]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/memcontrol.h
Merge remote-tracking branch 'asoc/fix/rt5645' into asoc-linus
[mirror_ubuntu-jammy-kernel.git] / include / linux / memcontrol.h
1 /* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 #include <linux/page_counter.h>
27 #include <linux/vmpressure.h>
28 #include <linux/eventfd.h>
29 #include <linux/mmzone.h>
30 #include <linux/writeback.h>
31
32 struct mem_cgroup;
33 struct page;
34 struct mm_struct;
35 struct kmem_cache;
36
37 /*
38 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
39 * These two lists should keep in accord with each other.
40 */
41 enum mem_cgroup_stat_index {
42 /*
43 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
44 */
45 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
46 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
47 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
48 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
49 MEM_CGROUP_STAT_DIRTY, /* # of dirty pages in page cache */
50 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */
51 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
52 MEM_CGROUP_STAT_NSTATS,
53 };
54
55 struct mem_cgroup_reclaim_cookie {
56 struct zone *zone;
57 int priority;
58 unsigned int generation;
59 };
60
61 enum mem_cgroup_events_index {
62 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
63 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
64 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
65 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
66 MEM_CGROUP_EVENTS_NSTATS,
67 /* default hierarchy events */
68 MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS,
69 MEMCG_HIGH,
70 MEMCG_MAX,
71 MEMCG_OOM,
72 MEMCG_NR_EVENTS,
73 };
74
75 /*
76 * Per memcg event counter is incremented at every pagein/pageout. With THP,
77 * it will be incremated by the number of pages. This counter is used for
78 * for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 */
81 enum mem_cgroup_events_target {
82 MEM_CGROUP_TARGET_THRESH,
83 MEM_CGROUP_TARGET_SOFTLIMIT,
84 MEM_CGROUP_TARGET_NUMAINFO,
85 MEM_CGROUP_NTARGETS,
86 };
87
88 /*
89 * Bits in struct cg_proto.flags
90 */
91 enum cg_proto_flags {
92 /* Currently active and new sockets should be assigned to cgroups */
93 MEMCG_SOCK_ACTIVE,
94 /* It was ever activated; we must disarm static keys on destruction */
95 MEMCG_SOCK_ACTIVATED,
96 };
97
98 struct cg_proto {
99 struct page_counter memory_allocated; /* Current allocated memory. */
100 struct percpu_counter sockets_allocated; /* Current number of sockets. */
101 int memory_pressure;
102 long sysctl_mem[3];
103 unsigned long flags;
104 /*
105 * memcg field is used to find which memcg we belong directly
106 * Each memcg struct can hold more than one cg_proto, so container_of
107 * won't really cut.
108 *
109 * The elegant solution would be having an inverse function to
110 * proto_cgroup in struct proto, but that means polluting the structure
111 * for everybody, instead of just for memcg users.
112 */
113 struct mem_cgroup *memcg;
114 };
115
116 #ifdef CONFIG_MEMCG
117 struct mem_cgroup_stat_cpu {
118 long count[MEM_CGROUP_STAT_NSTATS];
119 unsigned long events[MEMCG_NR_EVENTS];
120 unsigned long nr_page_events;
121 unsigned long targets[MEM_CGROUP_NTARGETS];
122 };
123
124 struct mem_cgroup_reclaim_iter {
125 struct mem_cgroup *position;
126 /* scan generation, increased every round-trip */
127 unsigned int generation;
128 };
129
130 /*
131 * per-zone information in memory controller.
132 */
133 struct mem_cgroup_per_zone {
134 struct lruvec lruvec;
135 unsigned long lru_size[NR_LRU_LISTS];
136
137 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
138
139 struct rb_node tree_node; /* RB tree node */
140 unsigned long usage_in_excess;/* Set to the value by which */
141 /* the soft limit is exceeded*/
142 bool on_tree;
143 struct mem_cgroup *memcg; /* Back pointer, we cannot */
144 /* use container_of */
145 };
146
147 struct mem_cgroup_per_node {
148 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
149 };
150
151 struct mem_cgroup_threshold {
152 struct eventfd_ctx *eventfd;
153 unsigned long threshold;
154 };
155
156 /* For threshold */
157 struct mem_cgroup_threshold_ary {
158 /* An array index points to threshold just below or equal to usage. */
159 int current_threshold;
160 /* Size of entries[] */
161 unsigned int size;
162 /* Array of thresholds */
163 struct mem_cgroup_threshold entries[0];
164 };
165
166 struct mem_cgroup_thresholds {
167 /* Primary thresholds array */
168 struct mem_cgroup_threshold_ary *primary;
169 /*
170 * Spare threshold array.
171 * This is needed to make mem_cgroup_unregister_event() "never fail".
172 * It must be able to store at least primary->size - 1 entries.
173 */
174 struct mem_cgroup_threshold_ary *spare;
175 };
176
177 /*
178 * The memory controller data structure. The memory controller controls both
179 * page cache and RSS per cgroup. We would eventually like to provide
180 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181 * to help the administrator determine what knobs to tune.
182 */
183 struct mem_cgroup {
184 struct cgroup_subsys_state css;
185
186 /* Accounted resources */
187 struct page_counter memory;
188 struct page_counter memsw;
189 struct page_counter kmem;
190
191 /* Normal memory consumption range */
192 unsigned long low;
193 unsigned long high;
194
195 unsigned long soft_limit;
196
197 /* vmpressure notifications */
198 struct vmpressure vmpressure;
199
200 /* css_online() has been completed */
201 int initialized;
202
203 /*
204 * Should the accounting and control be hierarchical, per subtree?
205 */
206 bool use_hierarchy;
207
208 /* protected by memcg_oom_lock */
209 bool oom_lock;
210 int under_oom;
211
212 int swappiness;
213 /* OOM-Killer disable */
214 int oom_kill_disable;
215
216 /* protect arrays of thresholds */
217 struct mutex thresholds_lock;
218
219 /* thresholds for memory usage. RCU-protected */
220 struct mem_cgroup_thresholds thresholds;
221
222 /* thresholds for mem+swap usage. RCU-protected */
223 struct mem_cgroup_thresholds memsw_thresholds;
224
225 /* For oom notifier event fd */
226 struct list_head oom_notify;
227
228 /*
229 * Should we move charges of a task when a task is moved into this
230 * mem_cgroup ? And what type of charges should we move ?
231 */
232 unsigned long move_charge_at_immigrate;
233 /*
234 * set > 0 if pages under this cgroup are moving to other cgroup.
235 */
236 atomic_t moving_account;
237 /* taken only while moving_account > 0 */
238 spinlock_t move_lock;
239 struct task_struct *move_lock_task;
240 unsigned long move_lock_flags;
241 /*
242 * percpu counter.
243 */
244 struct mem_cgroup_stat_cpu __percpu *stat;
245
246 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
247 struct cg_proto tcp_mem;
248 #endif
249 #if defined(CONFIG_MEMCG_KMEM)
250 /* Index in the kmem_cache->memcg_params.memcg_caches array */
251 int kmemcg_id;
252 bool kmem_acct_activated;
253 bool kmem_acct_active;
254 #endif
255
256 int last_scanned_node;
257 #if MAX_NUMNODES > 1
258 nodemask_t scan_nodes;
259 atomic_t numainfo_events;
260 atomic_t numainfo_updating;
261 #endif
262
263 #ifdef CONFIG_CGROUP_WRITEBACK
264 struct list_head cgwb_list;
265 struct wb_domain cgwb_domain;
266 #endif
267
268 /* List of events which userspace want to receive */
269 struct list_head event_list;
270 spinlock_t event_list_lock;
271
272 struct mem_cgroup_per_node *nodeinfo[0];
273 /* WARNING: nodeinfo must be the last member here */
274 };
275 extern struct cgroup_subsys_state *mem_cgroup_root_css;
276
277 /**
278 * mem_cgroup_events - count memory events against a cgroup
279 * @memcg: the memory cgroup
280 * @idx: the event index
281 * @nr: the number of events to account for
282 */
283 static inline void mem_cgroup_events(struct mem_cgroup *memcg,
284 enum mem_cgroup_events_index idx,
285 unsigned int nr)
286 {
287 this_cpu_add(memcg->stat->events[idx], nr);
288 }
289
290 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
291
292 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
293 gfp_t gfp_mask, struct mem_cgroup **memcgp);
294 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
295 bool lrucare);
296 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg);
297 void mem_cgroup_uncharge(struct page *page);
298 void mem_cgroup_uncharge_list(struct list_head *page_list);
299
300 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
301 bool lrucare);
302
303 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
304 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
305
306 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
307 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
308 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
309
310 static inline
311 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
312 return css ? container_of(css, struct mem_cgroup, css) : NULL;
313 }
314
315 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
316 struct mem_cgroup *,
317 struct mem_cgroup_reclaim_cookie *);
318 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
319
320 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
321 struct mem_cgroup *root)
322 {
323 if (root == memcg)
324 return true;
325 if (!root->use_hierarchy)
326 return false;
327 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
328 }
329
330 static inline bool mm_match_cgroup(struct mm_struct *mm,
331 struct mem_cgroup *memcg)
332 {
333 struct mem_cgroup *task_memcg;
334 bool match = false;
335
336 rcu_read_lock();
337 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
338 if (task_memcg)
339 match = mem_cgroup_is_descendant(task_memcg, memcg);
340 rcu_read_unlock();
341 return match;
342 }
343
344 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
345 ino_t page_cgroup_ino(struct page *page);
346
347 static inline bool mem_cgroup_disabled(void)
348 {
349 if (memory_cgrp_subsys.disabled)
350 return true;
351 return false;
352 }
353
354 /*
355 * For memory reclaim.
356 */
357 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
358
359 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
360 int nr_pages);
361
362 static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
363 {
364 struct mem_cgroup_per_zone *mz;
365 struct mem_cgroup *memcg;
366
367 if (mem_cgroup_disabled())
368 return true;
369
370 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
371 memcg = mz->memcg;
372
373 return !!(memcg->css.flags & CSS_ONLINE);
374 }
375
376 static inline
377 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
378 {
379 struct mem_cgroup_per_zone *mz;
380
381 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
382 return mz->lru_size[lru];
383 }
384
385 static inline int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
386 {
387 unsigned long inactive_ratio;
388 unsigned long inactive;
389 unsigned long active;
390 unsigned long gb;
391
392 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
393 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
394
395 gb = (inactive + active) >> (30 - PAGE_SHIFT);
396 if (gb)
397 inactive_ratio = int_sqrt(10 * gb);
398 else
399 inactive_ratio = 1;
400
401 return inactive * inactive_ratio < active;
402 }
403
404 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
405 struct task_struct *p);
406
407 static inline void mem_cgroup_oom_enable(void)
408 {
409 WARN_ON(current->memcg_oom.may_oom);
410 current->memcg_oom.may_oom = 1;
411 }
412
413 static inline void mem_cgroup_oom_disable(void)
414 {
415 WARN_ON(!current->memcg_oom.may_oom);
416 current->memcg_oom.may_oom = 0;
417 }
418
419 static inline bool task_in_memcg_oom(struct task_struct *p)
420 {
421 return p->memcg_oom.memcg;
422 }
423
424 bool mem_cgroup_oom_synchronize(bool wait);
425
426 #ifdef CONFIG_MEMCG_SWAP
427 extern int do_swap_account;
428 #endif
429
430 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page);
431 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg);
432
433 /**
434 * mem_cgroup_update_page_stat - update page state statistics
435 * @memcg: memcg to account against
436 * @idx: page state item to account
437 * @val: number of pages (positive or negative)
438 *
439 * See mem_cgroup_begin_page_stat() for locking requirements.
440 */
441 static inline void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
442 enum mem_cgroup_stat_index idx, int val)
443 {
444 VM_BUG_ON(!rcu_read_lock_held());
445
446 if (memcg)
447 this_cpu_add(memcg->stat->count[idx], val);
448 }
449
450 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
451 enum mem_cgroup_stat_index idx)
452 {
453 mem_cgroup_update_page_stat(memcg, idx, 1);
454 }
455
456 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
457 enum mem_cgroup_stat_index idx)
458 {
459 mem_cgroup_update_page_stat(memcg, idx, -1);
460 }
461
462 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
463 gfp_t gfp_mask,
464 unsigned long *total_scanned);
465
466 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
467 enum vm_event_item idx)
468 {
469 struct mem_cgroup *memcg;
470
471 if (mem_cgroup_disabled())
472 return;
473
474 rcu_read_lock();
475 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
476 if (unlikely(!memcg))
477 goto out;
478
479 switch (idx) {
480 case PGFAULT:
481 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
482 break;
483 case PGMAJFAULT:
484 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
485 break;
486 default:
487 BUG();
488 }
489 out:
490 rcu_read_unlock();
491 }
492 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
493 void mem_cgroup_split_huge_fixup(struct page *head);
494 #endif
495
496 #else /* CONFIG_MEMCG */
497 struct mem_cgroup;
498
499 static inline void mem_cgroup_events(struct mem_cgroup *memcg,
500 enum mem_cgroup_events_index idx,
501 unsigned int nr)
502 {
503 }
504
505 static inline bool mem_cgroup_low(struct mem_cgroup *root,
506 struct mem_cgroup *memcg)
507 {
508 return false;
509 }
510
511 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
512 gfp_t gfp_mask,
513 struct mem_cgroup **memcgp)
514 {
515 *memcgp = NULL;
516 return 0;
517 }
518
519 static inline void mem_cgroup_commit_charge(struct page *page,
520 struct mem_cgroup *memcg,
521 bool lrucare)
522 {
523 }
524
525 static inline void mem_cgroup_cancel_charge(struct page *page,
526 struct mem_cgroup *memcg)
527 {
528 }
529
530 static inline void mem_cgroup_uncharge(struct page *page)
531 {
532 }
533
534 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
535 {
536 }
537
538 static inline void mem_cgroup_migrate(struct page *oldpage,
539 struct page *newpage,
540 bool lrucare)
541 {
542 }
543
544 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
545 struct mem_cgroup *memcg)
546 {
547 return &zone->lruvec;
548 }
549
550 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
551 struct zone *zone)
552 {
553 return &zone->lruvec;
554 }
555
556 static inline bool mm_match_cgroup(struct mm_struct *mm,
557 struct mem_cgroup *memcg)
558 {
559 return true;
560 }
561
562 static inline bool task_in_mem_cgroup(struct task_struct *task,
563 const struct mem_cgroup *memcg)
564 {
565 return true;
566 }
567
568 static inline struct mem_cgroup *
569 mem_cgroup_iter(struct mem_cgroup *root,
570 struct mem_cgroup *prev,
571 struct mem_cgroup_reclaim_cookie *reclaim)
572 {
573 return NULL;
574 }
575
576 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
577 struct mem_cgroup *prev)
578 {
579 }
580
581 static inline bool mem_cgroup_disabled(void)
582 {
583 return true;
584 }
585
586 static inline int
587 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
588 {
589 return 1;
590 }
591
592 static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
593 {
594 return true;
595 }
596
597 static inline unsigned long
598 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
599 {
600 return 0;
601 }
602
603 static inline void
604 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
605 int increment)
606 {
607 }
608
609 static inline void
610 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
611 {
612 }
613
614 static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
615 {
616 return NULL;
617 }
618
619 static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
620 {
621 }
622
623 static inline void mem_cgroup_oom_enable(void)
624 {
625 }
626
627 static inline void mem_cgroup_oom_disable(void)
628 {
629 }
630
631 static inline bool task_in_memcg_oom(struct task_struct *p)
632 {
633 return false;
634 }
635
636 static inline bool mem_cgroup_oom_synchronize(bool wait)
637 {
638 return false;
639 }
640
641 static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
642 enum mem_cgroup_stat_index idx)
643 {
644 }
645
646 static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
647 enum mem_cgroup_stat_index idx)
648 {
649 }
650
651 static inline
652 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
653 gfp_t gfp_mask,
654 unsigned long *total_scanned)
655 {
656 return 0;
657 }
658
659 static inline void mem_cgroup_split_huge_fixup(struct page *head)
660 {
661 }
662
663 static inline
664 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
665 {
666 }
667 #endif /* CONFIG_MEMCG */
668
669 enum {
670 UNDER_LIMIT,
671 SOFT_LIMIT,
672 OVER_LIMIT,
673 };
674
675 #ifdef CONFIG_CGROUP_WRITEBACK
676
677 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg);
678 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
679 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
680 unsigned long *pdirty, unsigned long *pwriteback);
681
682 #else /* CONFIG_CGROUP_WRITEBACK */
683
684 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
685 {
686 return NULL;
687 }
688
689 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
690 unsigned long *pavail,
691 unsigned long *pdirty,
692 unsigned long *pwriteback)
693 {
694 }
695
696 #endif /* CONFIG_CGROUP_WRITEBACK */
697
698 struct sock;
699 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
700 void sock_update_memcg(struct sock *sk);
701 void sock_release_memcg(struct sock *sk);
702 #else
703 static inline void sock_update_memcg(struct sock *sk)
704 {
705 }
706 static inline void sock_release_memcg(struct sock *sk)
707 {
708 }
709 #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
710
711 #ifdef CONFIG_MEMCG_KMEM
712 extern struct static_key memcg_kmem_enabled_key;
713
714 extern int memcg_nr_cache_ids;
715 void memcg_get_cache_ids(void);
716 void memcg_put_cache_ids(void);
717
718 /*
719 * Helper macro to loop through all memcg-specific caches. Callers must still
720 * check if the cache is valid (it is either valid or NULL).
721 * the slab_mutex must be held when looping through those caches
722 */
723 #define for_each_memcg_cache_index(_idx) \
724 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
725
726 static inline bool memcg_kmem_enabled(void)
727 {
728 return static_key_false(&memcg_kmem_enabled_key);
729 }
730
731 static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
732 {
733 return memcg->kmem_acct_active;
734 }
735
736 /*
737 * In general, we'll do everything in our power to not incur in any overhead
738 * for non-memcg users for the kmem functions. Not even a function call, if we
739 * can avoid it.
740 *
741 * Therefore, we'll inline all those functions so that in the best case, we'll
742 * see that kmemcg is off for everybody and proceed quickly. If it is on,
743 * we'll still do most of the flag checking inline. We check a lot of
744 * conditions, but because they are pretty simple, they are expected to be
745 * fast.
746 */
747 bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
748 int order);
749 void __memcg_kmem_commit_charge(struct page *page,
750 struct mem_cgroup *memcg, int order);
751 void __memcg_kmem_uncharge_pages(struct page *page, int order);
752
753 /*
754 * helper for acessing a memcg's index. It will be used as an index in the
755 * child cache array in kmem_cache, and also to derive its name. This function
756 * will return -1 when this is not a kmem-limited memcg.
757 */
758 static inline int memcg_cache_id(struct mem_cgroup *memcg)
759 {
760 return memcg ? memcg->kmemcg_id : -1;
761 }
762
763 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep);
764 void __memcg_kmem_put_cache(struct kmem_cache *cachep);
765
766 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr);
767
768 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
769 unsigned long nr_pages);
770 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages);
771
772 /**
773 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
774 * @gfp: the gfp allocation flags.
775 * @memcg: a pointer to the memcg this was charged against.
776 * @order: allocation order.
777 *
778 * returns true if the memcg where the current task belongs can hold this
779 * allocation.
780 *
781 * We return true automatically if this allocation is not to be accounted to
782 * any memcg.
783 */
784 static inline bool
785 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
786 {
787 if (!memcg_kmem_enabled())
788 return true;
789
790 if (gfp & __GFP_NOACCOUNT)
791 return true;
792 /*
793 * __GFP_NOFAIL allocations will move on even if charging is not
794 * possible. Therefore we don't even try, and have this allocation
795 * unaccounted. We could in theory charge it forcibly, but we hope
796 * those allocations are rare, and won't be worth the trouble.
797 */
798 if (gfp & __GFP_NOFAIL)
799 return true;
800 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
801 return true;
802
803 /* If the test is dying, just let it go. */
804 if (unlikely(fatal_signal_pending(current)))
805 return true;
806
807 return __memcg_kmem_newpage_charge(gfp, memcg, order);
808 }
809
810 /**
811 * memcg_kmem_uncharge_pages: uncharge pages from memcg
812 * @page: pointer to struct page being freed
813 * @order: allocation order.
814 */
815 static inline void
816 memcg_kmem_uncharge_pages(struct page *page, int order)
817 {
818 if (memcg_kmem_enabled())
819 __memcg_kmem_uncharge_pages(page, order);
820 }
821
822 /**
823 * memcg_kmem_commit_charge: embeds correct memcg in a page
824 * @page: pointer to struct page recently allocated
825 * @memcg: the memcg structure we charged against
826 * @order: allocation order.
827 *
828 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
829 * failure of the allocation. if @page is NULL, this function will revert the
830 * charges. Otherwise, it will commit @page to @memcg.
831 */
832 static inline void
833 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
834 {
835 if (memcg_kmem_enabled() && memcg)
836 __memcg_kmem_commit_charge(page, memcg, order);
837 }
838
839 /**
840 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
841 * @cachep: the original global kmem cache
842 * @gfp: allocation flags.
843 *
844 * All memory allocated from a per-memcg cache is charged to the owner memcg.
845 */
846 static __always_inline struct kmem_cache *
847 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
848 {
849 if (!memcg_kmem_enabled())
850 return cachep;
851 if (gfp & __GFP_NOACCOUNT)
852 return cachep;
853 if (gfp & __GFP_NOFAIL)
854 return cachep;
855 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
856 return cachep;
857 if (unlikely(fatal_signal_pending(current)))
858 return cachep;
859
860 return __memcg_kmem_get_cache(cachep);
861 }
862
863 static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
864 {
865 if (memcg_kmem_enabled())
866 __memcg_kmem_put_cache(cachep);
867 }
868
869 static __always_inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
870 {
871 if (!memcg_kmem_enabled())
872 return NULL;
873 return __mem_cgroup_from_kmem(ptr);
874 }
875 #else
876 #define for_each_memcg_cache_index(_idx) \
877 for (; NULL; )
878
879 static inline bool memcg_kmem_enabled(void)
880 {
881 return false;
882 }
883
884 static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
885 {
886 return false;
887 }
888
889 static inline bool
890 memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
891 {
892 return true;
893 }
894
895 static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
896 {
897 }
898
899 static inline void
900 memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
901 {
902 }
903
904 static inline int memcg_cache_id(struct mem_cgroup *memcg)
905 {
906 return -1;
907 }
908
909 static inline void memcg_get_cache_ids(void)
910 {
911 }
912
913 static inline void memcg_put_cache_ids(void)
914 {
915 }
916
917 static inline struct kmem_cache *
918 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
919 {
920 return cachep;
921 }
922
923 static inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
924 {
925 }
926
927 static inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
928 {
929 return NULL;
930 }
931 #endif /* CONFIG_MEMCG_KMEM */
932 #endif /* _LINUX_MEMCONTROL_H */
933