]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/memcontrol.h
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / include / linux / memcontrol.h
1 /* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 #include <linux/page_counter.h>
27 #include <linux/vmpressure.h>
28 #include <linux/eventfd.h>
29 #include <linux/mm.h>
30 #include <linux/vmstat.h>
31 #include <linux/writeback.h>
32 #include <linux/page-flags.h>
33
34 struct mem_cgroup;
35 struct page;
36 struct mm_struct;
37 struct kmem_cache;
38
39 /* Cgroup-specific page state, on top of universal node page state */
40 enum memcg_stat_item {
41 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
42 MEMCG_RSS,
43 MEMCG_RSS_HUGE,
44 MEMCG_SWAP,
45 MEMCG_SOCK,
46 /* XXX: why are these zone and not node counters? */
47 MEMCG_KERNEL_STACK_KB,
48 MEMCG_NR_STAT,
49 };
50
51 /* Cgroup-specific events, on top of universal VM events */
52 enum memcg_event_item {
53 MEMCG_LOW = NR_VM_EVENT_ITEMS,
54 MEMCG_HIGH,
55 MEMCG_MAX,
56 MEMCG_OOM,
57 MEMCG_NR_EVENTS,
58 };
59
60 struct mem_cgroup_reclaim_cookie {
61 pg_data_t *pgdat;
62 int priority;
63 unsigned int generation;
64 };
65
66 #ifdef CONFIG_MEMCG
67
68 #define MEM_CGROUP_ID_SHIFT 16
69 #define MEM_CGROUP_ID_MAX USHRT_MAX
70
71 struct mem_cgroup_id {
72 int id;
73 atomic_t ref;
74 };
75
76 /*
77 * Per memcg event counter is incremented at every pagein/pageout. With THP,
78 * it will be incremated by the number of pages. This counter is used for
79 * for trigger some periodic events. This is straightforward and better
80 * than using jiffies etc. to handle periodic memcg event.
81 */
82 enum mem_cgroup_events_target {
83 MEM_CGROUP_TARGET_THRESH,
84 MEM_CGROUP_TARGET_SOFTLIMIT,
85 MEM_CGROUP_TARGET_NUMAINFO,
86 MEM_CGROUP_NTARGETS,
87 };
88
89 struct mem_cgroup_stat_cpu {
90 long count[MEMCG_NR_STAT];
91 unsigned long events[MEMCG_NR_EVENTS];
92 unsigned long nr_page_events;
93 unsigned long targets[MEM_CGROUP_NTARGETS];
94 };
95
96 struct mem_cgroup_reclaim_iter {
97 struct mem_cgroup *position;
98 /* scan generation, increased every round-trip */
99 unsigned int generation;
100 };
101
102 struct lruvec_stat {
103 long count[NR_VM_NODE_STAT_ITEMS];
104 };
105
106 /*
107 * per-zone information in memory controller.
108 */
109 struct mem_cgroup_per_node {
110 struct lruvec lruvec;
111 struct lruvec_stat __percpu *lruvec_stat;
112 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
113
114 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
115
116 struct rb_node tree_node; /* RB tree node */
117 unsigned long usage_in_excess;/* Set to the value by which */
118 /* the soft limit is exceeded*/
119 bool on_tree;
120 struct mem_cgroup *memcg; /* Back pointer, we cannot */
121 /* use container_of */
122 };
123
124 struct mem_cgroup_threshold {
125 struct eventfd_ctx *eventfd;
126 unsigned long threshold;
127 };
128
129 /* For threshold */
130 struct mem_cgroup_threshold_ary {
131 /* An array index points to threshold just below or equal to usage. */
132 int current_threshold;
133 /* Size of entries[] */
134 unsigned int size;
135 /* Array of thresholds */
136 struct mem_cgroup_threshold entries[0];
137 };
138
139 struct mem_cgroup_thresholds {
140 /* Primary thresholds array */
141 struct mem_cgroup_threshold_ary *primary;
142 /*
143 * Spare threshold array.
144 * This is needed to make mem_cgroup_unregister_event() "never fail".
145 * It must be able to store at least primary->size - 1 entries.
146 */
147 struct mem_cgroup_threshold_ary *spare;
148 };
149
150 enum memcg_kmem_state {
151 KMEM_NONE,
152 KMEM_ALLOCATED,
153 KMEM_ONLINE,
154 };
155
156 /*
157 * The memory controller data structure. The memory controller controls both
158 * page cache and RSS per cgroup. We would eventually like to provide
159 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
160 * to help the administrator determine what knobs to tune.
161 */
162 struct mem_cgroup {
163 struct cgroup_subsys_state css;
164
165 /* Private memcg ID. Used to ID objects that outlive the cgroup */
166 struct mem_cgroup_id id;
167
168 /* Accounted resources */
169 struct page_counter memory;
170 struct page_counter swap;
171
172 /* Legacy consumer-oriented counters */
173 struct page_counter memsw;
174 struct page_counter kmem;
175 struct page_counter tcpmem;
176
177 /* Normal memory consumption range */
178 unsigned long low;
179 unsigned long high;
180
181 /* Range enforcement for interrupt charges */
182 struct work_struct high_work;
183
184 unsigned long soft_limit;
185
186 /* vmpressure notifications */
187 struct vmpressure vmpressure;
188
189 /*
190 * Should the accounting and control be hierarchical, per subtree?
191 */
192 bool use_hierarchy;
193
194 /* protected by memcg_oom_lock */
195 bool oom_lock;
196 int under_oom;
197
198 int swappiness;
199 /* OOM-Killer disable */
200 int oom_kill_disable;
201
202 /* handle for "memory.events" */
203 struct cgroup_file events_file;
204
205 /* protect arrays of thresholds */
206 struct mutex thresholds_lock;
207
208 /* thresholds for memory usage. RCU-protected */
209 struct mem_cgroup_thresholds thresholds;
210
211 /* thresholds for mem+swap usage. RCU-protected */
212 struct mem_cgroup_thresholds memsw_thresholds;
213
214 /* For oom notifier event fd */
215 struct list_head oom_notify;
216
217 /*
218 * Should we move charges of a task when a task is moved into this
219 * mem_cgroup ? And what type of charges should we move ?
220 */
221 unsigned long move_charge_at_immigrate;
222 /*
223 * set > 0 if pages under this cgroup are moving to other cgroup.
224 */
225 atomic_t moving_account;
226 /* taken only while moving_account > 0 */
227 spinlock_t move_lock;
228 struct task_struct *move_lock_task;
229 unsigned long move_lock_flags;
230 /*
231 * percpu counter.
232 */
233 struct mem_cgroup_stat_cpu __percpu *stat;
234
235 unsigned long socket_pressure;
236
237 /* Legacy tcp memory accounting */
238 bool tcpmem_active;
239 int tcpmem_pressure;
240
241 #ifndef CONFIG_SLOB
242 /* Index in the kmem_cache->memcg_params.memcg_caches array */
243 int kmemcg_id;
244 enum memcg_kmem_state kmem_state;
245 struct list_head kmem_caches;
246 #endif
247
248 int last_scanned_node;
249 #if MAX_NUMNODES > 1
250 nodemask_t scan_nodes;
251 atomic_t numainfo_events;
252 atomic_t numainfo_updating;
253 #endif
254
255 #ifdef CONFIG_CGROUP_WRITEBACK
256 struct list_head cgwb_list;
257 struct wb_domain cgwb_domain;
258 #endif
259
260 /* List of events which userspace want to receive */
261 struct list_head event_list;
262 spinlock_t event_list_lock;
263
264 struct mem_cgroup_per_node *nodeinfo[0];
265 /* WARNING: nodeinfo must be the last member here */
266 };
267
268 extern struct mem_cgroup *root_mem_cgroup;
269
270 static inline bool mem_cgroup_disabled(void)
271 {
272 return !cgroup_subsys_enabled(memory_cgrp_subsys);
273 }
274
275 static inline void mem_cgroup_event(struct mem_cgroup *memcg,
276 enum memcg_event_item event)
277 {
278 this_cpu_inc(memcg->stat->events[event]);
279 cgroup_file_notify(&memcg->events_file);
280 }
281
282 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
283
284 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
285 gfp_t gfp_mask, struct mem_cgroup **memcgp,
286 bool compound);
287 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
288 bool lrucare, bool compound);
289 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
290 bool compound);
291 void mem_cgroup_uncharge(struct page *page);
292 void mem_cgroup_uncharge_list(struct list_head *page_list);
293
294 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
295
296 static struct mem_cgroup_per_node *
297 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
298 {
299 return memcg->nodeinfo[nid];
300 }
301
302 /**
303 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
304 * @node: node of the wanted lruvec
305 * @memcg: memcg of the wanted lruvec
306 *
307 * Returns the lru list vector holding pages for a given @node or a given
308 * @memcg and @zone. This can be the node lruvec, if the memory controller
309 * is disabled.
310 */
311 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
312 struct mem_cgroup *memcg)
313 {
314 struct mem_cgroup_per_node *mz;
315 struct lruvec *lruvec;
316
317 if (mem_cgroup_disabled()) {
318 lruvec = node_lruvec(pgdat);
319 goto out;
320 }
321
322 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
323 lruvec = &mz->lruvec;
324 out:
325 /*
326 * Since a node can be onlined after the mem_cgroup was created,
327 * we have to be prepared to initialize lruvec->pgdat here;
328 * and if offlined then reonlined, we need to reinitialize it.
329 */
330 if (unlikely(lruvec->pgdat != pgdat))
331 lruvec->pgdat = pgdat;
332 return lruvec;
333 }
334
335 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
336
337 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
338 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
339
340 static inline
341 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
342 return css ? container_of(css, struct mem_cgroup, css) : NULL;
343 }
344
345 #define mem_cgroup_from_counter(counter, member) \
346 container_of(counter, struct mem_cgroup, member)
347
348 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
349 struct mem_cgroup *,
350 struct mem_cgroup_reclaim_cookie *);
351 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
352 int mem_cgroup_scan_tasks(struct mem_cgroup *,
353 int (*)(struct task_struct *, void *), void *);
354
355 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
356 {
357 if (mem_cgroup_disabled())
358 return 0;
359
360 return memcg->id.id;
361 }
362 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
363
364 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
365 {
366 struct mem_cgroup_per_node *mz;
367
368 if (mem_cgroup_disabled())
369 return NULL;
370
371 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
372 return mz->memcg;
373 }
374
375 /**
376 * parent_mem_cgroup - find the accounting parent of a memcg
377 * @memcg: memcg whose parent to find
378 *
379 * Returns the parent memcg, or NULL if this is the root or the memory
380 * controller is in legacy no-hierarchy mode.
381 */
382 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
383 {
384 if (!memcg->memory.parent)
385 return NULL;
386 return mem_cgroup_from_counter(memcg->memory.parent, memory);
387 }
388
389 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
390 struct mem_cgroup *root)
391 {
392 if (root == memcg)
393 return true;
394 if (!root->use_hierarchy)
395 return false;
396 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
397 }
398
399 static inline bool mm_match_cgroup(struct mm_struct *mm,
400 struct mem_cgroup *memcg)
401 {
402 struct mem_cgroup *task_memcg;
403 bool match = false;
404
405 rcu_read_lock();
406 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
407 if (task_memcg)
408 match = mem_cgroup_is_descendant(task_memcg, memcg);
409 rcu_read_unlock();
410 return match;
411 }
412
413 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
414 ino_t page_cgroup_ino(struct page *page);
415
416 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
417 {
418 if (mem_cgroup_disabled())
419 return true;
420 return !!(memcg->css.flags & CSS_ONLINE);
421 }
422
423 /*
424 * For memory reclaim.
425 */
426 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
427
428 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
429 int zid, int nr_pages);
430
431 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
432 int nid, unsigned int lru_mask);
433
434 static inline
435 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
436 {
437 struct mem_cgroup_per_node *mz;
438 unsigned long nr_pages = 0;
439 int zid;
440
441 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
442 for (zid = 0; zid < MAX_NR_ZONES; zid++)
443 nr_pages += mz->lru_zone_size[zid][lru];
444 return nr_pages;
445 }
446
447 static inline
448 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
449 enum lru_list lru, int zone_idx)
450 {
451 struct mem_cgroup_per_node *mz;
452
453 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
454 return mz->lru_zone_size[zone_idx][lru];
455 }
456
457 void mem_cgroup_handle_over_high(void);
458
459 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg);
460
461 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
462 struct task_struct *p);
463
464 static inline void mem_cgroup_oom_enable(void)
465 {
466 WARN_ON(current->memcg_may_oom);
467 current->memcg_may_oom = 1;
468 }
469
470 static inline void mem_cgroup_oom_disable(void)
471 {
472 WARN_ON(!current->memcg_may_oom);
473 current->memcg_may_oom = 0;
474 }
475
476 static inline bool task_in_memcg_oom(struct task_struct *p)
477 {
478 return p->memcg_in_oom;
479 }
480
481 bool mem_cgroup_oom_synchronize(bool wait);
482
483 #ifdef CONFIG_MEMCG_SWAP
484 extern int do_swap_account;
485 #endif
486
487 struct mem_cgroup *lock_page_memcg(struct page *page);
488 void __unlock_page_memcg(struct mem_cgroup *memcg);
489 void unlock_page_memcg(struct page *page);
490
491 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
492 enum memcg_stat_item idx)
493 {
494 long val = 0;
495 int cpu;
496
497 for_each_possible_cpu(cpu)
498 val += per_cpu(memcg->stat->count[idx], cpu);
499
500 if (val < 0)
501 val = 0;
502
503 return val;
504 }
505
506 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
507 enum memcg_stat_item idx, int val)
508 {
509 if (!mem_cgroup_disabled())
510 __this_cpu_add(memcg->stat->count[idx], val);
511 }
512
513 static inline void mod_memcg_state(struct mem_cgroup *memcg,
514 enum memcg_stat_item idx, int val)
515 {
516 if (!mem_cgroup_disabled())
517 this_cpu_add(memcg->stat->count[idx], val);
518 }
519
520 /**
521 * mod_memcg_page_state - update page state statistics
522 * @page: the page
523 * @idx: page state item to account
524 * @val: number of pages (positive or negative)
525 *
526 * The @page must be locked or the caller must use lock_page_memcg()
527 * to prevent double accounting when the page is concurrently being
528 * moved to another memcg:
529 *
530 * lock_page(page) or lock_page_memcg(page)
531 * if (TestClearPageState(page))
532 * mod_memcg_page_state(page, state, -1);
533 * unlock_page(page) or unlock_page_memcg(page)
534 *
535 * Kernel pages are an exception to this, since they'll never move.
536 */
537 static inline void __mod_memcg_page_state(struct page *page,
538 enum memcg_stat_item idx, int val)
539 {
540 if (page->mem_cgroup)
541 __mod_memcg_state(page->mem_cgroup, idx, val);
542 }
543
544 static inline void mod_memcg_page_state(struct page *page,
545 enum memcg_stat_item idx, int val)
546 {
547 if (page->mem_cgroup)
548 mod_memcg_state(page->mem_cgroup, idx, val);
549 }
550
551 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
552 enum node_stat_item idx)
553 {
554 struct mem_cgroup_per_node *pn;
555 long val = 0;
556 int cpu;
557
558 if (mem_cgroup_disabled())
559 return node_page_state(lruvec_pgdat(lruvec), idx);
560
561 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
562 for_each_possible_cpu(cpu)
563 val += per_cpu(pn->lruvec_stat->count[idx], cpu);
564
565 if (val < 0)
566 val = 0;
567
568 return val;
569 }
570
571 static inline void __mod_lruvec_state(struct lruvec *lruvec,
572 enum node_stat_item idx, int val)
573 {
574 struct mem_cgroup_per_node *pn;
575
576 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
577 if (mem_cgroup_disabled())
578 return;
579 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
580 __mod_memcg_state(pn->memcg, idx, val);
581 __this_cpu_add(pn->lruvec_stat->count[idx], val);
582 }
583
584 static inline void mod_lruvec_state(struct lruvec *lruvec,
585 enum node_stat_item idx, int val)
586 {
587 struct mem_cgroup_per_node *pn;
588
589 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
590 if (mem_cgroup_disabled())
591 return;
592 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
593 mod_memcg_state(pn->memcg, idx, val);
594 this_cpu_add(pn->lruvec_stat->count[idx], val);
595 }
596
597 static inline void __mod_lruvec_page_state(struct page *page,
598 enum node_stat_item idx, int val)
599 {
600 struct mem_cgroup_per_node *pn;
601
602 __mod_node_page_state(page_pgdat(page), idx, val);
603 if (mem_cgroup_disabled() || !page->mem_cgroup)
604 return;
605 __mod_memcg_state(page->mem_cgroup, idx, val);
606 pn = page->mem_cgroup->nodeinfo[page_to_nid(page)];
607 __this_cpu_add(pn->lruvec_stat->count[idx], val);
608 }
609
610 static inline void mod_lruvec_page_state(struct page *page,
611 enum node_stat_item idx, int val)
612 {
613 struct mem_cgroup_per_node *pn;
614
615 mod_node_page_state(page_pgdat(page), idx, val);
616 if (mem_cgroup_disabled() || !page->mem_cgroup)
617 return;
618 mod_memcg_state(page->mem_cgroup, idx, val);
619 pn = page->mem_cgroup->nodeinfo[page_to_nid(page)];
620 this_cpu_add(pn->lruvec_stat->count[idx], val);
621 }
622
623 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
624 gfp_t gfp_mask,
625 unsigned long *total_scanned);
626
627 static inline void count_memcg_events(struct mem_cgroup *memcg,
628 enum vm_event_item idx,
629 unsigned long count)
630 {
631 if (!mem_cgroup_disabled())
632 this_cpu_add(memcg->stat->events[idx], count);
633 }
634
635 static inline void count_memcg_page_event(struct page *page,
636 enum memcg_stat_item idx)
637 {
638 if (page->mem_cgroup)
639 count_memcg_events(page->mem_cgroup, idx, 1);
640 }
641
642 static inline void count_memcg_event_mm(struct mm_struct *mm,
643 enum vm_event_item idx)
644 {
645 struct mem_cgroup *memcg;
646
647 if (mem_cgroup_disabled())
648 return;
649
650 rcu_read_lock();
651 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
652 if (likely(memcg)) {
653 this_cpu_inc(memcg->stat->events[idx]);
654 if (idx == OOM_KILL)
655 cgroup_file_notify(&memcg->events_file);
656 }
657 rcu_read_unlock();
658 }
659 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
660 void mem_cgroup_split_huge_fixup(struct page *head);
661 #endif
662
663 #else /* CONFIG_MEMCG */
664
665 #define MEM_CGROUP_ID_SHIFT 0
666 #define MEM_CGROUP_ID_MAX 0
667
668 struct mem_cgroup;
669
670 static inline bool mem_cgroup_disabled(void)
671 {
672 return true;
673 }
674
675 static inline void mem_cgroup_event(struct mem_cgroup *memcg,
676 enum memcg_event_item event)
677 {
678 }
679
680 static inline bool mem_cgroup_low(struct mem_cgroup *root,
681 struct mem_cgroup *memcg)
682 {
683 return false;
684 }
685
686 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
687 gfp_t gfp_mask,
688 struct mem_cgroup **memcgp,
689 bool compound)
690 {
691 *memcgp = NULL;
692 return 0;
693 }
694
695 static inline void mem_cgroup_commit_charge(struct page *page,
696 struct mem_cgroup *memcg,
697 bool lrucare, bool compound)
698 {
699 }
700
701 static inline void mem_cgroup_cancel_charge(struct page *page,
702 struct mem_cgroup *memcg,
703 bool compound)
704 {
705 }
706
707 static inline void mem_cgroup_uncharge(struct page *page)
708 {
709 }
710
711 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
712 {
713 }
714
715 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
716 {
717 }
718
719 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
720 struct mem_cgroup *memcg)
721 {
722 return node_lruvec(pgdat);
723 }
724
725 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
726 struct pglist_data *pgdat)
727 {
728 return &pgdat->lruvec;
729 }
730
731 static inline bool mm_match_cgroup(struct mm_struct *mm,
732 struct mem_cgroup *memcg)
733 {
734 return true;
735 }
736
737 static inline bool task_in_mem_cgroup(struct task_struct *task,
738 const struct mem_cgroup *memcg)
739 {
740 return true;
741 }
742
743 static inline struct mem_cgroup *
744 mem_cgroup_iter(struct mem_cgroup *root,
745 struct mem_cgroup *prev,
746 struct mem_cgroup_reclaim_cookie *reclaim)
747 {
748 return NULL;
749 }
750
751 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
752 struct mem_cgroup *prev)
753 {
754 }
755
756 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
757 int (*fn)(struct task_struct *, void *), void *arg)
758 {
759 return 0;
760 }
761
762 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
763 {
764 return 0;
765 }
766
767 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
768 {
769 WARN_ON_ONCE(id);
770 /* XXX: This should always return root_mem_cgroup */
771 return NULL;
772 }
773
774 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
775 {
776 return NULL;
777 }
778
779 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
780 {
781 return true;
782 }
783
784 static inline unsigned long
785 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
786 {
787 return 0;
788 }
789 static inline
790 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
791 enum lru_list lru, int zone_idx)
792 {
793 return 0;
794 }
795
796 static inline unsigned long
797 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
798 int nid, unsigned int lru_mask)
799 {
800 return 0;
801 }
802
803 static inline unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
804 {
805 return 0;
806 }
807
808 static inline void
809 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
810 {
811 }
812
813 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
814 {
815 return NULL;
816 }
817
818 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
819 {
820 }
821
822 static inline void unlock_page_memcg(struct page *page)
823 {
824 }
825
826 static inline void mem_cgroup_handle_over_high(void)
827 {
828 }
829
830 static inline void mem_cgroup_oom_enable(void)
831 {
832 }
833
834 static inline void mem_cgroup_oom_disable(void)
835 {
836 }
837
838 static inline bool task_in_memcg_oom(struct task_struct *p)
839 {
840 return false;
841 }
842
843 static inline bool mem_cgroup_oom_synchronize(bool wait)
844 {
845 return false;
846 }
847
848 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
849 enum memcg_stat_item idx)
850 {
851 return 0;
852 }
853
854 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
855 enum memcg_stat_item idx,
856 int nr)
857 {
858 }
859
860 static inline void mod_memcg_state(struct mem_cgroup *memcg,
861 enum memcg_stat_item idx,
862 int nr)
863 {
864 }
865
866 static inline void __mod_memcg_page_state(struct page *page,
867 enum memcg_stat_item idx,
868 int nr)
869 {
870 }
871
872 static inline void mod_memcg_page_state(struct page *page,
873 enum memcg_stat_item idx,
874 int nr)
875 {
876 }
877
878 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
879 enum node_stat_item idx)
880 {
881 return node_page_state(lruvec_pgdat(lruvec), idx);
882 }
883
884 static inline void __mod_lruvec_state(struct lruvec *lruvec,
885 enum node_stat_item idx, int val)
886 {
887 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
888 }
889
890 static inline void mod_lruvec_state(struct lruvec *lruvec,
891 enum node_stat_item idx, int val)
892 {
893 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
894 }
895
896 static inline void __mod_lruvec_page_state(struct page *page,
897 enum node_stat_item idx, int val)
898 {
899 __mod_node_page_state(page_pgdat(page), idx, val);
900 }
901
902 static inline void mod_lruvec_page_state(struct page *page,
903 enum node_stat_item idx, int val)
904 {
905 mod_node_page_state(page_pgdat(page), idx, val);
906 }
907
908 static inline
909 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
910 gfp_t gfp_mask,
911 unsigned long *total_scanned)
912 {
913 return 0;
914 }
915
916 static inline void mem_cgroup_split_huge_fixup(struct page *head)
917 {
918 }
919
920 static inline void count_memcg_events(struct mem_cgroup *memcg,
921 enum vm_event_item idx,
922 unsigned long count)
923 {
924 }
925
926 static inline void count_memcg_page_event(struct page *page,
927 enum memcg_stat_item idx)
928 {
929 }
930
931 static inline
932 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
933 {
934 }
935 #endif /* CONFIG_MEMCG */
936
937 static inline void __inc_memcg_state(struct mem_cgroup *memcg,
938 enum memcg_stat_item idx)
939 {
940 __mod_memcg_state(memcg, idx, 1);
941 }
942
943 static inline void __dec_memcg_state(struct mem_cgroup *memcg,
944 enum memcg_stat_item idx)
945 {
946 __mod_memcg_state(memcg, idx, -1);
947 }
948
949 static inline void __inc_memcg_page_state(struct page *page,
950 enum memcg_stat_item idx)
951 {
952 __mod_memcg_page_state(page, idx, 1);
953 }
954
955 static inline void __dec_memcg_page_state(struct page *page,
956 enum memcg_stat_item idx)
957 {
958 __mod_memcg_page_state(page, idx, -1);
959 }
960
961 static inline void __inc_lruvec_state(struct lruvec *lruvec,
962 enum node_stat_item idx)
963 {
964 __mod_lruvec_state(lruvec, idx, 1);
965 }
966
967 static inline void __dec_lruvec_state(struct lruvec *lruvec,
968 enum node_stat_item idx)
969 {
970 __mod_lruvec_state(lruvec, idx, -1);
971 }
972
973 static inline void __inc_lruvec_page_state(struct page *page,
974 enum node_stat_item idx)
975 {
976 __mod_lruvec_page_state(page, idx, 1);
977 }
978
979 static inline void __dec_lruvec_page_state(struct page *page,
980 enum node_stat_item idx)
981 {
982 __mod_lruvec_page_state(page, idx, -1);
983 }
984
985 static inline void inc_memcg_state(struct mem_cgroup *memcg,
986 enum memcg_stat_item idx)
987 {
988 mod_memcg_state(memcg, idx, 1);
989 }
990
991 static inline void dec_memcg_state(struct mem_cgroup *memcg,
992 enum memcg_stat_item idx)
993 {
994 mod_memcg_state(memcg, idx, -1);
995 }
996
997 static inline void inc_memcg_page_state(struct page *page,
998 enum memcg_stat_item idx)
999 {
1000 mod_memcg_page_state(page, idx, 1);
1001 }
1002
1003 static inline void dec_memcg_page_state(struct page *page,
1004 enum memcg_stat_item idx)
1005 {
1006 mod_memcg_page_state(page, idx, -1);
1007 }
1008
1009 static inline void inc_lruvec_state(struct lruvec *lruvec,
1010 enum node_stat_item idx)
1011 {
1012 mod_lruvec_state(lruvec, idx, 1);
1013 }
1014
1015 static inline void dec_lruvec_state(struct lruvec *lruvec,
1016 enum node_stat_item idx)
1017 {
1018 mod_lruvec_state(lruvec, idx, -1);
1019 }
1020
1021 static inline void inc_lruvec_page_state(struct page *page,
1022 enum node_stat_item idx)
1023 {
1024 mod_lruvec_page_state(page, idx, 1);
1025 }
1026
1027 static inline void dec_lruvec_page_state(struct page *page,
1028 enum node_stat_item idx)
1029 {
1030 mod_lruvec_page_state(page, idx, -1);
1031 }
1032
1033 #ifdef CONFIG_CGROUP_WRITEBACK
1034
1035 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg);
1036 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1037 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1038 unsigned long *pheadroom, unsigned long *pdirty,
1039 unsigned long *pwriteback);
1040
1041 #else /* CONFIG_CGROUP_WRITEBACK */
1042
1043 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1044 {
1045 return NULL;
1046 }
1047
1048 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1049 unsigned long *pfilepages,
1050 unsigned long *pheadroom,
1051 unsigned long *pdirty,
1052 unsigned long *pwriteback)
1053 {
1054 }
1055
1056 #endif /* CONFIG_CGROUP_WRITEBACK */
1057
1058 struct sock;
1059 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1060 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1061 #ifdef CONFIG_MEMCG
1062 extern struct static_key_false memcg_sockets_enabled_key;
1063 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1064 void mem_cgroup_sk_alloc(struct sock *sk);
1065 void mem_cgroup_sk_free(struct sock *sk);
1066 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1067 {
1068 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1069 return true;
1070 do {
1071 if (time_before(jiffies, memcg->socket_pressure))
1072 return true;
1073 } while ((memcg = parent_mem_cgroup(memcg)));
1074 return false;
1075 }
1076 #else
1077 #define mem_cgroup_sockets_enabled 0
1078 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1079 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1080 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1081 {
1082 return false;
1083 }
1084 #endif
1085
1086 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1087 void memcg_kmem_put_cache(struct kmem_cache *cachep);
1088 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1089 struct mem_cgroup *memcg);
1090 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1091 void memcg_kmem_uncharge(struct page *page, int order);
1092
1093 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1094 extern struct static_key_false memcg_kmem_enabled_key;
1095 extern struct workqueue_struct *memcg_kmem_cache_wq;
1096
1097 extern int memcg_nr_cache_ids;
1098 void memcg_get_cache_ids(void);
1099 void memcg_put_cache_ids(void);
1100
1101 /*
1102 * Helper macro to loop through all memcg-specific caches. Callers must still
1103 * check if the cache is valid (it is either valid or NULL).
1104 * the slab_mutex must be held when looping through those caches
1105 */
1106 #define for_each_memcg_cache_index(_idx) \
1107 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1108
1109 static inline bool memcg_kmem_enabled(void)
1110 {
1111 return static_branch_unlikely(&memcg_kmem_enabled_key);
1112 }
1113
1114 /*
1115 * helper for accessing a memcg's index. It will be used as an index in the
1116 * child cache array in kmem_cache, and also to derive its name. This function
1117 * will return -1 when this is not a kmem-limited memcg.
1118 */
1119 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1120 {
1121 return memcg ? memcg->kmemcg_id : -1;
1122 }
1123
1124 #else
1125 #define for_each_memcg_cache_index(_idx) \
1126 for (; NULL; )
1127
1128 static inline bool memcg_kmem_enabled(void)
1129 {
1130 return false;
1131 }
1132
1133 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1134 {
1135 return -1;
1136 }
1137
1138 static inline void memcg_get_cache_ids(void)
1139 {
1140 }
1141
1142 static inline void memcg_put_cache_ids(void)
1143 {
1144 }
1145
1146 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
1147
1148 #endif /* _LINUX_MEMCONTROL_H */