (idx) {
482 case PGFAULT:
483 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
484 break;
485 case PGMAJFAULT:
486 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
487 break;
488 default:
489 BUG();
490 }
491 out:
492 rcu_read_unlock();
493 }
494 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
495 void mem_cgroup_split_huge_fixup(struct page *head);
496 #endif
497
498 #else /* CONFIG_MEMCG */
499 struct mem_cgroup;
500
501 static inline void mem_cgroup_events(struct mem_cgroup *memcg,
502 enum mem_cgroup_events_index idx,
503 unsigned int nr)
504 {
505 }
506
507 static inline bool mem_cgroup_low(struct mem_cgroup *root,
508 struct mem_cgroup *memcg)
509 {
510 return false;
511 }
512
513 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
514 gfp_t gfp_mask,
515 struct mem_cgroup **memcgp,
516 bool compound)
517 {
518 *memcgp = NULL;
519 return 0;
520 }
521
522 static inline void mem_cgroup_commit_charge(struct page *page,
523 struct mem_cgroup *memcg,
524 bool lrucare, bool compound)
525 {
526 }
527
528 static inline void mem_cgroup_cancel_charge(struct page *page,
529 struct mem_cgroup *memcg,
530 bool compound)
531 {
532 }
533
534 static inline void mem_cgroup_uncharge(struct page *page)
535 {
536 }
537
538 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
539 {
540 }
541
542 static inline void mem_cgroup_replace_page(struct page *old, struct page *new)
543 {
544 }
545
546 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
547 struct mem_cgroup *memcg)
548 {
549 return &zone->lruvec;
550 }
551
552 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
553 struct zone *zone)
554 {
555 return &zone->lruvec;
556 }
557
558 static inline bool mm_match_cgroup(struct mm_struct *mm,
559 struct mem_cgroup *memcg)
560 {
561 return true;
562 }
563
564 static inline bool task_in_mem_cgroup(struct task_struct *task,
565 const struct mem_cgroup *memcg)
566 {
567 return true;
568 }
569
570 static inline struct mem_cgroup *
571 mem_cgroup_iter(struct mem_cgroup *root,
572 struct mem_cgroup *prev,
573 struct mem_cgroup_reclaim_cookie *reclaim)
574 {
575 return NULL;
576 }
577
578 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
579 struct mem_cgroup *prev)
580 {
581 }
582
583 static inline bool mem_cgroup_disabled(void)
584 {
585 return true;
586 }
587
588 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
589 {
590 return true;
591 }
592
593 static inline bool
594 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
595 {
596 return true;
597 }
598
599 static inline unsigned long
600 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
601 {
602 return 0;
603 }
604
605 static inline void
606 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
607 int increment)
608 {
609 }
610
611 static inline void
612 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
613 {
614 }
615
616 static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
617 {
618 return NULL;
619 }
620
621 static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
622 {
623 }
624
625 static inline void mem_cgroup_handle_over_high(void)
626 {
627 }
628
629 static inline void mem_cgroup_oom_enable(void)
630 {
631 }
632
633 static inline void mem_cgroup_oom_disable(void)
634 {
635 }
636
637 static inline bool task_in_memcg_oom(struct task_struct *p)
638 {
639 return false;
640 }
641
642 static inline bool mem_cgroup_oom_synchronize(bool wait)
643 {
644 return false;
645 }
646
647 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
648 enum mem_cgroup_stat_index idx)
649 {
650 }
651
652 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
653 enum mem_cgroup_stat_index idx)
654 {
655 }
656
657 static inline
658 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
659 gfp_t gfp_mask,
660 unsigned long *total_scanned)
661 {
662 return 0;
663 }
664
665 static inline void mem_cgroup_split_huge_fixup(struct page *head)
666 {
667 }
668
669 static inline
670 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
671 {
672 }
673 #endif /* CONFIG_MEMCG */
674
675 #ifdef CONFIG_CGROUP_WRITEBACK
676
677 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg);
678 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
679 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
680 unsigned long *pheadroom, unsigned long *pdirty,
681 unsigned long *pwriteback);
682
683 #else /* CONFIG_CGROUP_WRITEBACK */
684
685 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
686 {
687 return NULL;
688 }
689
690 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
691 unsigned long *pfilepages,
692 unsigned long *pheadroom,
693 unsigned long *pdirty,
694 unsigned long *pwriteback)
695 {
696 }
697
698 #endif /* CONFIG_CGROUP_WRITEBACK */
699
700 struct sock;
701 void sock_update_memcg(struct sock *sk);
702 void sock_release_memcg(struct sock *sk);
703 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
704 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
705 #ifdef CONFIG_MEMCG
706 extern struct static_key_false memcg_sockets_enabled_key;
707 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
708 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
709 {
710 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
711 return true;
712 do {
713 if (time_before(jiffies, memcg->socket_pressure))
714 return true;
715 } while ((memcg = parent_mem_cgroup(memcg)));
716 return false;
717 }
718 #else
719 #define mem_cgroup_sockets_enabled 0
720 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
721 {
722 return false;
723 }
724 #endif
725
726 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
727 extern struct static_key_false memcg_kmem_enabled_key;
728
729 extern int memcg_nr_cache_ids;
730 void memcg_get_cache_ids(void);
731 void memcg_put_cache_ids(void);
732
733 /*
734 * Helper macro to loop through all memcg-specific caches. Callers must still
735 * check if the cache is valid (it is either valid or NULL).
736 * the slab_mutex must be held when looping through those caches
737 */
738 #define for_each_memcg_cache_index(_idx) \
739 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
740
741 static inline bool memcg_kmem_enabled(void)
742 {
743 return static_branch_unlikely(&memcg_kmem_enabled_key);
744 }
745
746 static inline bool memcg_kmem_online(struct mem_cgroup *memcg)
747 {
748 return memcg->kmem_state == KMEM_ONLINE;
749 }
750
751 /*
752 * In general, we'll do everything in our power to not incur in any overhead
753 * for non-memcg users for the kmem functions. Not even a function call, if we
754 * can avoid it.
755 *
756 * Therefore, we'll inline all those functions so that in the best case, we'll
757 * see that kmemcg is off for everybody and proceed quickly. If it is on,
758 * we'll still do most of the flag checking inline. We check a lot of
759 * conditions, but because they are pretty simple, they are expected to be
760 * fast.
761 */
762 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
763 struct mem_cgroup *memcg);
764 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
765 void __memcg_kmem_uncharge(struct page *page, int order);
766
767 /*
768 * helper for acessing a memcg's index. It will be used as an index in the
769 * child cache array in kmem_cache, and also to derive its name. This function
770 * will return -1 when this is not a kmem-limited memcg.
771 */
772 static inline int memcg_cache_id(struct mem_cgroup *memcg)
773 {
774 return memcg ? memcg->kmemcg_id : -1;
775 }
776
777 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
778 void __memcg_kmem_put_cache(struct kmem_cache *cachep);
779
780 static inline bool __memcg_kmem_bypass(void)
781 {
782 if (!memcg_kmem_enabled())
783 return true;
784 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
785 return true;
786 return false;
787 }
788
789 /**
790 * memcg_kmem_charge: charge a kmem page
791 * @page: page to charge
792 * @gfp: reclaim mode
793 * @order: allocation order
794 *
795 * Returns 0 on success, an error code on failure.
796 */
797 static __always_inline int memcg_kmem_charge(struct page *page,
798 gfp_t gfp, int order)
799 {
800 if (__memcg_kmem_bypass())
801 return 0;
802 if (!(gfp & __GFP_ACCOUNT))
803 return 0;
804 return __memcg_kmem_charge(page, gfp, order);
805 }
806
807 /**
808 * memcg_kmem_uncharge: uncharge a kmem page
809 * @page: page to uncharge
810 * @order: allocation order
811 */
812 static __always_inline void memcg_kmem_uncharge(struct page *page, int order)
813 {
814 if (memcg_kmem_enabled())
815 __memcg_kmem_uncharge(page, order);
816 }
817
818 /**
819 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
820 * @cachep: the original global kmem cache
821 *
822 * All memory allocated from a per-memcg cache is charged to the owner memcg.
823 */
824 static __always_inline struct kmem_cache *
825 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
826 {
827 if (__memcg_kmem_bypass())
828 return cachep;
829 return __memcg_kmem_get_cache(cachep, gfp);
830 }
831
832 static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
833 {
834 if (memcg_kmem_enabled())
835 __memcg_kmem_put_cache(cachep);
836 }
837 #else
838 #define for_each_memcg_cache_index(_idx) \
839 for (; NULL; )
840
841 static inline bool memcg_kmem_enabled(void)
842 {
843 return false;
844 }
845
846 static inline bool memcg_kmem_online(struct mem_cgroup *memcg)
847 {
848 return false;
849 }
850
851 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
852 {
853 return 0;
854 }
855
856 static inline void memcg_kmem_uncharge(struct page *page, int order)
857 {
858 }
859
860 static inline int memcg_cache_id(struct mem_cgroup *memcg)
861 {
862 return -1;
863 }
864
865 static inline void memcg_get_cache_ids(void)
866 {
867 }
868
869 static inline void memcg_put_cache_ids(void)
870 {
871 }
872
873 static inline struct kmem_cache *
874 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
875 {
876 return cachep;
877 }
878
879 static inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
880 {
881 }
882 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
883
884 #endif /* _LINUX_MEMCONTROL_H */