]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - include/linux/memcontrol.h
Merge branch 'efi-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-focal-kernel.git] / include / linux / memcontrol.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24
25 struct mem_cgroup;
26 struct page;
27 struct mm_struct;
28 struct kmem_cache;
29
30 /* Cgroup-specific page state, on top of universal node page state */
31 enum memcg_stat_item {
32 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
33 MEMCG_RSS,
34 MEMCG_RSS_HUGE,
35 MEMCG_SWAP,
36 MEMCG_SOCK,
37 /* XXX: why are these zone and not node counters? */
38 MEMCG_KERNEL_STACK_KB,
39 MEMCG_NR_STAT,
40 };
41
42 enum memcg_memory_event {
43 MEMCG_LOW,
44 MEMCG_HIGH,
45 MEMCG_MAX,
46 MEMCG_OOM,
47 MEMCG_OOM_KILL,
48 MEMCG_SWAP_MAX,
49 MEMCG_SWAP_FAIL,
50 MEMCG_NR_MEMORY_EVENTS,
51 };
52
53 enum mem_cgroup_protection {
54 MEMCG_PROT_NONE,
55 MEMCG_PROT_LOW,
56 MEMCG_PROT_MIN,
57 };
58
59 struct mem_cgroup_reclaim_cookie {
60 pg_data_t *pgdat;
61 int priority;
62 unsigned int generation;
63 };
64
65 #ifdef CONFIG_MEMCG
66
67 #define MEM_CGROUP_ID_SHIFT 16
68 #define MEM_CGROUP_ID_MAX USHRT_MAX
69
70 struct mem_cgroup_id {
71 int id;
72 refcount_t ref;
73 };
74
75 /*
76 * Per memcg event counter is incremented at every pagein/pageout. With THP,
77 * it will be incremated by the number of pages. This counter is used for
78 * for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 */
81 enum mem_cgroup_events_target {
82 MEM_CGROUP_TARGET_THRESH,
83 MEM_CGROUP_TARGET_SOFTLIMIT,
84 MEM_CGROUP_TARGET_NUMAINFO,
85 MEM_CGROUP_NTARGETS,
86 };
87
88 struct memcg_vmstats_percpu {
89 long stat[MEMCG_NR_STAT];
90 unsigned long events[NR_VM_EVENT_ITEMS];
91 unsigned long nr_page_events;
92 unsigned long targets[MEM_CGROUP_NTARGETS];
93 };
94
95 struct mem_cgroup_reclaim_iter {
96 struct mem_cgroup *position;
97 /* scan generation, increased every round-trip */
98 unsigned int generation;
99 };
100
101 struct lruvec_stat {
102 long count[NR_VM_NODE_STAT_ITEMS];
103 };
104
105 /*
106 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
107 * which have elements charged to this memcg.
108 */
109 struct memcg_shrinker_map {
110 struct rcu_head rcu;
111 unsigned long map[0];
112 };
113
114 /*
115 * per-zone information in memory controller.
116 */
117 struct mem_cgroup_per_node {
118 struct lruvec lruvec;
119
120 /* Legacy local VM stats */
121 struct lruvec_stat __percpu *lruvec_stat_local;
122
123 /* Subtree VM stats (batched updates) */
124 struct lruvec_stat __percpu *lruvec_stat_cpu;
125 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
126
127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
128
129 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
130
131 struct memcg_shrinker_map __rcu *shrinker_map;
132
133 struct rb_node tree_node; /* RB tree node */
134 unsigned long usage_in_excess;/* Set to the value by which */
135 /* the soft limit is exceeded*/
136 bool on_tree;
137 bool congested; /* memcg has many dirty pages */
138 /* backed by a congested BDI */
139
140 struct mem_cgroup *memcg; /* Back pointer, we cannot */
141 /* use container_of */
142 };
143
144 struct mem_cgroup_threshold {
145 struct eventfd_ctx *eventfd;
146 unsigned long threshold;
147 };
148
149 /* For threshold */
150 struct mem_cgroup_threshold_ary {
151 /* An array index points to threshold just below or equal to usage. */
152 int current_threshold;
153 /* Size of entries[] */
154 unsigned int size;
155 /* Array of thresholds */
156 struct mem_cgroup_threshold entries[0];
157 };
158
159 struct mem_cgroup_thresholds {
160 /* Primary thresholds array */
161 struct mem_cgroup_threshold_ary *primary;
162 /*
163 * Spare threshold array.
164 * This is needed to make mem_cgroup_unregister_event() "never fail".
165 * It must be able to store at least primary->size - 1 entries.
166 */
167 struct mem_cgroup_threshold_ary *spare;
168 };
169
170 enum memcg_kmem_state {
171 KMEM_NONE,
172 KMEM_ALLOCATED,
173 KMEM_ONLINE,
174 };
175
176 #if defined(CONFIG_SMP)
177 struct memcg_padding {
178 char x[0];
179 } ____cacheline_internodealigned_in_smp;
180 #define MEMCG_PADDING(name) struct memcg_padding name;
181 #else
182 #define MEMCG_PADDING(name)
183 #endif
184
185 /*
186 * Remember four most recent foreign writebacks with dirty pages in this
187 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
188 * one in a given round, we're likely to catch it later if it keeps
189 * foreign-dirtying, so a fairly low count should be enough.
190 *
191 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
192 */
193 #define MEMCG_CGWB_FRN_CNT 4
194
195 struct memcg_cgwb_frn {
196 u64 bdi_id; /* bdi->id of the foreign inode */
197 int memcg_id; /* memcg->css.id of foreign inode */
198 u64 at; /* jiffies_64 at the time of dirtying */
199 struct wb_completion done; /* tracks in-flight foreign writebacks */
200 };
201
202 /*
203 * The memory controller data structure. The memory controller controls both
204 * page cache and RSS per cgroup. We would eventually like to provide
205 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
206 * to help the administrator determine what knobs to tune.
207 */
208 struct mem_cgroup {
209 struct cgroup_subsys_state css;
210
211 /* Private memcg ID. Used to ID objects that outlive the cgroup */
212 struct mem_cgroup_id id;
213
214 /* Accounted resources */
215 struct page_counter memory;
216 struct page_counter swap;
217
218 /* Legacy consumer-oriented counters */
219 struct page_counter memsw;
220 struct page_counter kmem;
221 struct page_counter tcpmem;
222
223 /* Upper bound of normal memory consumption range */
224 unsigned long high;
225
226 /* Range enforcement for interrupt charges */
227 struct work_struct high_work;
228
229 unsigned long soft_limit;
230
231 /* vmpressure notifications */
232 struct vmpressure vmpressure;
233
234 /*
235 * Should the accounting and control be hierarchical, per subtree?
236 */
237 bool use_hierarchy;
238
239 /*
240 * Should the OOM killer kill all belonging tasks, had it kill one?
241 */
242 bool oom_group;
243
244 /* protected by memcg_oom_lock */
245 bool oom_lock;
246 int under_oom;
247
248 int swappiness;
249 /* OOM-Killer disable */
250 int oom_kill_disable;
251
252 /* memory.events and memory.events.local */
253 struct cgroup_file events_file;
254 struct cgroup_file events_local_file;
255
256 /* handle for "memory.swap.events" */
257 struct cgroup_file swap_events_file;
258
259 /* protect arrays of thresholds */
260 struct mutex thresholds_lock;
261
262 /* thresholds for memory usage. RCU-protected */
263 struct mem_cgroup_thresholds thresholds;
264
265 /* thresholds for mem+swap usage. RCU-protected */
266 struct mem_cgroup_thresholds memsw_thresholds;
267
268 /* For oom notifier event fd */
269 struct list_head oom_notify;
270
271 /*
272 * Should we move charges of a task when a task is moved into this
273 * mem_cgroup ? And what type of charges should we move ?
274 */
275 unsigned long move_charge_at_immigrate;
276 /* taken only while moving_account > 0 */
277 spinlock_t move_lock;
278 unsigned long move_lock_flags;
279
280 MEMCG_PADDING(_pad1_);
281
282 /*
283 * set > 0 if pages under this cgroup are moving to other cgroup.
284 */
285 atomic_t moving_account;
286 struct task_struct *move_lock_task;
287
288 /* Legacy local VM stats and events */
289 struct memcg_vmstats_percpu __percpu *vmstats_local;
290
291 /* Subtree VM stats and events (batched updates) */
292 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
293
294 MEMCG_PADDING(_pad2_);
295
296 atomic_long_t vmstats[MEMCG_NR_STAT];
297 atomic_long_t vmevents[NR_VM_EVENT_ITEMS];
298
299 /* memory.events */
300 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
301 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
302
303 unsigned long socket_pressure;
304
305 /* Legacy tcp memory accounting */
306 bool tcpmem_active;
307 int tcpmem_pressure;
308
309 #ifdef CONFIG_MEMCG_KMEM
310 /* Index in the kmem_cache->memcg_params.memcg_caches array */
311 int kmemcg_id;
312 enum memcg_kmem_state kmem_state;
313 struct list_head kmem_caches;
314 #endif
315
316 int last_scanned_node;
317 #if MAX_NUMNODES > 1
318 nodemask_t scan_nodes;
319 atomic_t numainfo_events;
320 atomic_t numainfo_updating;
321 #endif
322
323 #ifdef CONFIG_CGROUP_WRITEBACK
324 struct list_head cgwb_list;
325 struct wb_domain cgwb_domain;
326 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
327 #endif
328
329 /* List of events which userspace want to receive */
330 struct list_head event_list;
331 spinlock_t event_list_lock;
332
333 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
334 struct deferred_split deferred_split_queue;
335 #endif
336
337 struct mem_cgroup_per_node *nodeinfo[0];
338 /* WARNING: nodeinfo must be the last member here */
339 };
340
341 /*
342 * size of first charge trial. "32" comes from vmscan.c's magic value.
343 * TODO: maybe necessary to use big numbers in big irons.
344 */
345 #define MEMCG_CHARGE_BATCH 32U
346
347 extern struct mem_cgroup *root_mem_cgroup;
348
349 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
350 {
351 return (memcg == root_mem_cgroup);
352 }
353
354 static inline bool mem_cgroup_disabled(void)
355 {
356 return !cgroup_subsys_enabled(memory_cgrp_subsys);
357 }
358
359 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg,
360 bool in_low_reclaim)
361 {
362 if (mem_cgroup_disabled())
363 return 0;
364
365 if (in_low_reclaim)
366 return READ_ONCE(memcg->memory.emin);
367
368 return max(READ_ONCE(memcg->memory.emin),
369 READ_ONCE(memcg->memory.elow));
370 }
371
372 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
373 struct mem_cgroup *memcg);
374
375 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
376 gfp_t gfp_mask, struct mem_cgroup **memcgp,
377 bool compound);
378 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
379 gfp_t gfp_mask, struct mem_cgroup **memcgp,
380 bool compound);
381 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
382 bool lrucare, bool compound);
383 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
384 bool compound);
385 void mem_cgroup_uncharge(struct page *page);
386 void mem_cgroup_uncharge_list(struct list_head *page_list);
387
388 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
389
390 static struct mem_cgroup_per_node *
391 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
392 {
393 return memcg->nodeinfo[nid];
394 }
395
396 /**
397 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
398 * @node: node of the wanted lruvec
399 * @memcg: memcg of the wanted lruvec
400 *
401 * Returns the lru list vector holding pages for a given @node or a given
402 * @memcg and @zone. This can be the node lruvec, if the memory controller
403 * is disabled.
404 */
405 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
406 struct mem_cgroup *memcg)
407 {
408 struct mem_cgroup_per_node *mz;
409 struct lruvec *lruvec;
410
411 if (mem_cgroup_disabled()) {
412 lruvec = node_lruvec(pgdat);
413 goto out;
414 }
415
416 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
417 lruvec = &mz->lruvec;
418 out:
419 /*
420 * Since a node can be onlined after the mem_cgroup was created,
421 * we have to be prepared to initialize lruvec->pgdat here;
422 * and if offlined then reonlined, we need to reinitialize it.
423 */
424 if (unlikely(lruvec->pgdat != pgdat))
425 lruvec->pgdat = pgdat;
426 return lruvec;
427 }
428
429 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
430
431 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
432
433 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
434
435 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
436
437 static inline
438 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
439 return css ? container_of(css, struct mem_cgroup, css) : NULL;
440 }
441
442 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
443 {
444 if (memcg)
445 css_put(&memcg->css);
446 }
447
448 #define mem_cgroup_from_counter(counter, member) \
449 container_of(counter, struct mem_cgroup, member)
450
451 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
452 struct mem_cgroup *,
453 struct mem_cgroup_reclaim_cookie *);
454 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
455 int mem_cgroup_scan_tasks(struct mem_cgroup *,
456 int (*)(struct task_struct *, void *), void *);
457
458 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
459 {
460 if (mem_cgroup_disabled())
461 return 0;
462
463 return memcg->id.id;
464 }
465 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
466
467 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
468 {
469 return mem_cgroup_from_css(seq_css(m));
470 }
471
472 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
473 {
474 struct mem_cgroup_per_node *mz;
475
476 if (mem_cgroup_disabled())
477 return NULL;
478
479 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
480 return mz->memcg;
481 }
482
483 /**
484 * parent_mem_cgroup - find the accounting parent of a memcg
485 * @memcg: memcg whose parent to find
486 *
487 * Returns the parent memcg, or NULL if this is the root or the memory
488 * controller is in legacy no-hierarchy mode.
489 */
490 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
491 {
492 if (!memcg->memory.parent)
493 return NULL;
494 return mem_cgroup_from_counter(memcg->memory.parent, memory);
495 }
496
497 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
498 struct mem_cgroup *root)
499 {
500 if (root == memcg)
501 return true;
502 if (!root->use_hierarchy)
503 return false;
504 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
505 }
506
507 static inline bool mm_match_cgroup(struct mm_struct *mm,
508 struct mem_cgroup *memcg)
509 {
510 struct mem_cgroup *task_memcg;
511 bool match = false;
512
513 rcu_read_lock();
514 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
515 if (task_memcg)
516 match = mem_cgroup_is_descendant(task_memcg, memcg);
517 rcu_read_unlock();
518 return match;
519 }
520
521 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
522 ino_t page_cgroup_ino(struct page *page);
523
524 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
525 {
526 if (mem_cgroup_disabled())
527 return true;
528 return !!(memcg->css.flags & CSS_ONLINE);
529 }
530
531 /*
532 * For memory reclaim.
533 */
534 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
535
536 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
537 int zid, int nr_pages);
538
539 static inline
540 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
541 enum lru_list lru, int zone_idx)
542 {
543 struct mem_cgroup_per_node *mz;
544
545 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
546 return mz->lru_zone_size[zone_idx][lru];
547 }
548
549 void mem_cgroup_handle_over_high(void);
550
551 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
552
553 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
554
555 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
556 struct task_struct *p);
557
558 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
559
560 static inline void mem_cgroup_enter_user_fault(void)
561 {
562 WARN_ON(current->in_user_fault);
563 current->in_user_fault = 1;
564 }
565
566 static inline void mem_cgroup_exit_user_fault(void)
567 {
568 WARN_ON(!current->in_user_fault);
569 current->in_user_fault = 0;
570 }
571
572 static inline bool task_in_memcg_oom(struct task_struct *p)
573 {
574 return p->memcg_in_oom;
575 }
576
577 bool mem_cgroup_oom_synchronize(bool wait);
578 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
579 struct mem_cgroup *oom_domain);
580 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
581
582 #ifdef CONFIG_MEMCG_SWAP
583 extern int do_swap_account;
584 #endif
585
586 struct mem_cgroup *lock_page_memcg(struct page *page);
587 void __unlock_page_memcg(struct mem_cgroup *memcg);
588 void unlock_page_memcg(struct page *page);
589
590 /*
591 * idx can be of type enum memcg_stat_item or node_stat_item.
592 * Keep in sync with memcg_exact_page_state().
593 */
594 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
595 {
596 long x = atomic_long_read(&memcg->vmstats[idx]);
597 #ifdef CONFIG_SMP
598 if (x < 0)
599 x = 0;
600 #endif
601 return x;
602 }
603
604 /*
605 * idx can be of type enum memcg_stat_item or node_stat_item.
606 * Keep in sync with memcg_exact_page_state().
607 */
608 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
609 int idx)
610 {
611 long x = 0;
612 int cpu;
613
614 for_each_possible_cpu(cpu)
615 x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
616 #ifdef CONFIG_SMP
617 if (x < 0)
618 x = 0;
619 #endif
620 return x;
621 }
622
623 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
624
625 /* idx can be of type enum memcg_stat_item or node_stat_item */
626 static inline void mod_memcg_state(struct mem_cgroup *memcg,
627 int idx, int val)
628 {
629 unsigned long flags;
630
631 local_irq_save(flags);
632 __mod_memcg_state(memcg, idx, val);
633 local_irq_restore(flags);
634 }
635
636 /**
637 * mod_memcg_page_state - update page state statistics
638 * @page: the page
639 * @idx: page state item to account
640 * @val: number of pages (positive or negative)
641 *
642 * The @page must be locked or the caller must use lock_page_memcg()
643 * to prevent double accounting when the page is concurrently being
644 * moved to another memcg:
645 *
646 * lock_page(page) or lock_page_memcg(page)
647 * if (TestClearPageState(page))
648 * mod_memcg_page_state(page, state, -1);
649 * unlock_page(page) or unlock_page_memcg(page)
650 *
651 * Kernel pages are an exception to this, since they'll never move.
652 */
653 static inline void __mod_memcg_page_state(struct page *page,
654 int idx, int val)
655 {
656 if (page->mem_cgroup)
657 __mod_memcg_state(page->mem_cgroup, idx, val);
658 }
659
660 static inline void mod_memcg_page_state(struct page *page,
661 int idx, int val)
662 {
663 if (page->mem_cgroup)
664 mod_memcg_state(page->mem_cgroup, idx, val);
665 }
666
667 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
668 enum node_stat_item idx)
669 {
670 struct mem_cgroup_per_node *pn;
671 long x;
672
673 if (mem_cgroup_disabled())
674 return node_page_state(lruvec_pgdat(lruvec), idx);
675
676 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
677 x = atomic_long_read(&pn->lruvec_stat[idx]);
678 #ifdef CONFIG_SMP
679 if (x < 0)
680 x = 0;
681 #endif
682 return x;
683 }
684
685 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
686 enum node_stat_item idx)
687 {
688 struct mem_cgroup_per_node *pn;
689 long x = 0;
690 int cpu;
691
692 if (mem_cgroup_disabled())
693 return node_page_state(lruvec_pgdat(lruvec), idx);
694
695 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
696 for_each_possible_cpu(cpu)
697 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
698 #ifdef CONFIG_SMP
699 if (x < 0)
700 x = 0;
701 #endif
702 return x;
703 }
704
705 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
706 int val);
707 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val);
708
709 static inline void mod_lruvec_state(struct lruvec *lruvec,
710 enum node_stat_item idx, int val)
711 {
712 unsigned long flags;
713
714 local_irq_save(flags);
715 __mod_lruvec_state(lruvec, idx, val);
716 local_irq_restore(flags);
717 }
718
719 static inline void __mod_lruvec_page_state(struct page *page,
720 enum node_stat_item idx, int val)
721 {
722 pg_data_t *pgdat = page_pgdat(page);
723 struct lruvec *lruvec;
724
725 /* Untracked pages have no memcg, no lruvec. Update only the node */
726 if (!page->mem_cgroup) {
727 __mod_node_page_state(pgdat, idx, val);
728 return;
729 }
730
731 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup);
732 __mod_lruvec_state(lruvec, idx, val);
733 }
734
735 static inline void mod_lruvec_page_state(struct page *page,
736 enum node_stat_item idx, int val)
737 {
738 unsigned long flags;
739
740 local_irq_save(flags);
741 __mod_lruvec_page_state(page, idx, val);
742 local_irq_restore(flags);
743 }
744
745 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
746 gfp_t gfp_mask,
747 unsigned long *total_scanned);
748
749 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
750 unsigned long count);
751
752 static inline void count_memcg_events(struct mem_cgroup *memcg,
753 enum vm_event_item idx,
754 unsigned long count)
755 {
756 unsigned long flags;
757
758 local_irq_save(flags);
759 __count_memcg_events(memcg, idx, count);
760 local_irq_restore(flags);
761 }
762
763 static inline void count_memcg_page_event(struct page *page,
764 enum vm_event_item idx)
765 {
766 if (page->mem_cgroup)
767 count_memcg_events(page->mem_cgroup, idx, 1);
768 }
769
770 static inline void count_memcg_event_mm(struct mm_struct *mm,
771 enum vm_event_item idx)
772 {
773 struct mem_cgroup *memcg;
774
775 if (mem_cgroup_disabled())
776 return;
777
778 rcu_read_lock();
779 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
780 if (likely(memcg))
781 count_memcg_events(memcg, idx, 1);
782 rcu_read_unlock();
783 }
784
785 static inline void memcg_memory_event(struct mem_cgroup *memcg,
786 enum memcg_memory_event event)
787 {
788 atomic_long_inc(&memcg->memory_events_local[event]);
789 cgroup_file_notify(&memcg->events_local_file);
790
791 do {
792 atomic_long_inc(&memcg->memory_events[event]);
793 cgroup_file_notify(&memcg->events_file);
794
795 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
796 break;
797 } while ((memcg = parent_mem_cgroup(memcg)) &&
798 !mem_cgroup_is_root(memcg));
799 }
800
801 static inline void memcg_memory_event_mm(struct mm_struct *mm,
802 enum memcg_memory_event event)
803 {
804 struct mem_cgroup *memcg;
805
806 if (mem_cgroup_disabled())
807 return;
808
809 rcu_read_lock();
810 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
811 if (likely(memcg))
812 memcg_memory_event(memcg, event);
813 rcu_read_unlock();
814 }
815
816 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
817 void mem_cgroup_split_huge_fixup(struct page *head);
818 #endif
819
820 #else /* CONFIG_MEMCG */
821
822 #define MEM_CGROUP_ID_SHIFT 0
823 #define MEM_CGROUP_ID_MAX 0
824
825 struct mem_cgroup;
826
827 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
828 {
829 return true;
830 }
831
832 static inline bool mem_cgroup_disabled(void)
833 {
834 return true;
835 }
836
837 static inline void memcg_memory_event(struct mem_cgroup *memcg,
838 enum memcg_memory_event event)
839 {
840 }
841
842 static inline void memcg_memory_event_mm(struct mm_struct *mm,
843 enum memcg_memory_event event)
844 {
845 }
846
847 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg,
848 bool in_low_reclaim)
849 {
850 return 0;
851 }
852
853 static inline enum mem_cgroup_protection mem_cgroup_protected(
854 struct mem_cgroup *root, struct mem_cgroup *memcg)
855 {
856 return MEMCG_PROT_NONE;
857 }
858
859 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
860 gfp_t gfp_mask,
861 struct mem_cgroup **memcgp,
862 bool compound)
863 {
864 *memcgp = NULL;
865 return 0;
866 }
867
868 static inline int mem_cgroup_try_charge_delay(struct page *page,
869 struct mm_struct *mm,
870 gfp_t gfp_mask,
871 struct mem_cgroup **memcgp,
872 bool compound)
873 {
874 *memcgp = NULL;
875 return 0;
876 }
877
878 static inline void mem_cgroup_commit_charge(struct page *page,
879 struct mem_cgroup *memcg,
880 bool lrucare, bool compound)
881 {
882 }
883
884 static inline void mem_cgroup_cancel_charge(struct page *page,
885 struct mem_cgroup *memcg,
886 bool compound)
887 {
888 }
889
890 static inline void mem_cgroup_uncharge(struct page *page)
891 {
892 }
893
894 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
895 {
896 }
897
898 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
899 {
900 }
901
902 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
903 struct mem_cgroup *memcg)
904 {
905 return node_lruvec(pgdat);
906 }
907
908 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
909 struct pglist_data *pgdat)
910 {
911 return &pgdat->lruvec;
912 }
913
914 static inline bool mm_match_cgroup(struct mm_struct *mm,
915 struct mem_cgroup *memcg)
916 {
917 return true;
918 }
919
920 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
921 {
922 return NULL;
923 }
924
925 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
926 {
927 return NULL;
928 }
929
930 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
931 {
932 }
933
934 static inline struct mem_cgroup *
935 mem_cgroup_iter(struct mem_cgroup *root,
936 struct mem_cgroup *prev,
937 struct mem_cgroup_reclaim_cookie *reclaim)
938 {
939 return NULL;
940 }
941
942 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
943 struct mem_cgroup *prev)
944 {
945 }
946
947 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
948 int (*fn)(struct task_struct *, void *), void *arg)
949 {
950 return 0;
951 }
952
953 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
954 {
955 return 0;
956 }
957
958 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
959 {
960 WARN_ON_ONCE(id);
961 /* XXX: This should always return root_mem_cgroup */
962 return NULL;
963 }
964
965 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
966 {
967 return NULL;
968 }
969
970 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
971 {
972 return NULL;
973 }
974
975 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
976 {
977 return true;
978 }
979
980 static inline
981 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
982 enum lru_list lru, int zone_idx)
983 {
984 return 0;
985 }
986
987 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
988 {
989 return 0;
990 }
991
992 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
993 {
994 return 0;
995 }
996
997 static inline void
998 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
999 {
1000 }
1001
1002 static inline void
1003 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1004 {
1005 }
1006
1007 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1008 {
1009 return NULL;
1010 }
1011
1012 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1013 {
1014 }
1015
1016 static inline void unlock_page_memcg(struct page *page)
1017 {
1018 }
1019
1020 static inline void mem_cgroup_handle_over_high(void)
1021 {
1022 }
1023
1024 static inline void mem_cgroup_enter_user_fault(void)
1025 {
1026 }
1027
1028 static inline void mem_cgroup_exit_user_fault(void)
1029 {
1030 }
1031
1032 static inline bool task_in_memcg_oom(struct task_struct *p)
1033 {
1034 return false;
1035 }
1036
1037 static inline bool mem_cgroup_oom_synchronize(bool wait)
1038 {
1039 return false;
1040 }
1041
1042 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1043 struct task_struct *victim, struct mem_cgroup *oom_domain)
1044 {
1045 return NULL;
1046 }
1047
1048 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1049 {
1050 }
1051
1052 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1053 {
1054 return 0;
1055 }
1056
1057 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1058 int idx)
1059 {
1060 return 0;
1061 }
1062
1063 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1064 int idx,
1065 int nr)
1066 {
1067 }
1068
1069 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1070 int idx,
1071 int nr)
1072 {
1073 }
1074
1075 static inline void __mod_memcg_page_state(struct page *page,
1076 int idx,
1077 int nr)
1078 {
1079 }
1080
1081 static inline void mod_memcg_page_state(struct page *page,
1082 int idx,
1083 int nr)
1084 {
1085 }
1086
1087 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1088 enum node_stat_item idx)
1089 {
1090 return node_page_state(lruvec_pgdat(lruvec), idx);
1091 }
1092
1093 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1094 enum node_stat_item idx)
1095 {
1096 return node_page_state(lruvec_pgdat(lruvec), idx);
1097 }
1098
1099 static inline void __mod_lruvec_state(struct lruvec *lruvec,
1100 enum node_stat_item idx, int val)
1101 {
1102 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1103 }
1104
1105 static inline void mod_lruvec_state(struct lruvec *lruvec,
1106 enum node_stat_item idx, int val)
1107 {
1108 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1109 }
1110
1111 static inline void __mod_lruvec_page_state(struct page *page,
1112 enum node_stat_item idx, int val)
1113 {
1114 __mod_node_page_state(page_pgdat(page), idx, val);
1115 }
1116
1117 static inline void mod_lruvec_page_state(struct page *page,
1118 enum node_stat_item idx, int val)
1119 {
1120 mod_node_page_state(page_pgdat(page), idx, val);
1121 }
1122
1123 static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1124 int val)
1125 {
1126 struct page *page = virt_to_head_page(p);
1127
1128 __mod_node_page_state(page_pgdat(page), idx, val);
1129 }
1130
1131 static inline
1132 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1133 gfp_t gfp_mask,
1134 unsigned long *total_scanned)
1135 {
1136 return 0;
1137 }
1138
1139 static inline void mem_cgroup_split_huge_fixup(struct page *head)
1140 {
1141 }
1142
1143 static inline void count_memcg_events(struct mem_cgroup *memcg,
1144 enum vm_event_item idx,
1145 unsigned long count)
1146 {
1147 }
1148
1149 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1150 enum vm_event_item idx,
1151 unsigned long count)
1152 {
1153 }
1154
1155 static inline void count_memcg_page_event(struct page *page,
1156 int idx)
1157 {
1158 }
1159
1160 static inline
1161 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1162 {
1163 }
1164 #endif /* CONFIG_MEMCG */
1165
1166 /* idx can be of type enum memcg_stat_item or node_stat_item */
1167 static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1168 int idx)
1169 {
1170 __mod_memcg_state(memcg, idx, 1);
1171 }
1172
1173 /* idx can be of type enum memcg_stat_item or node_stat_item */
1174 static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1175 int idx)
1176 {
1177 __mod_memcg_state(memcg, idx, -1);
1178 }
1179
1180 /* idx can be of type enum memcg_stat_item or node_stat_item */
1181 static inline void __inc_memcg_page_state(struct page *page,
1182 int idx)
1183 {
1184 __mod_memcg_page_state(page, idx, 1);
1185 }
1186
1187 /* idx can be of type enum memcg_stat_item or node_stat_item */
1188 static inline void __dec_memcg_page_state(struct page *page,
1189 int idx)
1190 {
1191 __mod_memcg_page_state(page, idx, -1);
1192 }
1193
1194 static inline void __inc_lruvec_state(struct lruvec *lruvec,
1195 enum node_stat_item idx)
1196 {
1197 __mod_lruvec_state(lruvec, idx, 1);
1198 }
1199
1200 static inline void __dec_lruvec_state(struct lruvec *lruvec,
1201 enum node_stat_item idx)
1202 {
1203 __mod_lruvec_state(lruvec, idx, -1);
1204 }
1205
1206 static inline void __inc_lruvec_page_state(struct page *page,
1207 enum node_stat_item idx)
1208 {
1209 __mod_lruvec_page_state(page, idx, 1);
1210 }
1211
1212 static inline void __dec_lruvec_page_state(struct page *page,
1213 enum node_stat_item idx)
1214 {
1215 __mod_lruvec_page_state(page, idx, -1);
1216 }
1217
1218 static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx)
1219 {
1220 __mod_lruvec_slab_state(p, idx, 1);
1221 }
1222
1223 static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx)
1224 {
1225 __mod_lruvec_slab_state(p, idx, -1);
1226 }
1227
1228 /* idx can be of type enum memcg_stat_item or node_stat_item */
1229 static inline void inc_memcg_state(struct mem_cgroup *memcg,
1230 int idx)
1231 {
1232 mod_memcg_state(memcg, idx, 1);
1233 }
1234
1235 /* idx can be of type enum memcg_stat_item or node_stat_item */
1236 static inline void dec_memcg_state(struct mem_cgroup *memcg,
1237 int idx)
1238 {
1239 mod_memcg_state(memcg, idx, -1);
1240 }
1241
1242 /* idx can be of type enum memcg_stat_item or node_stat_item */
1243 static inline void inc_memcg_page_state(struct page *page,
1244 int idx)
1245 {
1246 mod_memcg_page_state(page, idx, 1);
1247 }
1248
1249 /* idx can be of type enum memcg_stat_item or node_stat_item */
1250 static inline void dec_memcg_page_state(struct page *page,
1251 int idx)
1252 {
1253 mod_memcg_page_state(page, idx, -1);
1254 }
1255
1256 static inline void inc_lruvec_state(struct lruvec *lruvec,
1257 enum node_stat_item idx)
1258 {
1259 mod_lruvec_state(lruvec, idx, 1);
1260 }
1261
1262 static inline void dec_lruvec_state(struct lruvec *lruvec,
1263 enum node_stat_item idx)
1264 {
1265 mod_lruvec_state(lruvec, idx, -1);
1266 }
1267
1268 static inline void inc_lruvec_page_state(struct page *page,
1269 enum node_stat_item idx)
1270 {
1271 mod_lruvec_page_state(page, idx, 1);
1272 }
1273
1274 static inline void dec_lruvec_page_state(struct page *page,
1275 enum node_stat_item idx)
1276 {
1277 mod_lruvec_page_state(page, idx, -1);
1278 }
1279
1280 #ifdef CONFIG_CGROUP_WRITEBACK
1281
1282 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1283 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1284 unsigned long *pheadroom, unsigned long *pdirty,
1285 unsigned long *pwriteback);
1286
1287 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1288 struct bdi_writeback *wb);
1289
1290 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1291 struct bdi_writeback *wb)
1292 {
1293 if (mem_cgroup_disabled())
1294 return;
1295
1296 if (unlikely(&page->mem_cgroup->css != wb->memcg_css))
1297 mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1298 }
1299
1300 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1301
1302 #else /* CONFIG_CGROUP_WRITEBACK */
1303
1304 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1305 {
1306 return NULL;
1307 }
1308
1309 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1310 unsigned long *pfilepages,
1311 unsigned long *pheadroom,
1312 unsigned long *pdirty,
1313 unsigned long *pwriteback)
1314 {
1315 }
1316
1317 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1318 struct bdi_writeback *wb)
1319 {
1320 }
1321
1322 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1323 {
1324 }
1325
1326 #endif /* CONFIG_CGROUP_WRITEBACK */
1327
1328 struct sock;
1329 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1330 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1331 #ifdef CONFIG_MEMCG
1332 extern struct static_key_false memcg_sockets_enabled_key;
1333 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1334 void mem_cgroup_sk_alloc(struct sock *sk);
1335 void mem_cgroup_sk_free(struct sock *sk);
1336 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1337 {
1338 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1339 return true;
1340 do {
1341 if (time_before(jiffies, memcg->socket_pressure))
1342 return true;
1343 } while ((memcg = parent_mem_cgroup(memcg)));
1344 return false;
1345 }
1346
1347 extern int memcg_expand_shrinker_maps(int new_id);
1348
1349 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1350 int nid, int shrinker_id);
1351 #else
1352 #define mem_cgroup_sockets_enabled 0
1353 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1354 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1355 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1356 {
1357 return false;
1358 }
1359
1360 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1361 int nid, int shrinker_id)
1362 {
1363 }
1364 #endif
1365
1366 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1367 void memcg_kmem_put_cache(struct kmem_cache *cachep);
1368
1369 #ifdef CONFIG_MEMCG_KMEM
1370 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1371 void __memcg_kmem_uncharge(struct page *page, int order);
1372 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1373 struct mem_cgroup *memcg);
1374 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
1375 unsigned int nr_pages);
1376
1377 extern struct static_key_false memcg_kmem_enabled_key;
1378 extern struct workqueue_struct *memcg_kmem_cache_wq;
1379
1380 extern int memcg_nr_cache_ids;
1381 void memcg_get_cache_ids(void);
1382 void memcg_put_cache_ids(void);
1383
1384 /*
1385 * Helper macro to loop through all memcg-specific caches. Callers must still
1386 * check if the cache is valid (it is either valid or NULL).
1387 * the slab_mutex must be held when looping through those caches
1388 */
1389 #define for_each_memcg_cache_index(_idx) \
1390 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1391
1392 static inline bool memcg_kmem_enabled(void)
1393 {
1394 return static_branch_unlikely(&memcg_kmem_enabled_key);
1395 }
1396
1397 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1398 {
1399 if (memcg_kmem_enabled())
1400 return __memcg_kmem_charge(page, gfp, order);
1401 return 0;
1402 }
1403
1404 static inline void memcg_kmem_uncharge(struct page *page, int order)
1405 {
1406 if (memcg_kmem_enabled())
1407 __memcg_kmem_uncharge(page, order);
1408 }
1409
1410 static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp,
1411 int order, struct mem_cgroup *memcg)
1412 {
1413 if (memcg_kmem_enabled())
1414 return __memcg_kmem_charge_memcg(page, gfp, order, memcg);
1415 return 0;
1416 }
1417
1418 static inline void memcg_kmem_uncharge_memcg(struct page *page, int order,
1419 struct mem_cgroup *memcg)
1420 {
1421 if (memcg_kmem_enabled())
1422 __memcg_kmem_uncharge_memcg(memcg, 1 << order);
1423 }
1424
1425 /*
1426 * helper for accessing a memcg's index. It will be used as an index in the
1427 * child cache array in kmem_cache, and also to derive its name. This function
1428 * will return -1 when this is not a kmem-limited memcg.
1429 */
1430 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1431 {
1432 return memcg ? memcg->kmemcg_id : -1;
1433 }
1434
1435 #else
1436
1437 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1438 {
1439 return 0;
1440 }
1441
1442 static inline void memcg_kmem_uncharge(struct page *page, int order)
1443 {
1444 }
1445
1446 static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1447 {
1448 return 0;
1449 }
1450
1451 static inline void __memcg_kmem_uncharge(struct page *page, int order)
1452 {
1453 }
1454
1455 #define for_each_memcg_cache_index(_idx) \
1456 for (; NULL; )
1457
1458 static inline bool memcg_kmem_enabled(void)
1459 {
1460 return false;
1461 }
1462
1463 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1464 {
1465 return -1;
1466 }
1467
1468 static inline void memcg_get_cache_ids(void)
1469 {
1470 }
1471
1472 static inline void memcg_put_cache_ids(void)
1473 {
1474 }
1475
1476 #endif /* CONFIG_MEMCG_KMEM */
1477
1478 #endif /* _LINUX_MEMCONTROL_H */