]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/mm.h
mm: move mm_percpu_wq initialization earlier
[mirror_ubuntu-artful-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
26
27 struct mempolicy;
28 struct anon_vma;
29 struct anon_vma_chain;
30 struct file_ra_state;
31 struct user_struct;
32 struct writeback_control;
33 struct bdi_writeback;
34
35 void init_mm_internals(void);
36
37 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
38 extern unsigned long max_mapnr;
39
40 static inline void set_max_mapnr(unsigned long limit)
41 {
42 max_mapnr = limit;
43 }
44 #else
45 static inline void set_max_mapnr(unsigned long limit) { }
46 #endif
47
48 extern unsigned long totalram_pages;
49 extern void * high_memory;
50 extern int page_cluster;
51
52 #ifdef CONFIG_SYSCTL
53 extern int sysctl_legacy_va_layout;
54 #else
55 #define sysctl_legacy_va_layout 0
56 #endif
57
58 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
59 extern const int mmap_rnd_bits_min;
60 extern const int mmap_rnd_bits_max;
61 extern int mmap_rnd_bits __read_mostly;
62 #endif
63 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
64 extern const int mmap_rnd_compat_bits_min;
65 extern const int mmap_rnd_compat_bits_max;
66 extern int mmap_rnd_compat_bits __read_mostly;
67 #endif
68
69 #include <asm/page.h>
70 #include <asm/pgtable.h>
71 #include <asm/processor.h>
72
73 #ifndef __pa_symbol
74 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
75 #endif
76
77 #ifndef page_to_virt
78 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
79 #endif
80
81 #ifndef lm_alias
82 #define lm_alias(x) __va(__pa_symbol(x))
83 #endif
84
85 /*
86 * To prevent common memory management code establishing
87 * a zero page mapping on a read fault.
88 * This macro should be defined within <asm/pgtable.h>.
89 * s390 does this to prevent multiplexing of hardware bits
90 * related to the physical page in case of virtualization.
91 */
92 #ifndef mm_forbids_zeropage
93 #define mm_forbids_zeropage(X) (0)
94 #endif
95
96 /*
97 * Default maximum number of active map areas, this limits the number of vmas
98 * per mm struct. Users can overwrite this number by sysctl but there is a
99 * problem.
100 *
101 * When a program's coredump is generated as ELF format, a section is created
102 * per a vma. In ELF, the number of sections is represented in unsigned short.
103 * This means the number of sections should be smaller than 65535 at coredump.
104 * Because the kernel adds some informative sections to a image of program at
105 * generating coredump, we need some margin. The number of extra sections is
106 * 1-3 now and depends on arch. We use "5" as safe margin, here.
107 *
108 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
109 * not a hard limit any more. Although some userspace tools can be surprised by
110 * that.
111 */
112 #define MAPCOUNT_ELF_CORE_MARGIN (5)
113 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
114
115 extern int sysctl_max_map_count;
116
117 extern unsigned long sysctl_user_reserve_kbytes;
118 extern unsigned long sysctl_admin_reserve_kbytes;
119
120 extern int sysctl_overcommit_memory;
121 extern int sysctl_overcommit_ratio;
122 extern unsigned long sysctl_overcommit_kbytes;
123
124 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
125 size_t *, loff_t *);
126 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
127 size_t *, loff_t *);
128
129 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
130
131 /* to align the pointer to the (next) page boundary */
132 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
133
134 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
135 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
136
137 /*
138 * Linux kernel virtual memory manager primitives.
139 * The idea being to have a "virtual" mm in the same way
140 * we have a virtual fs - giving a cleaner interface to the
141 * mm details, and allowing different kinds of memory mappings
142 * (from shared memory to executable loading to arbitrary
143 * mmap() functions).
144 */
145
146 extern struct kmem_cache *vm_area_cachep;
147
148 #ifndef CONFIG_MMU
149 extern struct rb_root nommu_region_tree;
150 extern struct rw_semaphore nommu_region_sem;
151
152 extern unsigned int kobjsize(const void *objp);
153 #endif
154
155 /*
156 * vm_flags in vm_area_struct, see mm_types.h.
157 * When changing, update also include/trace/events/mmflags.h
158 */
159 #define VM_NONE 0x00000000
160
161 #define VM_READ 0x00000001 /* currently active flags */
162 #define VM_WRITE 0x00000002
163 #define VM_EXEC 0x00000004
164 #define VM_SHARED 0x00000008
165
166 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
167 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
168 #define VM_MAYWRITE 0x00000020
169 #define VM_MAYEXEC 0x00000040
170 #define VM_MAYSHARE 0x00000080
171
172 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
173 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
174 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
175 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
176 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
177
178 #define VM_LOCKED 0x00002000
179 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
180
181 /* Used by sys_madvise() */
182 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
183 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
184
185 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
186 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
187 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
188 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
189 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
190 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
191 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
192 #define VM_ARCH_2 0x02000000
193 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
194
195 #ifdef CONFIG_MEM_SOFT_DIRTY
196 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
197 #else
198 # define VM_SOFTDIRTY 0
199 #endif
200
201 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
202 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
203 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
204 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
205
206 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
207 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
208 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
209 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
210 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
211 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
212 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
213 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
214 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
215 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
216
217 #if defined(CONFIG_X86)
218 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
219 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
220 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
221 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
222 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
223 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
224 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
225 #endif
226 #elif defined(CONFIG_PPC)
227 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
228 #elif defined(CONFIG_PARISC)
229 # define VM_GROWSUP VM_ARCH_1
230 #elif defined(CONFIG_METAG)
231 # define VM_GROWSUP VM_ARCH_1
232 #elif defined(CONFIG_IA64)
233 # define VM_GROWSUP VM_ARCH_1
234 #elif !defined(CONFIG_MMU)
235 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
236 #endif
237
238 #if defined(CONFIG_X86)
239 /* MPX specific bounds table or bounds directory */
240 # define VM_MPX VM_ARCH_2
241 #endif
242
243 #ifndef VM_GROWSUP
244 # define VM_GROWSUP VM_NONE
245 #endif
246
247 /* Bits set in the VMA until the stack is in its final location */
248 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
249
250 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
251 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
252 #endif
253
254 #ifdef CONFIG_STACK_GROWSUP
255 #define VM_STACK VM_GROWSUP
256 #else
257 #define VM_STACK VM_GROWSDOWN
258 #endif
259
260 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
261
262 /*
263 * Special vmas that are non-mergable, non-mlock()able.
264 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
265 */
266 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
267
268 /* This mask defines which mm->def_flags a process can inherit its parent */
269 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
270
271 /* This mask is used to clear all the VMA flags used by mlock */
272 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
273
274 /*
275 * mapping from the currently active vm_flags protection bits (the
276 * low four bits) to a page protection mask..
277 */
278 extern pgprot_t protection_map[16];
279
280 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
281 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
282 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
283 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
284 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
285 #define FAULT_FLAG_TRIED 0x20 /* Second try */
286 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
287 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
288 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
289
290 #define FAULT_FLAG_TRACE \
291 { FAULT_FLAG_WRITE, "WRITE" }, \
292 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
293 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
294 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
295 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
296 { FAULT_FLAG_TRIED, "TRIED" }, \
297 { FAULT_FLAG_USER, "USER" }, \
298 { FAULT_FLAG_REMOTE, "REMOTE" }, \
299 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
300
301 /*
302 * vm_fault is filled by the the pagefault handler and passed to the vma's
303 * ->fault function. The vma's ->fault is responsible for returning a bitmask
304 * of VM_FAULT_xxx flags that give details about how the fault was handled.
305 *
306 * MM layer fills up gfp_mask for page allocations but fault handler might
307 * alter it if its implementation requires a different allocation context.
308 *
309 * pgoff should be used in favour of virtual_address, if possible.
310 */
311 struct vm_fault {
312 struct vm_area_struct *vma; /* Target VMA */
313 unsigned int flags; /* FAULT_FLAG_xxx flags */
314 gfp_t gfp_mask; /* gfp mask to be used for allocations */
315 pgoff_t pgoff; /* Logical page offset based on vma */
316 unsigned long address; /* Faulting virtual address */
317 pmd_t *pmd; /* Pointer to pmd entry matching
318 * the 'address' */
319 pud_t *pud; /* Pointer to pud entry matching
320 * the 'address'
321 */
322 pte_t orig_pte; /* Value of PTE at the time of fault */
323
324 struct page *cow_page; /* Page handler may use for COW fault */
325 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
326 struct page *page; /* ->fault handlers should return a
327 * page here, unless VM_FAULT_NOPAGE
328 * is set (which is also implied by
329 * VM_FAULT_ERROR).
330 */
331 /* These three entries are valid only while holding ptl lock */
332 pte_t *pte; /* Pointer to pte entry matching
333 * the 'address'. NULL if the page
334 * table hasn't been allocated.
335 */
336 spinlock_t *ptl; /* Page table lock.
337 * Protects pte page table if 'pte'
338 * is not NULL, otherwise pmd.
339 */
340 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
341 * vm_ops->map_pages() calls
342 * alloc_set_pte() from atomic context.
343 * do_fault_around() pre-allocates
344 * page table to avoid allocation from
345 * atomic context.
346 */
347 };
348
349 /* page entry size for vm->huge_fault() */
350 enum page_entry_size {
351 PE_SIZE_PTE = 0,
352 PE_SIZE_PMD,
353 PE_SIZE_PUD,
354 };
355
356 /*
357 * These are the virtual MM functions - opening of an area, closing and
358 * unmapping it (needed to keep files on disk up-to-date etc), pointer
359 * to the functions called when a no-page or a wp-page exception occurs.
360 */
361 struct vm_operations_struct {
362 void (*open)(struct vm_area_struct * area);
363 void (*close)(struct vm_area_struct * area);
364 int (*mremap)(struct vm_area_struct * area);
365 int (*fault)(struct vm_fault *vmf);
366 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
367 void (*map_pages)(struct vm_fault *vmf,
368 pgoff_t start_pgoff, pgoff_t end_pgoff);
369
370 /* notification that a previously read-only page is about to become
371 * writable, if an error is returned it will cause a SIGBUS */
372 int (*page_mkwrite)(struct vm_fault *vmf);
373
374 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
375 int (*pfn_mkwrite)(struct vm_fault *vmf);
376
377 /* called by access_process_vm when get_user_pages() fails, typically
378 * for use by special VMAs that can switch between memory and hardware
379 */
380 int (*access)(struct vm_area_struct *vma, unsigned long addr,
381 void *buf, int len, int write);
382
383 /* Called by the /proc/PID/maps code to ask the vma whether it
384 * has a special name. Returning non-NULL will also cause this
385 * vma to be dumped unconditionally. */
386 const char *(*name)(struct vm_area_struct *vma);
387
388 #ifdef CONFIG_NUMA
389 /*
390 * set_policy() op must add a reference to any non-NULL @new mempolicy
391 * to hold the policy upon return. Caller should pass NULL @new to
392 * remove a policy and fall back to surrounding context--i.e. do not
393 * install a MPOL_DEFAULT policy, nor the task or system default
394 * mempolicy.
395 */
396 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
397
398 /*
399 * get_policy() op must add reference [mpol_get()] to any policy at
400 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
401 * in mm/mempolicy.c will do this automatically.
402 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
403 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
404 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
405 * must return NULL--i.e., do not "fallback" to task or system default
406 * policy.
407 */
408 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
409 unsigned long addr);
410 #endif
411 /*
412 * Called by vm_normal_page() for special PTEs to find the
413 * page for @addr. This is useful if the default behavior
414 * (using pte_page()) would not find the correct page.
415 */
416 struct page *(*find_special_page)(struct vm_area_struct *vma,
417 unsigned long addr);
418 };
419
420 struct mmu_gather;
421 struct inode;
422
423 #define page_private(page) ((page)->private)
424 #define set_page_private(page, v) ((page)->private = (v))
425
426 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
427 static inline int pmd_devmap(pmd_t pmd)
428 {
429 return 0;
430 }
431 static inline int pud_devmap(pud_t pud)
432 {
433 return 0;
434 }
435 #endif
436
437 /*
438 * FIXME: take this include out, include page-flags.h in
439 * files which need it (119 of them)
440 */
441 #include <linux/page-flags.h>
442 #include <linux/huge_mm.h>
443
444 /*
445 * Methods to modify the page usage count.
446 *
447 * What counts for a page usage:
448 * - cache mapping (page->mapping)
449 * - private data (page->private)
450 * - page mapped in a task's page tables, each mapping
451 * is counted separately
452 *
453 * Also, many kernel routines increase the page count before a critical
454 * routine so they can be sure the page doesn't go away from under them.
455 */
456
457 /*
458 * Drop a ref, return true if the refcount fell to zero (the page has no users)
459 */
460 static inline int put_page_testzero(struct page *page)
461 {
462 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
463 return page_ref_dec_and_test(page);
464 }
465
466 /*
467 * Try to grab a ref unless the page has a refcount of zero, return false if
468 * that is the case.
469 * This can be called when MMU is off so it must not access
470 * any of the virtual mappings.
471 */
472 static inline int get_page_unless_zero(struct page *page)
473 {
474 return page_ref_add_unless(page, 1, 0);
475 }
476
477 extern int page_is_ram(unsigned long pfn);
478
479 enum {
480 REGION_INTERSECTS,
481 REGION_DISJOINT,
482 REGION_MIXED,
483 };
484
485 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
486 unsigned long desc);
487
488 /* Support for virtually mapped pages */
489 struct page *vmalloc_to_page(const void *addr);
490 unsigned long vmalloc_to_pfn(const void *addr);
491
492 /*
493 * Determine if an address is within the vmalloc range
494 *
495 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
496 * is no special casing required.
497 */
498 static inline bool is_vmalloc_addr(const void *x)
499 {
500 #ifdef CONFIG_MMU
501 unsigned long addr = (unsigned long)x;
502
503 return addr >= VMALLOC_START && addr < VMALLOC_END;
504 #else
505 return false;
506 #endif
507 }
508 #ifdef CONFIG_MMU
509 extern int is_vmalloc_or_module_addr(const void *x);
510 #else
511 static inline int is_vmalloc_or_module_addr(const void *x)
512 {
513 return 0;
514 }
515 #endif
516
517 extern void kvfree(const void *addr);
518
519 static inline atomic_t *compound_mapcount_ptr(struct page *page)
520 {
521 return &page[1].compound_mapcount;
522 }
523
524 static inline int compound_mapcount(struct page *page)
525 {
526 VM_BUG_ON_PAGE(!PageCompound(page), page);
527 page = compound_head(page);
528 return atomic_read(compound_mapcount_ptr(page)) + 1;
529 }
530
531 /*
532 * The atomic page->_mapcount, starts from -1: so that transitions
533 * both from it and to it can be tracked, using atomic_inc_and_test
534 * and atomic_add_negative(-1).
535 */
536 static inline void page_mapcount_reset(struct page *page)
537 {
538 atomic_set(&(page)->_mapcount, -1);
539 }
540
541 int __page_mapcount(struct page *page);
542
543 static inline int page_mapcount(struct page *page)
544 {
545 VM_BUG_ON_PAGE(PageSlab(page), page);
546
547 if (unlikely(PageCompound(page)))
548 return __page_mapcount(page);
549 return atomic_read(&page->_mapcount) + 1;
550 }
551
552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
553 int total_mapcount(struct page *page);
554 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
555 #else
556 static inline int total_mapcount(struct page *page)
557 {
558 return page_mapcount(page);
559 }
560 static inline int page_trans_huge_mapcount(struct page *page,
561 int *total_mapcount)
562 {
563 int mapcount = page_mapcount(page);
564 if (total_mapcount)
565 *total_mapcount = mapcount;
566 return mapcount;
567 }
568 #endif
569
570 static inline struct page *virt_to_head_page(const void *x)
571 {
572 struct page *page = virt_to_page(x);
573
574 return compound_head(page);
575 }
576
577 void __put_page(struct page *page);
578
579 void put_pages_list(struct list_head *pages);
580
581 void split_page(struct page *page, unsigned int order);
582
583 /*
584 * Compound pages have a destructor function. Provide a
585 * prototype for that function and accessor functions.
586 * These are _only_ valid on the head of a compound page.
587 */
588 typedef void compound_page_dtor(struct page *);
589
590 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
591 enum compound_dtor_id {
592 NULL_COMPOUND_DTOR,
593 COMPOUND_PAGE_DTOR,
594 #ifdef CONFIG_HUGETLB_PAGE
595 HUGETLB_PAGE_DTOR,
596 #endif
597 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
598 TRANSHUGE_PAGE_DTOR,
599 #endif
600 NR_COMPOUND_DTORS,
601 };
602 extern compound_page_dtor * const compound_page_dtors[];
603
604 static inline void set_compound_page_dtor(struct page *page,
605 enum compound_dtor_id compound_dtor)
606 {
607 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
608 page[1].compound_dtor = compound_dtor;
609 }
610
611 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
612 {
613 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
614 return compound_page_dtors[page[1].compound_dtor];
615 }
616
617 static inline unsigned int compound_order(struct page *page)
618 {
619 if (!PageHead(page))
620 return 0;
621 return page[1].compound_order;
622 }
623
624 static inline void set_compound_order(struct page *page, unsigned int order)
625 {
626 page[1].compound_order = order;
627 }
628
629 void free_compound_page(struct page *page);
630
631 #ifdef CONFIG_MMU
632 /*
633 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
634 * servicing faults for write access. In the normal case, do always want
635 * pte_mkwrite. But get_user_pages can cause write faults for mappings
636 * that do not have writing enabled, when used by access_process_vm.
637 */
638 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
639 {
640 if (likely(vma->vm_flags & VM_WRITE))
641 pte = pte_mkwrite(pte);
642 return pte;
643 }
644
645 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
646 struct page *page);
647 int finish_fault(struct vm_fault *vmf);
648 int finish_mkwrite_fault(struct vm_fault *vmf);
649 #endif
650
651 /*
652 * Multiple processes may "see" the same page. E.g. for untouched
653 * mappings of /dev/null, all processes see the same page full of
654 * zeroes, and text pages of executables and shared libraries have
655 * only one copy in memory, at most, normally.
656 *
657 * For the non-reserved pages, page_count(page) denotes a reference count.
658 * page_count() == 0 means the page is free. page->lru is then used for
659 * freelist management in the buddy allocator.
660 * page_count() > 0 means the page has been allocated.
661 *
662 * Pages are allocated by the slab allocator in order to provide memory
663 * to kmalloc and kmem_cache_alloc. In this case, the management of the
664 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
665 * unless a particular usage is carefully commented. (the responsibility of
666 * freeing the kmalloc memory is the caller's, of course).
667 *
668 * A page may be used by anyone else who does a __get_free_page().
669 * In this case, page_count still tracks the references, and should only
670 * be used through the normal accessor functions. The top bits of page->flags
671 * and page->virtual store page management information, but all other fields
672 * are unused and could be used privately, carefully. The management of this
673 * page is the responsibility of the one who allocated it, and those who have
674 * subsequently been given references to it.
675 *
676 * The other pages (we may call them "pagecache pages") are completely
677 * managed by the Linux memory manager: I/O, buffers, swapping etc.
678 * The following discussion applies only to them.
679 *
680 * A pagecache page contains an opaque `private' member, which belongs to the
681 * page's address_space. Usually, this is the address of a circular list of
682 * the page's disk buffers. PG_private must be set to tell the VM to call
683 * into the filesystem to release these pages.
684 *
685 * A page may belong to an inode's memory mapping. In this case, page->mapping
686 * is the pointer to the inode, and page->index is the file offset of the page,
687 * in units of PAGE_SIZE.
688 *
689 * If pagecache pages are not associated with an inode, they are said to be
690 * anonymous pages. These may become associated with the swapcache, and in that
691 * case PG_swapcache is set, and page->private is an offset into the swapcache.
692 *
693 * In either case (swapcache or inode backed), the pagecache itself holds one
694 * reference to the page. Setting PG_private should also increment the
695 * refcount. The each user mapping also has a reference to the page.
696 *
697 * The pagecache pages are stored in a per-mapping radix tree, which is
698 * rooted at mapping->page_tree, and indexed by offset.
699 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
700 * lists, we instead now tag pages as dirty/writeback in the radix tree.
701 *
702 * All pagecache pages may be subject to I/O:
703 * - inode pages may need to be read from disk,
704 * - inode pages which have been modified and are MAP_SHARED may need
705 * to be written back to the inode on disk,
706 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
707 * modified may need to be swapped out to swap space and (later) to be read
708 * back into memory.
709 */
710
711 /*
712 * The zone field is never updated after free_area_init_core()
713 * sets it, so none of the operations on it need to be atomic.
714 */
715
716 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
717 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
718 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
719 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
720 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
721
722 /*
723 * Define the bit shifts to access each section. For non-existent
724 * sections we define the shift as 0; that plus a 0 mask ensures
725 * the compiler will optimise away reference to them.
726 */
727 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
728 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
729 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
730 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
731
732 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
733 #ifdef NODE_NOT_IN_PAGE_FLAGS
734 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
735 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
736 SECTIONS_PGOFF : ZONES_PGOFF)
737 #else
738 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
739 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
740 NODES_PGOFF : ZONES_PGOFF)
741 #endif
742
743 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
744
745 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
746 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
747 #endif
748
749 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
750 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
751 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
752 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
753 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
754
755 static inline enum zone_type page_zonenum(const struct page *page)
756 {
757 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
758 }
759
760 #ifdef CONFIG_ZONE_DEVICE
761 void get_zone_device_page(struct page *page);
762 void put_zone_device_page(struct page *page);
763 static inline bool is_zone_device_page(const struct page *page)
764 {
765 return page_zonenum(page) == ZONE_DEVICE;
766 }
767 #else
768 static inline void get_zone_device_page(struct page *page)
769 {
770 }
771 static inline void put_zone_device_page(struct page *page)
772 {
773 }
774 static inline bool is_zone_device_page(const struct page *page)
775 {
776 return false;
777 }
778 #endif
779
780 static inline void get_page(struct page *page)
781 {
782 page = compound_head(page);
783 /*
784 * Getting a normal page or the head of a compound page
785 * requires to already have an elevated page->_refcount.
786 */
787 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
788 page_ref_inc(page);
789
790 if (unlikely(is_zone_device_page(page)))
791 get_zone_device_page(page);
792 }
793
794 static inline void put_page(struct page *page)
795 {
796 page = compound_head(page);
797
798 if (put_page_testzero(page))
799 __put_page(page);
800
801 if (unlikely(is_zone_device_page(page)))
802 put_zone_device_page(page);
803 }
804
805 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
806 #define SECTION_IN_PAGE_FLAGS
807 #endif
808
809 /*
810 * The identification function is mainly used by the buddy allocator for
811 * determining if two pages could be buddies. We are not really identifying
812 * the zone since we could be using the section number id if we do not have
813 * node id available in page flags.
814 * We only guarantee that it will return the same value for two combinable
815 * pages in a zone.
816 */
817 static inline int page_zone_id(struct page *page)
818 {
819 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
820 }
821
822 static inline int zone_to_nid(struct zone *zone)
823 {
824 #ifdef CONFIG_NUMA
825 return zone->node;
826 #else
827 return 0;
828 #endif
829 }
830
831 #ifdef NODE_NOT_IN_PAGE_FLAGS
832 extern int page_to_nid(const struct page *page);
833 #else
834 static inline int page_to_nid(const struct page *page)
835 {
836 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
837 }
838 #endif
839
840 #ifdef CONFIG_NUMA_BALANCING
841 static inline int cpu_pid_to_cpupid(int cpu, int pid)
842 {
843 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
844 }
845
846 static inline int cpupid_to_pid(int cpupid)
847 {
848 return cpupid & LAST__PID_MASK;
849 }
850
851 static inline int cpupid_to_cpu(int cpupid)
852 {
853 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
854 }
855
856 static inline int cpupid_to_nid(int cpupid)
857 {
858 return cpu_to_node(cpupid_to_cpu(cpupid));
859 }
860
861 static inline bool cpupid_pid_unset(int cpupid)
862 {
863 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
864 }
865
866 static inline bool cpupid_cpu_unset(int cpupid)
867 {
868 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
869 }
870
871 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
872 {
873 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
874 }
875
876 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
877 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
878 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
879 {
880 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
881 }
882
883 static inline int page_cpupid_last(struct page *page)
884 {
885 return page->_last_cpupid;
886 }
887 static inline void page_cpupid_reset_last(struct page *page)
888 {
889 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
890 }
891 #else
892 static inline int page_cpupid_last(struct page *page)
893 {
894 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
895 }
896
897 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
898
899 static inline void page_cpupid_reset_last(struct page *page)
900 {
901 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
902 }
903 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
904 #else /* !CONFIG_NUMA_BALANCING */
905 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
906 {
907 return page_to_nid(page); /* XXX */
908 }
909
910 static inline int page_cpupid_last(struct page *page)
911 {
912 return page_to_nid(page); /* XXX */
913 }
914
915 static inline int cpupid_to_nid(int cpupid)
916 {
917 return -1;
918 }
919
920 static inline int cpupid_to_pid(int cpupid)
921 {
922 return -1;
923 }
924
925 static inline int cpupid_to_cpu(int cpupid)
926 {
927 return -1;
928 }
929
930 static inline int cpu_pid_to_cpupid(int nid, int pid)
931 {
932 return -1;
933 }
934
935 static inline bool cpupid_pid_unset(int cpupid)
936 {
937 return 1;
938 }
939
940 static inline void page_cpupid_reset_last(struct page *page)
941 {
942 }
943
944 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
945 {
946 return false;
947 }
948 #endif /* CONFIG_NUMA_BALANCING */
949
950 static inline struct zone *page_zone(const struct page *page)
951 {
952 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
953 }
954
955 static inline pg_data_t *page_pgdat(const struct page *page)
956 {
957 return NODE_DATA(page_to_nid(page));
958 }
959
960 #ifdef SECTION_IN_PAGE_FLAGS
961 static inline void set_page_section(struct page *page, unsigned long section)
962 {
963 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
964 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
965 }
966
967 static inline unsigned long page_to_section(const struct page *page)
968 {
969 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
970 }
971 #endif
972
973 static inline void set_page_zone(struct page *page, enum zone_type zone)
974 {
975 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
976 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
977 }
978
979 static inline void set_page_node(struct page *page, unsigned long node)
980 {
981 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
982 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
983 }
984
985 static inline void set_page_links(struct page *page, enum zone_type zone,
986 unsigned long node, unsigned long pfn)
987 {
988 set_page_zone(page, zone);
989 set_page_node(page, node);
990 #ifdef SECTION_IN_PAGE_FLAGS
991 set_page_section(page, pfn_to_section_nr(pfn));
992 #endif
993 }
994
995 #ifdef CONFIG_MEMCG
996 static inline struct mem_cgroup *page_memcg(struct page *page)
997 {
998 return page->mem_cgroup;
999 }
1000 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1001 {
1002 WARN_ON_ONCE(!rcu_read_lock_held());
1003 return READ_ONCE(page->mem_cgroup);
1004 }
1005 #else
1006 static inline struct mem_cgroup *page_memcg(struct page *page)
1007 {
1008 return NULL;
1009 }
1010 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1011 {
1012 WARN_ON_ONCE(!rcu_read_lock_held());
1013 return NULL;
1014 }
1015 #endif
1016
1017 /*
1018 * Some inline functions in vmstat.h depend on page_zone()
1019 */
1020 #include <linux/vmstat.h>
1021
1022 static __always_inline void *lowmem_page_address(const struct page *page)
1023 {
1024 return page_to_virt(page);
1025 }
1026
1027 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1028 #define HASHED_PAGE_VIRTUAL
1029 #endif
1030
1031 #if defined(WANT_PAGE_VIRTUAL)
1032 static inline void *page_address(const struct page *page)
1033 {
1034 return page->virtual;
1035 }
1036 static inline void set_page_address(struct page *page, void *address)
1037 {
1038 page->virtual = address;
1039 }
1040 #define page_address_init() do { } while(0)
1041 #endif
1042
1043 #if defined(HASHED_PAGE_VIRTUAL)
1044 void *page_address(const struct page *page);
1045 void set_page_address(struct page *page, void *virtual);
1046 void page_address_init(void);
1047 #endif
1048
1049 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1050 #define page_address(page) lowmem_page_address(page)
1051 #define set_page_address(page, address) do { } while(0)
1052 #define page_address_init() do { } while(0)
1053 #endif
1054
1055 extern void *page_rmapping(struct page *page);
1056 extern struct anon_vma *page_anon_vma(struct page *page);
1057 extern struct address_space *page_mapping(struct page *page);
1058
1059 extern struct address_space *__page_file_mapping(struct page *);
1060
1061 static inline
1062 struct address_space *page_file_mapping(struct page *page)
1063 {
1064 if (unlikely(PageSwapCache(page)))
1065 return __page_file_mapping(page);
1066
1067 return page->mapping;
1068 }
1069
1070 extern pgoff_t __page_file_index(struct page *page);
1071
1072 /*
1073 * Return the pagecache index of the passed page. Regular pagecache pages
1074 * use ->index whereas swapcache pages use swp_offset(->private)
1075 */
1076 static inline pgoff_t page_index(struct page *page)
1077 {
1078 if (unlikely(PageSwapCache(page)))
1079 return __page_file_index(page);
1080 return page->index;
1081 }
1082
1083 bool page_mapped(struct page *page);
1084 struct address_space *page_mapping(struct page *page);
1085
1086 /*
1087 * Return true only if the page has been allocated with
1088 * ALLOC_NO_WATERMARKS and the low watermark was not
1089 * met implying that the system is under some pressure.
1090 */
1091 static inline bool page_is_pfmemalloc(struct page *page)
1092 {
1093 /*
1094 * Page index cannot be this large so this must be
1095 * a pfmemalloc page.
1096 */
1097 return page->index == -1UL;
1098 }
1099
1100 /*
1101 * Only to be called by the page allocator on a freshly allocated
1102 * page.
1103 */
1104 static inline void set_page_pfmemalloc(struct page *page)
1105 {
1106 page->index = -1UL;
1107 }
1108
1109 static inline void clear_page_pfmemalloc(struct page *page)
1110 {
1111 page->index = 0;
1112 }
1113
1114 /*
1115 * Different kinds of faults, as returned by handle_mm_fault().
1116 * Used to decide whether a process gets delivered SIGBUS or
1117 * just gets major/minor fault counters bumped up.
1118 */
1119
1120 #define VM_FAULT_OOM 0x0001
1121 #define VM_FAULT_SIGBUS 0x0002
1122 #define VM_FAULT_MAJOR 0x0004
1123 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1124 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1125 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1126 #define VM_FAULT_SIGSEGV 0x0040
1127
1128 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1129 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1130 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1131 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1132 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1133
1134 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1135
1136 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1137 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1138 VM_FAULT_FALLBACK)
1139
1140 #define VM_FAULT_RESULT_TRACE \
1141 { VM_FAULT_OOM, "OOM" }, \
1142 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1143 { VM_FAULT_MAJOR, "MAJOR" }, \
1144 { VM_FAULT_WRITE, "WRITE" }, \
1145 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1146 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1147 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1148 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1149 { VM_FAULT_LOCKED, "LOCKED" }, \
1150 { VM_FAULT_RETRY, "RETRY" }, \
1151 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1152 { VM_FAULT_DONE_COW, "DONE_COW" }
1153
1154 /* Encode hstate index for a hwpoisoned large page */
1155 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1156 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1157
1158 /*
1159 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1160 */
1161 extern void pagefault_out_of_memory(void);
1162
1163 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1164
1165 /*
1166 * Flags passed to show_mem() and show_free_areas() to suppress output in
1167 * various contexts.
1168 */
1169 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1170
1171 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1172
1173 extern bool can_do_mlock(void);
1174 extern int user_shm_lock(size_t, struct user_struct *);
1175 extern void user_shm_unlock(size_t, struct user_struct *);
1176
1177 /*
1178 * Parameter block passed down to zap_pte_range in exceptional cases.
1179 */
1180 struct zap_details {
1181 struct address_space *check_mapping; /* Check page->mapping if set */
1182 pgoff_t first_index; /* Lowest page->index to unmap */
1183 pgoff_t last_index; /* Highest page->index to unmap */
1184 };
1185
1186 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1187 pte_t pte);
1188 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1189 pmd_t pmd);
1190
1191 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1192 unsigned long size);
1193 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1194 unsigned long size);
1195 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1196 unsigned long start, unsigned long end);
1197
1198 /**
1199 * mm_walk - callbacks for walk_page_range
1200 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1201 * this handler should only handle pud_trans_huge() puds.
1202 * the pmd_entry or pte_entry callbacks will be used for
1203 * regular PUDs.
1204 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1205 * this handler is required to be able to handle
1206 * pmd_trans_huge() pmds. They may simply choose to
1207 * split_huge_page() instead of handling it explicitly.
1208 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1209 * @pte_hole: if set, called for each hole at all levels
1210 * @hugetlb_entry: if set, called for each hugetlb entry
1211 * @test_walk: caller specific callback function to determine whether
1212 * we walk over the current vma or not. Returning 0
1213 * value means "do page table walk over the current vma,"
1214 * and a negative one means "abort current page table walk
1215 * right now." 1 means "skip the current vma."
1216 * @mm: mm_struct representing the target process of page table walk
1217 * @vma: vma currently walked (NULL if walking outside vmas)
1218 * @private: private data for callbacks' usage
1219 *
1220 * (see the comment on walk_page_range() for more details)
1221 */
1222 struct mm_walk {
1223 int (*pud_entry)(pud_t *pud, unsigned long addr,
1224 unsigned long next, struct mm_walk *walk);
1225 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1226 unsigned long next, struct mm_walk *walk);
1227 int (*pte_entry)(pte_t *pte, unsigned long addr,
1228 unsigned long next, struct mm_walk *walk);
1229 int (*pte_hole)(unsigned long addr, unsigned long next,
1230 struct mm_walk *walk);
1231 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1232 unsigned long addr, unsigned long next,
1233 struct mm_walk *walk);
1234 int (*test_walk)(unsigned long addr, unsigned long next,
1235 struct mm_walk *walk);
1236 struct mm_struct *mm;
1237 struct vm_area_struct *vma;
1238 void *private;
1239 };
1240
1241 int walk_page_range(unsigned long addr, unsigned long end,
1242 struct mm_walk *walk);
1243 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1244 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1245 unsigned long end, unsigned long floor, unsigned long ceiling);
1246 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1247 struct vm_area_struct *vma);
1248 void unmap_mapping_range(struct address_space *mapping,
1249 loff_t const holebegin, loff_t const holelen, int even_cows);
1250 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1251 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1252 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1253 unsigned long *pfn);
1254 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1255 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1256 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1257 void *buf, int len, int write);
1258
1259 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1260 loff_t const holebegin, loff_t const holelen)
1261 {
1262 unmap_mapping_range(mapping, holebegin, holelen, 0);
1263 }
1264
1265 extern void truncate_pagecache(struct inode *inode, loff_t new);
1266 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1267 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1268 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1269 int truncate_inode_page(struct address_space *mapping, struct page *page);
1270 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1271 int invalidate_inode_page(struct page *page);
1272
1273 #ifdef CONFIG_MMU
1274 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1275 unsigned int flags);
1276 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1277 unsigned long address, unsigned int fault_flags,
1278 bool *unlocked);
1279 #else
1280 static inline int handle_mm_fault(struct vm_area_struct *vma,
1281 unsigned long address, unsigned int flags)
1282 {
1283 /* should never happen if there's no MMU */
1284 BUG();
1285 return VM_FAULT_SIGBUS;
1286 }
1287 static inline int fixup_user_fault(struct task_struct *tsk,
1288 struct mm_struct *mm, unsigned long address,
1289 unsigned int fault_flags, bool *unlocked)
1290 {
1291 /* should never happen if there's no MMU */
1292 BUG();
1293 return -EFAULT;
1294 }
1295 #endif
1296
1297 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1298 unsigned int gup_flags);
1299 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1300 void *buf, int len, unsigned int gup_flags);
1301 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1302 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1303
1304 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1305 unsigned long start, unsigned long nr_pages,
1306 unsigned int gup_flags, struct page **pages,
1307 struct vm_area_struct **vmas, int *locked);
1308 long get_user_pages(unsigned long start, unsigned long nr_pages,
1309 unsigned int gup_flags, struct page **pages,
1310 struct vm_area_struct **vmas);
1311 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1312 unsigned int gup_flags, struct page **pages, int *locked);
1313 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1314 struct page **pages, unsigned int gup_flags);
1315 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1316 struct page **pages);
1317
1318 /* Container for pinned pfns / pages */
1319 struct frame_vector {
1320 unsigned int nr_allocated; /* Number of frames we have space for */
1321 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1322 bool got_ref; /* Did we pin pages by getting page ref? */
1323 bool is_pfns; /* Does array contain pages or pfns? */
1324 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1325 * pfns_vector_pages() or pfns_vector_pfns()
1326 * for access */
1327 };
1328
1329 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1330 void frame_vector_destroy(struct frame_vector *vec);
1331 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1332 unsigned int gup_flags, struct frame_vector *vec);
1333 void put_vaddr_frames(struct frame_vector *vec);
1334 int frame_vector_to_pages(struct frame_vector *vec);
1335 void frame_vector_to_pfns(struct frame_vector *vec);
1336
1337 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1338 {
1339 return vec->nr_frames;
1340 }
1341
1342 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1343 {
1344 if (vec->is_pfns) {
1345 int err = frame_vector_to_pages(vec);
1346
1347 if (err)
1348 return ERR_PTR(err);
1349 }
1350 return (struct page **)(vec->ptrs);
1351 }
1352
1353 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1354 {
1355 if (!vec->is_pfns)
1356 frame_vector_to_pfns(vec);
1357 return (unsigned long *)(vec->ptrs);
1358 }
1359
1360 struct kvec;
1361 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1362 struct page **pages);
1363 int get_kernel_page(unsigned long start, int write, struct page **pages);
1364 struct page *get_dump_page(unsigned long addr);
1365
1366 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1367 extern void do_invalidatepage(struct page *page, unsigned int offset,
1368 unsigned int length);
1369
1370 int __set_page_dirty_nobuffers(struct page *page);
1371 int __set_page_dirty_no_writeback(struct page *page);
1372 int redirty_page_for_writepage(struct writeback_control *wbc,
1373 struct page *page);
1374 void account_page_dirtied(struct page *page, struct address_space *mapping);
1375 void account_page_cleaned(struct page *page, struct address_space *mapping,
1376 struct bdi_writeback *wb);
1377 int set_page_dirty(struct page *page);
1378 int set_page_dirty_lock(struct page *page);
1379 void cancel_dirty_page(struct page *page);
1380 int clear_page_dirty_for_io(struct page *page);
1381
1382 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1383
1384 /* Is the vma a continuation of the stack vma above it? */
1385 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1386 {
1387 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1388 }
1389
1390 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1391 {
1392 return !vma->vm_ops;
1393 }
1394
1395 #ifdef CONFIG_SHMEM
1396 /*
1397 * The vma_is_shmem is not inline because it is used only by slow
1398 * paths in userfault.
1399 */
1400 bool vma_is_shmem(struct vm_area_struct *vma);
1401 #else
1402 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1403 #endif
1404
1405 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1406 unsigned long addr)
1407 {
1408 return (vma->vm_flags & VM_GROWSDOWN) &&
1409 (vma->vm_start == addr) &&
1410 !vma_growsdown(vma->vm_prev, addr);
1411 }
1412
1413 /* Is the vma a continuation of the stack vma below it? */
1414 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1415 {
1416 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1417 }
1418
1419 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1420 unsigned long addr)
1421 {
1422 return (vma->vm_flags & VM_GROWSUP) &&
1423 (vma->vm_end == addr) &&
1424 !vma_growsup(vma->vm_next, addr);
1425 }
1426
1427 int vma_is_stack_for_current(struct vm_area_struct *vma);
1428
1429 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1430 unsigned long old_addr, struct vm_area_struct *new_vma,
1431 unsigned long new_addr, unsigned long len,
1432 bool need_rmap_locks);
1433 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1434 unsigned long end, pgprot_t newprot,
1435 int dirty_accountable, int prot_numa);
1436 extern int mprotect_fixup(struct vm_area_struct *vma,
1437 struct vm_area_struct **pprev, unsigned long start,
1438 unsigned long end, unsigned long newflags);
1439
1440 /*
1441 * doesn't attempt to fault and will return short.
1442 */
1443 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1444 struct page **pages);
1445 /*
1446 * per-process(per-mm_struct) statistics.
1447 */
1448 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1449 {
1450 long val = atomic_long_read(&mm->rss_stat.count[member]);
1451
1452 #ifdef SPLIT_RSS_COUNTING
1453 /*
1454 * counter is updated in asynchronous manner and may go to minus.
1455 * But it's never be expected number for users.
1456 */
1457 if (val < 0)
1458 val = 0;
1459 #endif
1460 return (unsigned long)val;
1461 }
1462
1463 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1464 {
1465 atomic_long_add(value, &mm->rss_stat.count[member]);
1466 }
1467
1468 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1469 {
1470 atomic_long_inc(&mm->rss_stat.count[member]);
1471 }
1472
1473 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1474 {
1475 atomic_long_dec(&mm->rss_stat.count[member]);
1476 }
1477
1478 /* Optimized variant when page is already known not to be PageAnon */
1479 static inline int mm_counter_file(struct page *page)
1480 {
1481 if (PageSwapBacked(page))
1482 return MM_SHMEMPAGES;
1483 return MM_FILEPAGES;
1484 }
1485
1486 static inline int mm_counter(struct page *page)
1487 {
1488 if (PageAnon(page))
1489 return MM_ANONPAGES;
1490 return mm_counter_file(page);
1491 }
1492
1493 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1494 {
1495 return get_mm_counter(mm, MM_FILEPAGES) +
1496 get_mm_counter(mm, MM_ANONPAGES) +
1497 get_mm_counter(mm, MM_SHMEMPAGES);
1498 }
1499
1500 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1501 {
1502 return max(mm->hiwater_rss, get_mm_rss(mm));
1503 }
1504
1505 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1506 {
1507 return max(mm->hiwater_vm, mm->total_vm);
1508 }
1509
1510 static inline void update_hiwater_rss(struct mm_struct *mm)
1511 {
1512 unsigned long _rss = get_mm_rss(mm);
1513
1514 if ((mm)->hiwater_rss < _rss)
1515 (mm)->hiwater_rss = _rss;
1516 }
1517
1518 static inline void update_hiwater_vm(struct mm_struct *mm)
1519 {
1520 if (mm->hiwater_vm < mm->total_vm)
1521 mm->hiwater_vm = mm->total_vm;
1522 }
1523
1524 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1525 {
1526 mm->hiwater_rss = get_mm_rss(mm);
1527 }
1528
1529 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1530 struct mm_struct *mm)
1531 {
1532 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1533
1534 if (*maxrss < hiwater_rss)
1535 *maxrss = hiwater_rss;
1536 }
1537
1538 #if defined(SPLIT_RSS_COUNTING)
1539 void sync_mm_rss(struct mm_struct *mm);
1540 #else
1541 static inline void sync_mm_rss(struct mm_struct *mm)
1542 {
1543 }
1544 #endif
1545
1546 #ifndef __HAVE_ARCH_PTE_DEVMAP
1547 static inline int pte_devmap(pte_t pte)
1548 {
1549 return 0;
1550 }
1551 #endif
1552
1553 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1554
1555 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1556 spinlock_t **ptl);
1557 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1558 spinlock_t **ptl)
1559 {
1560 pte_t *ptep;
1561 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1562 return ptep;
1563 }
1564
1565 #ifdef __PAGETABLE_P4D_FOLDED
1566 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1567 unsigned long address)
1568 {
1569 return 0;
1570 }
1571 #else
1572 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1573 #endif
1574
1575 #ifdef __PAGETABLE_PUD_FOLDED
1576 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1577 unsigned long address)
1578 {
1579 return 0;
1580 }
1581 #else
1582 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1583 #endif
1584
1585 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1586 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1587 unsigned long address)
1588 {
1589 return 0;
1590 }
1591
1592 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1593
1594 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1595 {
1596 return 0;
1597 }
1598
1599 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1600 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1601
1602 #else
1603 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1604
1605 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1606 {
1607 atomic_long_set(&mm->nr_pmds, 0);
1608 }
1609
1610 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1611 {
1612 return atomic_long_read(&mm->nr_pmds);
1613 }
1614
1615 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1616 {
1617 atomic_long_inc(&mm->nr_pmds);
1618 }
1619
1620 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1621 {
1622 atomic_long_dec(&mm->nr_pmds);
1623 }
1624 #endif
1625
1626 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1627 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1628
1629 /*
1630 * The following ifdef needed to get the 4level-fixup.h header to work.
1631 * Remove it when 4level-fixup.h has been removed.
1632 */
1633 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1634
1635 #ifndef __ARCH_HAS_5LEVEL_HACK
1636 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1637 unsigned long address)
1638 {
1639 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1640 NULL : p4d_offset(pgd, address);
1641 }
1642
1643 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1644 unsigned long address)
1645 {
1646 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1647 NULL : pud_offset(p4d, address);
1648 }
1649 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1650
1651 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1652 {
1653 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1654 NULL: pmd_offset(pud, address);
1655 }
1656 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1657
1658 #if USE_SPLIT_PTE_PTLOCKS
1659 #if ALLOC_SPLIT_PTLOCKS
1660 void __init ptlock_cache_init(void);
1661 extern bool ptlock_alloc(struct page *page);
1662 extern void ptlock_free(struct page *page);
1663
1664 static inline spinlock_t *ptlock_ptr(struct page *page)
1665 {
1666 return page->ptl;
1667 }
1668 #else /* ALLOC_SPLIT_PTLOCKS */
1669 static inline void ptlock_cache_init(void)
1670 {
1671 }
1672
1673 static inline bool ptlock_alloc(struct page *page)
1674 {
1675 return true;
1676 }
1677
1678 static inline void ptlock_free(struct page *page)
1679 {
1680 }
1681
1682 static inline spinlock_t *ptlock_ptr(struct page *page)
1683 {
1684 return &page->ptl;
1685 }
1686 #endif /* ALLOC_SPLIT_PTLOCKS */
1687
1688 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1689 {
1690 return ptlock_ptr(pmd_page(*pmd));
1691 }
1692
1693 static inline bool ptlock_init(struct page *page)
1694 {
1695 /*
1696 * prep_new_page() initialize page->private (and therefore page->ptl)
1697 * with 0. Make sure nobody took it in use in between.
1698 *
1699 * It can happen if arch try to use slab for page table allocation:
1700 * slab code uses page->slab_cache, which share storage with page->ptl.
1701 */
1702 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1703 if (!ptlock_alloc(page))
1704 return false;
1705 spin_lock_init(ptlock_ptr(page));
1706 return true;
1707 }
1708
1709 /* Reset page->mapping so free_pages_check won't complain. */
1710 static inline void pte_lock_deinit(struct page *page)
1711 {
1712 page->mapping = NULL;
1713 ptlock_free(page);
1714 }
1715
1716 #else /* !USE_SPLIT_PTE_PTLOCKS */
1717 /*
1718 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1719 */
1720 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1721 {
1722 return &mm->page_table_lock;
1723 }
1724 static inline void ptlock_cache_init(void) {}
1725 static inline bool ptlock_init(struct page *page) { return true; }
1726 static inline void pte_lock_deinit(struct page *page) {}
1727 #endif /* USE_SPLIT_PTE_PTLOCKS */
1728
1729 static inline void pgtable_init(void)
1730 {
1731 ptlock_cache_init();
1732 pgtable_cache_init();
1733 }
1734
1735 static inline bool pgtable_page_ctor(struct page *page)
1736 {
1737 if (!ptlock_init(page))
1738 return false;
1739 inc_zone_page_state(page, NR_PAGETABLE);
1740 return true;
1741 }
1742
1743 static inline void pgtable_page_dtor(struct page *page)
1744 {
1745 pte_lock_deinit(page);
1746 dec_zone_page_state(page, NR_PAGETABLE);
1747 }
1748
1749 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1750 ({ \
1751 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1752 pte_t *__pte = pte_offset_map(pmd, address); \
1753 *(ptlp) = __ptl; \
1754 spin_lock(__ptl); \
1755 __pte; \
1756 })
1757
1758 #define pte_unmap_unlock(pte, ptl) do { \
1759 spin_unlock(ptl); \
1760 pte_unmap(pte); \
1761 } while (0)
1762
1763 #define pte_alloc(mm, pmd, address) \
1764 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1765
1766 #define pte_alloc_map(mm, pmd, address) \
1767 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1768
1769 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1770 (pte_alloc(mm, pmd, address) ? \
1771 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1772
1773 #define pte_alloc_kernel(pmd, address) \
1774 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1775 NULL: pte_offset_kernel(pmd, address))
1776
1777 #if USE_SPLIT_PMD_PTLOCKS
1778
1779 static struct page *pmd_to_page(pmd_t *pmd)
1780 {
1781 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1782 return virt_to_page((void *)((unsigned long) pmd & mask));
1783 }
1784
1785 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1786 {
1787 return ptlock_ptr(pmd_to_page(pmd));
1788 }
1789
1790 static inline bool pgtable_pmd_page_ctor(struct page *page)
1791 {
1792 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1793 page->pmd_huge_pte = NULL;
1794 #endif
1795 return ptlock_init(page);
1796 }
1797
1798 static inline void pgtable_pmd_page_dtor(struct page *page)
1799 {
1800 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1801 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1802 #endif
1803 ptlock_free(page);
1804 }
1805
1806 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1807
1808 #else
1809
1810 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1811 {
1812 return &mm->page_table_lock;
1813 }
1814
1815 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1816 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1817
1818 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1819
1820 #endif
1821
1822 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1823 {
1824 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1825 spin_lock(ptl);
1826 return ptl;
1827 }
1828
1829 /*
1830 * No scalability reason to split PUD locks yet, but follow the same pattern
1831 * as the PMD locks to make it easier if we decide to. The VM should not be
1832 * considered ready to switch to split PUD locks yet; there may be places
1833 * which need to be converted from page_table_lock.
1834 */
1835 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1836 {
1837 return &mm->page_table_lock;
1838 }
1839
1840 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1841 {
1842 spinlock_t *ptl = pud_lockptr(mm, pud);
1843
1844 spin_lock(ptl);
1845 return ptl;
1846 }
1847
1848 extern void __init pagecache_init(void);
1849 extern void free_area_init(unsigned long * zones_size);
1850 extern void free_area_init_node(int nid, unsigned long * zones_size,
1851 unsigned long zone_start_pfn, unsigned long *zholes_size);
1852 extern void free_initmem(void);
1853
1854 /*
1855 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1856 * into the buddy system. The freed pages will be poisoned with pattern
1857 * "poison" if it's within range [0, UCHAR_MAX].
1858 * Return pages freed into the buddy system.
1859 */
1860 extern unsigned long free_reserved_area(void *start, void *end,
1861 int poison, char *s);
1862
1863 #ifdef CONFIG_HIGHMEM
1864 /*
1865 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1866 * and totalram_pages.
1867 */
1868 extern void free_highmem_page(struct page *page);
1869 #endif
1870
1871 extern void adjust_managed_page_count(struct page *page, long count);
1872 extern void mem_init_print_info(const char *str);
1873
1874 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1875
1876 /* Free the reserved page into the buddy system, so it gets managed. */
1877 static inline void __free_reserved_page(struct page *page)
1878 {
1879 ClearPageReserved(page);
1880 init_page_count(page);
1881 __free_page(page);
1882 }
1883
1884 static inline void free_reserved_page(struct page *page)
1885 {
1886 __free_reserved_page(page);
1887 adjust_managed_page_count(page, 1);
1888 }
1889
1890 static inline void mark_page_reserved(struct page *page)
1891 {
1892 SetPageReserved(page);
1893 adjust_managed_page_count(page, -1);
1894 }
1895
1896 /*
1897 * Default method to free all the __init memory into the buddy system.
1898 * The freed pages will be poisoned with pattern "poison" if it's within
1899 * range [0, UCHAR_MAX].
1900 * Return pages freed into the buddy system.
1901 */
1902 static inline unsigned long free_initmem_default(int poison)
1903 {
1904 extern char __init_begin[], __init_end[];
1905
1906 return free_reserved_area(&__init_begin, &__init_end,
1907 poison, "unused kernel");
1908 }
1909
1910 static inline unsigned long get_num_physpages(void)
1911 {
1912 int nid;
1913 unsigned long phys_pages = 0;
1914
1915 for_each_online_node(nid)
1916 phys_pages += node_present_pages(nid);
1917
1918 return phys_pages;
1919 }
1920
1921 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1922 /*
1923 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1924 * zones, allocate the backing mem_map and account for memory holes in a more
1925 * architecture independent manner. This is a substitute for creating the
1926 * zone_sizes[] and zholes_size[] arrays and passing them to
1927 * free_area_init_node()
1928 *
1929 * An architecture is expected to register range of page frames backed by
1930 * physical memory with memblock_add[_node]() before calling
1931 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1932 * usage, an architecture is expected to do something like
1933 *
1934 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1935 * max_highmem_pfn};
1936 * for_each_valid_physical_page_range()
1937 * memblock_add_node(base, size, nid)
1938 * free_area_init_nodes(max_zone_pfns);
1939 *
1940 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1941 * registered physical page range. Similarly
1942 * sparse_memory_present_with_active_regions() calls memory_present() for
1943 * each range when SPARSEMEM is enabled.
1944 *
1945 * See mm/page_alloc.c for more information on each function exposed by
1946 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1947 */
1948 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1949 unsigned long node_map_pfn_alignment(void);
1950 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1951 unsigned long end_pfn);
1952 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1953 unsigned long end_pfn);
1954 extern void get_pfn_range_for_nid(unsigned int nid,
1955 unsigned long *start_pfn, unsigned long *end_pfn);
1956 extern unsigned long find_min_pfn_with_active_regions(void);
1957 extern void free_bootmem_with_active_regions(int nid,
1958 unsigned long max_low_pfn);
1959 extern void sparse_memory_present_with_active_regions(int nid);
1960
1961 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1962
1963 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1964 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1965 static inline int __early_pfn_to_nid(unsigned long pfn,
1966 struct mminit_pfnnid_cache *state)
1967 {
1968 return 0;
1969 }
1970 #else
1971 /* please see mm/page_alloc.c */
1972 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1973 /* there is a per-arch backend function. */
1974 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1975 struct mminit_pfnnid_cache *state);
1976 #endif
1977
1978 extern void set_dma_reserve(unsigned long new_dma_reserve);
1979 extern void memmap_init_zone(unsigned long, int, unsigned long,
1980 unsigned long, enum memmap_context);
1981 extern void setup_per_zone_wmarks(void);
1982 extern int __meminit init_per_zone_wmark_min(void);
1983 extern void mem_init(void);
1984 extern void __init mmap_init(void);
1985 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
1986 extern long si_mem_available(void);
1987 extern void si_meminfo(struct sysinfo * val);
1988 extern void si_meminfo_node(struct sysinfo *val, int nid);
1989 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1990 extern unsigned long arch_reserved_kernel_pages(void);
1991 #endif
1992
1993 extern __printf(3, 4)
1994 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
1995
1996 extern void setup_per_cpu_pageset(void);
1997
1998 extern void zone_pcp_update(struct zone *zone);
1999 extern void zone_pcp_reset(struct zone *zone);
2000
2001 /* page_alloc.c */
2002 extern int min_free_kbytes;
2003 extern int watermark_scale_factor;
2004
2005 /* nommu.c */
2006 extern atomic_long_t mmap_pages_allocated;
2007 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2008
2009 /* interval_tree.c */
2010 void vma_interval_tree_insert(struct vm_area_struct *node,
2011 struct rb_root *root);
2012 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2013 struct vm_area_struct *prev,
2014 struct rb_root *root);
2015 void vma_interval_tree_remove(struct vm_area_struct *node,
2016 struct rb_root *root);
2017 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
2018 unsigned long start, unsigned long last);
2019 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2020 unsigned long start, unsigned long last);
2021
2022 #define vma_interval_tree_foreach(vma, root, start, last) \
2023 for (vma = vma_interval_tree_iter_first(root, start, last); \
2024 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2025
2026 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2027 struct rb_root *root);
2028 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2029 struct rb_root *root);
2030 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
2031 struct rb_root *root, unsigned long start, unsigned long last);
2032 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2033 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2034 #ifdef CONFIG_DEBUG_VM_RB
2035 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2036 #endif
2037
2038 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2039 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2040 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2041
2042 /* mmap.c */
2043 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2044 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2045 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2046 struct vm_area_struct *expand);
2047 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2048 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2049 {
2050 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2051 }
2052 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2053 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2054 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2055 struct mempolicy *, struct vm_userfaultfd_ctx);
2056 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2057 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2058 unsigned long addr, int new_below);
2059 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2060 unsigned long addr, int new_below);
2061 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2062 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2063 struct rb_node **, struct rb_node *);
2064 extern void unlink_file_vma(struct vm_area_struct *);
2065 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2066 unsigned long addr, unsigned long len, pgoff_t pgoff,
2067 bool *need_rmap_locks);
2068 extern void exit_mmap(struct mm_struct *);
2069
2070 static inline int check_data_rlimit(unsigned long rlim,
2071 unsigned long new,
2072 unsigned long start,
2073 unsigned long end_data,
2074 unsigned long start_data)
2075 {
2076 if (rlim < RLIM_INFINITY) {
2077 if (((new - start) + (end_data - start_data)) > rlim)
2078 return -ENOSPC;
2079 }
2080
2081 return 0;
2082 }
2083
2084 extern int mm_take_all_locks(struct mm_struct *mm);
2085 extern void mm_drop_all_locks(struct mm_struct *mm);
2086
2087 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2088 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2089 extern struct file *get_task_exe_file(struct task_struct *task);
2090
2091 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2092 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2093
2094 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2095 const struct vm_special_mapping *sm);
2096 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2097 unsigned long addr, unsigned long len,
2098 unsigned long flags,
2099 const struct vm_special_mapping *spec);
2100 /* This is an obsolete alternative to _install_special_mapping. */
2101 extern int install_special_mapping(struct mm_struct *mm,
2102 unsigned long addr, unsigned long len,
2103 unsigned long flags, struct page **pages);
2104
2105 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2106
2107 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2108 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2109 struct list_head *uf);
2110 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2111 unsigned long len, unsigned long prot, unsigned long flags,
2112 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2113 struct list_head *uf);
2114 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2115 struct list_head *uf);
2116
2117 static inline unsigned long
2118 do_mmap_pgoff(struct file *file, unsigned long addr,
2119 unsigned long len, unsigned long prot, unsigned long flags,
2120 unsigned long pgoff, unsigned long *populate,
2121 struct list_head *uf)
2122 {
2123 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2124 }
2125
2126 #ifdef CONFIG_MMU
2127 extern int __mm_populate(unsigned long addr, unsigned long len,
2128 int ignore_errors);
2129 static inline void mm_populate(unsigned long addr, unsigned long len)
2130 {
2131 /* Ignore errors */
2132 (void) __mm_populate(addr, len, 1);
2133 }
2134 #else
2135 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2136 #endif
2137
2138 /* These take the mm semaphore themselves */
2139 extern int __must_check vm_brk(unsigned long, unsigned long);
2140 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2141 extern int vm_munmap(unsigned long, size_t);
2142 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2143 unsigned long, unsigned long,
2144 unsigned long, unsigned long);
2145
2146 struct vm_unmapped_area_info {
2147 #define VM_UNMAPPED_AREA_TOPDOWN 1
2148 unsigned long flags;
2149 unsigned long length;
2150 unsigned long low_limit;
2151 unsigned long high_limit;
2152 unsigned long align_mask;
2153 unsigned long align_offset;
2154 };
2155
2156 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2157 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2158
2159 /*
2160 * Search for an unmapped address range.
2161 *
2162 * We are looking for a range that:
2163 * - does not intersect with any VMA;
2164 * - is contained within the [low_limit, high_limit) interval;
2165 * - is at least the desired size.
2166 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2167 */
2168 static inline unsigned long
2169 vm_unmapped_area(struct vm_unmapped_area_info *info)
2170 {
2171 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2172 return unmapped_area_topdown(info);
2173 else
2174 return unmapped_area(info);
2175 }
2176
2177 /* truncate.c */
2178 extern void truncate_inode_pages(struct address_space *, loff_t);
2179 extern void truncate_inode_pages_range(struct address_space *,
2180 loff_t lstart, loff_t lend);
2181 extern void truncate_inode_pages_final(struct address_space *);
2182
2183 /* generic vm_area_ops exported for stackable file systems */
2184 extern int filemap_fault(struct vm_fault *vmf);
2185 extern void filemap_map_pages(struct vm_fault *vmf,
2186 pgoff_t start_pgoff, pgoff_t end_pgoff);
2187 extern int filemap_page_mkwrite(struct vm_fault *vmf);
2188
2189 /* mm/page-writeback.c */
2190 int write_one_page(struct page *page, int wait);
2191 void task_dirty_inc(struct task_struct *tsk);
2192
2193 /* readahead.c */
2194 #define VM_MAX_READAHEAD 128 /* kbytes */
2195 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2196
2197 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2198 pgoff_t offset, unsigned long nr_to_read);
2199
2200 void page_cache_sync_readahead(struct address_space *mapping,
2201 struct file_ra_state *ra,
2202 struct file *filp,
2203 pgoff_t offset,
2204 unsigned long size);
2205
2206 void page_cache_async_readahead(struct address_space *mapping,
2207 struct file_ra_state *ra,
2208 struct file *filp,
2209 struct page *pg,
2210 pgoff_t offset,
2211 unsigned long size);
2212
2213 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2214 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2215
2216 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2217 extern int expand_downwards(struct vm_area_struct *vma,
2218 unsigned long address);
2219 #if VM_GROWSUP
2220 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2221 #else
2222 #define expand_upwards(vma, address) (0)
2223 #endif
2224
2225 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2226 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2227 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2228 struct vm_area_struct **pprev);
2229
2230 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2231 NULL if none. Assume start_addr < end_addr. */
2232 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2233 {
2234 struct vm_area_struct * vma = find_vma(mm,start_addr);
2235
2236 if (vma && end_addr <= vma->vm_start)
2237 vma = NULL;
2238 return vma;
2239 }
2240
2241 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2242 {
2243 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2244 }
2245
2246 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2247 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2248 unsigned long vm_start, unsigned long vm_end)
2249 {
2250 struct vm_area_struct *vma = find_vma(mm, vm_start);
2251
2252 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2253 vma = NULL;
2254
2255 return vma;
2256 }
2257
2258 #ifdef CONFIG_MMU
2259 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2260 void vma_set_page_prot(struct vm_area_struct *vma);
2261 #else
2262 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2263 {
2264 return __pgprot(0);
2265 }
2266 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2267 {
2268 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2269 }
2270 #endif
2271
2272 #ifdef CONFIG_NUMA_BALANCING
2273 unsigned long change_prot_numa(struct vm_area_struct *vma,
2274 unsigned long start, unsigned long end);
2275 #endif
2276
2277 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2278 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2279 unsigned long pfn, unsigned long size, pgprot_t);
2280 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2281 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2282 unsigned long pfn);
2283 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2284 unsigned long pfn, pgprot_t pgprot);
2285 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2286 pfn_t pfn);
2287 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2288
2289
2290 struct page *follow_page_mask(struct vm_area_struct *vma,
2291 unsigned long address, unsigned int foll_flags,
2292 unsigned int *page_mask);
2293
2294 static inline struct page *follow_page(struct vm_area_struct *vma,
2295 unsigned long address, unsigned int foll_flags)
2296 {
2297 unsigned int unused_page_mask;
2298 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2299 }
2300
2301 #define FOLL_WRITE 0x01 /* check pte is writable */
2302 #define FOLL_TOUCH 0x02 /* mark page accessed */
2303 #define FOLL_GET 0x04 /* do get_page on page */
2304 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2305 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2306 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2307 * and return without waiting upon it */
2308 #define FOLL_POPULATE 0x40 /* fault in page */
2309 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2310 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2311 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2312 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2313 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2314 #define FOLL_MLOCK 0x1000 /* lock present pages */
2315 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2316 #define FOLL_COW 0x4000 /* internal GUP flag */
2317
2318 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2319 void *data);
2320 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2321 unsigned long size, pte_fn_t fn, void *data);
2322
2323
2324 #ifdef CONFIG_PAGE_POISONING
2325 extern bool page_poisoning_enabled(void);
2326 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2327 extern bool page_is_poisoned(struct page *page);
2328 #else
2329 static inline bool page_poisoning_enabled(void) { return false; }
2330 static inline void kernel_poison_pages(struct page *page, int numpages,
2331 int enable) { }
2332 static inline bool page_is_poisoned(struct page *page) { return false; }
2333 #endif
2334
2335 #ifdef CONFIG_DEBUG_PAGEALLOC
2336 extern bool _debug_pagealloc_enabled;
2337 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2338
2339 static inline bool debug_pagealloc_enabled(void)
2340 {
2341 return _debug_pagealloc_enabled;
2342 }
2343
2344 static inline void
2345 kernel_map_pages(struct page *page, int numpages, int enable)
2346 {
2347 if (!debug_pagealloc_enabled())
2348 return;
2349
2350 __kernel_map_pages(page, numpages, enable);
2351 }
2352 #ifdef CONFIG_HIBERNATION
2353 extern bool kernel_page_present(struct page *page);
2354 #endif /* CONFIG_HIBERNATION */
2355 #else /* CONFIG_DEBUG_PAGEALLOC */
2356 static inline void
2357 kernel_map_pages(struct page *page, int numpages, int enable) {}
2358 #ifdef CONFIG_HIBERNATION
2359 static inline bool kernel_page_present(struct page *page) { return true; }
2360 #endif /* CONFIG_HIBERNATION */
2361 static inline bool debug_pagealloc_enabled(void)
2362 {
2363 return false;
2364 }
2365 #endif /* CONFIG_DEBUG_PAGEALLOC */
2366
2367 #ifdef __HAVE_ARCH_GATE_AREA
2368 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2369 extern int in_gate_area_no_mm(unsigned long addr);
2370 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2371 #else
2372 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2373 {
2374 return NULL;
2375 }
2376 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2377 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2378 {
2379 return 0;
2380 }
2381 #endif /* __HAVE_ARCH_GATE_AREA */
2382
2383 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2384
2385 #ifdef CONFIG_SYSCTL
2386 extern int sysctl_drop_caches;
2387 int drop_caches_sysctl_handler(struct ctl_table *, int,
2388 void __user *, size_t *, loff_t *);
2389 #endif
2390
2391 void drop_slab(void);
2392 void drop_slab_node(int nid);
2393
2394 #ifndef CONFIG_MMU
2395 #define randomize_va_space 0
2396 #else
2397 extern int randomize_va_space;
2398 #endif
2399
2400 const char * arch_vma_name(struct vm_area_struct *vma);
2401 void print_vma_addr(char *prefix, unsigned long rip);
2402
2403 void sparse_mem_maps_populate_node(struct page **map_map,
2404 unsigned long pnum_begin,
2405 unsigned long pnum_end,
2406 unsigned long map_count,
2407 int nodeid);
2408
2409 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2410 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2411 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2412 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2413 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2414 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2415 void *vmemmap_alloc_block(unsigned long size, int node);
2416 struct vmem_altmap;
2417 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2418 struct vmem_altmap *altmap);
2419 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2420 {
2421 return __vmemmap_alloc_block_buf(size, node, NULL);
2422 }
2423
2424 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2425 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2426 int node);
2427 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2428 void vmemmap_populate_print_last(void);
2429 #ifdef CONFIG_MEMORY_HOTPLUG
2430 void vmemmap_free(unsigned long start, unsigned long end);
2431 #endif
2432 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2433 unsigned long size);
2434
2435 enum mf_flags {
2436 MF_COUNT_INCREASED = 1 << 0,
2437 MF_ACTION_REQUIRED = 1 << 1,
2438 MF_MUST_KILL = 1 << 2,
2439 MF_SOFT_OFFLINE = 1 << 3,
2440 };
2441 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2442 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2443 extern int unpoison_memory(unsigned long pfn);
2444 extern int get_hwpoison_page(struct page *page);
2445 #define put_hwpoison_page(page) put_page(page)
2446 extern int sysctl_memory_failure_early_kill;
2447 extern int sysctl_memory_failure_recovery;
2448 extern void shake_page(struct page *p, int access);
2449 extern atomic_long_t num_poisoned_pages;
2450 extern int soft_offline_page(struct page *page, int flags);
2451
2452
2453 /*
2454 * Error handlers for various types of pages.
2455 */
2456 enum mf_result {
2457 MF_IGNORED, /* Error: cannot be handled */
2458 MF_FAILED, /* Error: handling failed */
2459 MF_DELAYED, /* Will be handled later */
2460 MF_RECOVERED, /* Successfully recovered */
2461 };
2462
2463 enum mf_action_page_type {
2464 MF_MSG_KERNEL,
2465 MF_MSG_KERNEL_HIGH_ORDER,
2466 MF_MSG_SLAB,
2467 MF_MSG_DIFFERENT_COMPOUND,
2468 MF_MSG_POISONED_HUGE,
2469 MF_MSG_HUGE,
2470 MF_MSG_FREE_HUGE,
2471 MF_MSG_UNMAP_FAILED,
2472 MF_MSG_DIRTY_SWAPCACHE,
2473 MF_MSG_CLEAN_SWAPCACHE,
2474 MF_MSG_DIRTY_MLOCKED_LRU,
2475 MF_MSG_CLEAN_MLOCKED_LRU,
2476 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2477 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2478 MF_MSG_DIRTY_LRU,
2479 MF_MSG_CLEAN_LRU,
2480 MF_MSG_TRUNCATED_LRU,
2481 MF_MSG_BUDDY,
2482 MF_MSG_BUDDY_2ND,
2483 MF_MSG_UNKNOWN,
2484 };
2485
2486 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2487 extern void clear_huge_page(struct page *page,
2488 unsigned long addr,
2489 unsigned int pages_per_huge_page);
2490 extern void copy_user_huge_page(struct page *dst, struct page *src,
2491 unsigned long addr, struct vm_area_struct *vma,
2492 unsigned int pages_per_huge_page);
2493 extern long copy_huge_page_from_user(struct page *dst_page,
2494 const void __user *usr_src,
2495 unsigned int pages_per_huge_page,
2496 bool allow_pagefault);
2497 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2498
2499 extern struct page_ext_operations debug_guardpage_ops;
2500 extern struct page_ext_operations page_poisoning_ops;
2501
2502 #ifdef CONFIG_DEBUG_PAGEALLOC
2503 extern unsigned int _debug_guardpage_minorder;
2504 extern bool _debug_guardpage_enabled;
2505
2506 static inline unsigned int debug_guardpage_minorder(void)
2507 {
2508 return _debug_guardpage_minorder;
2509 }
2510
2511 static inline bool debug_guardpage_enabled(void)
2512 {
2513 return _debug_guardpage_enabled;
2514 }
2515
2516 static inline bool page_is_guard(struct page *page)
2517 {
2518 struct page_ext *page_ext;
2519
2520 if (!debug_guardpage_enabled())
2521 return false;
2522
2523 page_ext = lookup_page_ext(page);
2524 if (unlikely(!page_ext))
2525 return false;
2526
2527 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2528 }
2529 #else
2530 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2531 static inline bool debug_guardpage_enabled(void) { return false; }
2532 static inline bool page_is_guard(struct page *page) { return false; }
2533 #endif /* CONFIG_DEBUG_PAGEALLOC */
2534
2535 #if MAX_NUMNODES > 1
2536 void __init setup_nr_node_ids(void);
2537 #else
2538 static inline void setup_nr_node_ids(void) {}
2539 #endif
2540
2541 #endif /* __KERNEL__ */
2542 #endif /* _LINUX_MM_H */