]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/linux/mm.h
08e2849d27ca82ea060b00c8ee0d0df4e31d8c82
[mirror_ubuntu-eoan-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
26
27 struct mempolicy;
28 struct anon_vma;
29 struct anon_vma_chain;
30 struct file_ra_state;
31 struct user_struct;
32 struct writeback_control;
33 struct bdi_writeback;
34
35 void init_mm_internals(void);
36
37 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
38 extern unsigned long max_mapnr;
39
40 static inline void set_max_mapnr(unsigned long limit)
41 {
42 max_mapnr = limit;
43 }
44 #else
45 static inline void set_max_mapnr(unsigned long limit) { }
46 #endif
47
48 extern unsigned long totalram_pages;
49 extern void * high_memory;
50 extern int page_cluster;
51
52 #ifdef CONFIG_SYSCTL
53 extern int sysctl_legacy_va_layout;
54 #else
55 #define sysctl_legacy_va_layout 0
56 #endif
57
58 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
59 extern const int mmap_rnd_bits_min;
60 extern const int mmap_rnd_bits_max;
61 extern int mmap_rnd_bits __read_mostly;
62 #endif
63 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
64 extern const int mmap_rnd_compat_bits_min;
65 extern const int mmap_rnd_compat_bits_max;
66 extern int mmap_rnd_compat_bits __read_mostly;
67 #endif
68
69 #include <asm/page.h>
70 #include <asm/pgtable.h>
71 #include <asm/processor.h>
72
73 #ifndef __pa_symbol
74 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
75 #endif
76
77 #ifndef page_to_virt
78 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
79 #endif
80
81 #ifndef lm_alias
82 #define lm_alias(x) __va(__pa_symbol(x))
83 #endif
84
85 /*
86 * To prevent common memory management code establishing
87 * a zero page mapping on a read fault.
88 * This macro should be defined within <asm/pgtable.h>.
89 * s390 does this to prevent multiplexing of hardware bits
90 * related to the physical page in case of virtualization.
91 */
92 #ifndef mm_forbids_zeropage
93 #define mm_forbids_zeropage(X) (0)
94 #endif
95
96 /*
97 * Default maximum number of active map areas, this limits the number of vmas
98 * per mm struct. Users can overwrite this number by sysctl but there is a
99 * problem.
100 *
101 * When a program's coredump is generated as ELF format, a section is created
102 * per a vma. In ELF, the number of sections is represented in unsigned short.
103 * This means the number of sections should be smaller than 65535 at coredump.
104 * Because the kernel adds some informative sections to a image of program at
105 * generating coredump, we need some margin. The number of extra sections is
106 * 1-3 now and depends on arch. We use "5" as safe margin, here.
107 *
108 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
109 * not a hard limit any more. Although some userspace tools can be surprised by
110 * that.
111 */
112 #define MAPCOUNT_ELF_CORE_MARGIN (5)
113 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
114
115 extern int sysctl_max_map_count;
116
117 extern unsigned long sysctl_user_reserve_kbytes;
118 extern unsigned long sysctl_admin_reserve_kbytes;
119
120 extern int sysctl_overcommit_memory;
121 extern int sysctl_overcommit_ratio;
122 extern unsigned long sysctl_overcommit_kbytes;
123
124 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
125 size_t *, loff_t *);
126 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
127 size_t *, loff_t *);
128
129 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
130
131 /* to align the pointer to the (next) page boundary */
132 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
133
134 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
135 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
136
137 /*
138 * Linux kernel virtual memory manager primitives.
139 * The idea being to have a "virtual" mm in the same way
140 * we have a virtual fs - giving a cleaner interface to the
141 * mm details, and allowing different kinds of memory mappings
142 * (from shared memory to executable loading to arbitrary
143 * mmap() functions).
144 */
145
146 extern struct kmem_cache *vm_area_cachep;
147
148 #ifndef CONFIG_MMU
149 extern struct rb_root nommu_region_tree;
150 extern struct rw_semaphore nommu_region_sem;
151
152 extern unsigned int kobjsize(const void *objp);
153 #endif
154
155 /*
156 * vm_flags in vm_area_struct, see mm_types.h.
157 * When changing, update also include/trace/events/mmflags.h
158 */
159 #define VM_NONE 0x00000000
160
161 #define VM_READ 0x00000001 /* currently active flags */
162 #define VM_WRITE 0x00000002
163 #define VM_EXEC 0x00000004
164 #define VM_SHARED 0x00000008
165
166 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
167 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
168 #define VM_MAYWRITE 0x00000020
169 #define VM_MAYEXEC 0x00000040
170 #define VM_MAYSHARE 0x00000080
171
172 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
173 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
174 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
175 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
176 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
177
178 #define VM_LOCKED 0x00002000
179 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
180
181 /* Used by sys_madvise() */
182 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
183 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
184
185 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
186 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
187 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
188 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
189 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
190 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
191 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
192 #define VM_ARCH_2 0x02000000
193 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
194
195 #ifdef CONFIG_MEM_SOFT_DIRTY
196 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
197 #else
198 # define VM_SOFTDIRTY 0
199 #endif
200
201 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
202 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
203 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
204 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
205
206 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
207 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
208 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
209 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
210 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
211 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
212 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
213 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
214 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
215 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
216
217 #if defined(CONFIG_X86)
218 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
219 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
220 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
221 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
222 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
223 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
224 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
225 #endif
226 #elif defined(CONFIG_PPC)
227 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
228 #elif defined(CONFIG_PARISC)
229 # define VM_GROWSUP VM_ARCH_1
230 #elif defined(CONFIG_METAG)
231 # define VM_GROWSUP VM_ARCH_1
232 #elif defined(CONFIG_IA64)
233 # define VM_GROWSUP VM_ARCH_1
234 #elif !defined(CONFIG_MMU)
235 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
236 #endif
237
238 #if defined(CONFIG_X86)
239 /* MPX specific bounds table or bounds directory */
240 # define VM_MPX VM_ARCH_2
241 #endif
242
243 #ifndef VM_GROWSUP
244 # define VM_GROWSUP VM_NONE
245 #endif
246
247 /* Bits set in the VMA until the stack is in its final location */
248 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
249
250 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
251 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
252 #endif
253
254 #ifdef CONFIG_STACK_GROWSUP
255 #define VM_STACK VM_GROWSUP
256 #else
257 #define VM_STACK VM_GROWSDOWN
258 #endif
259
260 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
261
262 /*
263 * Special vmas that are non-mergable, non-mlock()able.
264 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
265 */
266 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
267
268 /* This mask defines which mm->def_flags a process can inherit its parent */
269 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
270
271 /* This mask is used to clear all the VMA flags used by mlock */
272 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
273
274 /*
275 * mapping from the currently active vm_flags protection bits (the
276 * low four bits) to a page protection mask..
277 */
278 extern pgprot_t protection_map[16];
279
280 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
281 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
282 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
283 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
284 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
285 #define FAULT_FLAG_TRIED 0x20 /* Second try */
286 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
287 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
288 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
289
290 #define FAULT_FLAG_TRACE \
291 { FAULT_FLAG_WRITE, "WRITE" }, \
292 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
293 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
294 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
295 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
296 { FAULT_FLAG_TRIED, "TRIED" }, \
297 { FAULT_FLAG_USER, "USER" }, \
298 { FAULT_FLAG_REMOTE, "REMOTE" }, \
299 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
300
301 /*
302 * vm_fault is filled by the the pagefault handler and passed to the vma's
303 * ->fault function. The vma's ->fault is responsible for returning a bitmask
304 * of VM_FAULT_xxx flags that give details about how the fault was handled.
305 *
306 * MM layer fills up gfp_mask for page allocations but fault handler might
307 * alter it if its implementation requires a different allocation context.
308 *
309 * pgoff should be used in favour of virtual_address, if possible.
310 */
311 struct vm_fault {
312 struct vm_area_struct *vma; /* Target VMA */
313 unsigned int flags; /* FAULT_FLAG_xxx flags */
314 gfp_t gfp_mask; /* gfp mask to be used for allocations */
315 pgoff_t pgoff; /* Logical page offset based on vma */
316 unsigned long address; /* Faulting virtual address */
317 pmd_t *pmd; /* Pointer to pmd entry matching
318 * the 'address' */
319 pud_t *pud; /* Pointer to pud entry matching
320 * the 'address'
321 */
322 pte_t orig_pte; /* Value of PTE at the time of fault */
323
324 struct page *cow_page; /* Page handler may use for COW fault */
325 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
326 struct page *page; /* ->fault handlers should return a
327 * page here, unless VM_FAULT_NOPAGE
328 * is set (which is also implied by
329 * VM_FAULT_ERROR).
330 */
331 /* These three entries are valid only while holding ptl lock */
332 pte_t *pte; /* Pointer to pte entry matching
333 * the 'address'. NULL if the page
334 * table hasn't been allocated.
335 */
336 spinlock_t *ptl; /* Page table lock.
337 * Protects pte page table if 'pte'
338 * is not NULL, otherwise pmd.
339 */
340 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
341 * vm_ops->map_pages() calls
342 * alloc_set_pte() from atomic context.
343 * do_fault_around() pre-allocates
344 * page table to avoid allocation from
345 * atomic context.
346 */
347 };
348
349 /* page entry size for vm->huge_fault() */
350 enum page_entry_size {
351 PE_SIZE_PTE = 0,
352 PE_SIZE_PMD,
353 PE_SIZE_PUD,
354 };
355
356 /*
357 * These are the virtual MM functions - opening of an area, closing and
358 * unmapping it (needed to keep files on disk up-to-date etc), pointer
359 * to the functions called when a no-page or a wp-page exception occurs.
360 */
361 struct vm_operations_struct {
362 void (*open)(struct vm_area_struct * area);
363 void (*close)(struct vm_area_struct * area);
364 int (*mremap)(struct vm_area_struct * area);
365 int (*fault)(struct vm_fault *vmf);
366 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
367 void (*map_pages)(struct vm_fault *vmf,
368 pgoff_t start_pgoff, pgoff_t end_pgoff);
369
370 /* notification that a previously read-only page is about to become
371 * writable, if an error is returned it will cause a SIGBUS */
372 int (*page_mkwrite)(struct vm_fault *vmf);
373
374 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
375 int (*pfn_mkwrite)(struct vm_fault *vmf);
376
377 /* called by access_process_vm when get_user_pages() fails, typically
378 * for use by special VMAs that can switch between memory and hardware
379 */
380 int (*access)(struct vm_area_struct *vma, unsigned long addr,
381 void *buf, int len, int write);
382
383 /* Called by the /proc/PID/maps code to ask the vma whether it
384 * has a special name. Returning non-NULL will also cause this
385 * vma to be dumped unconditionally. */
386 const char *(*name)(struct vm_area_struct *vma);
387
388 #ifdef CONFIG_NUMA
389 /*
390 * set_policy() op must add a reference to any non-NULL @new mempolicy
391 * to hold the policy upon return. Caller should pass NULL @new to
392 * remove a policy and fall back to surrounding context--i.e. do not
393 * install a MPOL_DEFAULT policy, nor the task or system default
394 * mempolicy.
395 */
396 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
397
398 /*
399 * get_policy() op must add reference [mpol_get()] to any policy at
400 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
401 * in mm/mempolicy.c will do this automatically.
402 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
403 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
404 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
405 * must return NULL--i.e., do not "fallback" to task or system default
406 * policy.
407 */
408 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
409 unsigned long addr);
410 #endif
411 /*
412 * Called by vm_normal_page() for special PTEs to find the
413 * page for @addr. This is useful if the default behavior
414 * (using pte_page()) would not find the correct page.
415 */
416 struct page *(*find_special_page)(struct vm_area_struct *vma,
417 unsigned long addr);
418 };
419
420 struct mmu_gather;
421 struct inode;
422
423 #define page_private(page) ((page)->private)
424 #define set_page_private(page, v) ((page)->private = (v))
425
426 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
427 static inline int pmd_devmap(pmd_t pmd)
428 {
429 return 0;
430 }
431 static inline int pud_devmap(pud_t pud)
432 {
433 return 0;
434 }
435 static inline int pgd_devmap(pgd_t pgd)
436 {
437 return 0;
438 }
439 #endif
440
441 /*
442 * FIXME: take this include out, include page-flags.h in
443 * files which need it (119 of them)
444 */
445 #include <linux/page-flags.h>
446 #include <linux/huge_mm.h>
447
448 /*
449 * Methods to modify the page usage count.
450 *
451 * What counts for a page usage:
452 * - cache mapping (page->mapping)
453 * - private data (page->private)
454 * - page mapped in a task's page tables, each mapping
455 * is counted separately
456 *
457 * Also, many kernel routines increase the page count before a critical
458 * routine so they can be sure the page doesn't go away from under them.
459 */
460
461 /*
462 * Drop a ref, return true if the refcount fell to zero (the page has no users)
463 */
464 static inline int put_page_testzero(struct page *page)
465 {
466 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
467 return page_ref_dec_and_test(page);
468 }
469
470 /*
471 * Try to grab a ref unless the page has a refcount of zero, return false if
472 * that is the case.
473 * This can be called when MMU is off so it must not access
474 * any of the virtual mappings.
475 */
476 static inline int get_page_unless_zero(struct page *page)
477 {
478 return page_ref_add_unless(page, 1, 0);
479 }
480
481 extern int page_is_ram(unsigned long pfn);
482
483 enum {
484 REGION_INTERSECTS,
485 REGION_DISJOINT,
486 REGION_MIXED,
487 };
488
489 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
490 unsigned long desc);
491
492 /* Support for virtually mapped pages */
493 struct page *vmalloc_to_page(const void *addr);
494 unsigned long vmalloc_to_pfn(const void *addr);
495
496 /*
497 * Determine if an address is within the vmalloc range
498 *
499 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
500 * is no special casing required.
501 */
502 static inline bool is_vmalloc_addr(const void *x)
503 {
504 #ifdef CONFIG_MMU
505 unsigned long addr = (unsigned long)x;
506
507 return addr >= VMALLOC_START && addr < VMALLOC_END;
508 #else
509 return false;
510 #endif
511 }
512 #ifdef CONFIG_MMU
513 extern int is_vmalloc_or_module_addr(const void *x);
514 #else
515 static inline int is_vmalloc_or_module_addr(const void *x)
516 {
517 return 0;
518 }
519 #endif
520
521 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
522 static inline void *kvmalloc(size_t size, gfp_t flags)
523 {
524 return kvmalloc_node(size, flags, NUMA_NO_NODE);
525 }
526 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
527 {
528 return kvmalloc_node(size, flags | __GFP_ZERO, node);
529 }
530 static inline void *kvzalloc(size_t size, gfp_t flags)
531 {
532 return kvmalloc(size, flags | __GFP_ZERO);
533 }
534
535 extern void kvfree(const void *addr);
536
537 static inline atomic_t *compound_mapcount_ptr(struct page *page)
538 {
539 return &page[1].compound_mapcount;
540 }
541
542 static inline int compound_mapcount(struct page *page)
543 {
544 VM_BUG_ON_PAGE(!PageCompound(page), page);
545 page = compound_head(page);
546 return atomic_read(compound_mapcount_ptr(page)) + 1;
547 }
548
549 /*
550 * The atomic page->_mapcount, starts from -1: so that transitions
551 * both from it and to it can be tracked, using atomic_inc_and_test
552 * and atomic_add_negative(-1).
553 */
554 static inline void page_mapcount_reset(struct page *page)
555 {
556 atomic_set(&(page)->_mapcount, -1);
557 }
558
559 int __page_mapcount(struct page *page);
560
561 static inline int page_mapcount(struct page *page)
562 {
563 VM_BUG_ON_PAGE(PageSlab(page), page);
564
565 if (unlikely(PageCompound(page)))
566 return __page_mapcount(page);
567 return atomic_read(&page->_mapcount) + 1;
568 }
569
570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
571 int total_mapcount(struct page *page);
572 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
573 #else
574 static inline int total_mapcount(struct page *page)
575 {
576 return page_mapcount(page);
577 }
578 static inline int page_trans_huge_mapcount(struct page *page,
579 int *total_mapcount)
580 {
581 int mapcount = page_mapcount(page);
582 if (total_mapcount)
583 *total_mapcount = mapcount;
584 return mapcount;
585 }
586 #endif
587
588 static inline struct page *virt_to_head_page(const void *x)
589 {
590 struct page *page = virt_to_page(x);
591
592 return compound_head(page);
593 }
594
595 void __put_page(struct page *page);
596
597 void put_pages_list(struct list_head *pages);
598
599 void split_page(struct page *page, unsigned int order);
600
601 /*
602 * Compound pages have a destructor function. Provide a
603 * prototype for that function and accessor functions.
604 * These are _only_ valid on the head of a compound page.
605 */
606 typedef void compound_page_dtor(struct page *);
607
608 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
609 enum compound_dtor_id {
610 NULL_COMPOUND_DTOR,
611 COMPOUND_PAGE_DTOR,
612 #ifdef CONFIG_HUGETLB_PAGE
613 HUGETLB_PAGE_DTOR,
614 #endif
615 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
616 TRANSHUGE_PAGE_DTOR,
617 #endif
618 NR_COMPOUND_DTORS,
619 };
620 extern compound_page_dtor * const compound_page_dtors[];
621
622 static inline void set_compound_page_dtor(struct page *page,
623 enum compound_dtor_id compound_dtor)
624 {
625 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
626 page[1].compound_dtor = compound_dtor;
627 }
628
629 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
630 {
631 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
632 return compound_page_dtors[page[1].compound_dtor];
633 }
634
635 static inline unsigned int compound_order(struct page *page)
636 {
637 if (!PageHead(page))
638 return 0;
639 return page[1].compound_order;
640 }
641
642 static inline void set_compound_order(struct page *page, unsigned int order)
643 {
644 page[1].compound_order = order;
645 }
646
647 void free_compound_page(struct page *page);
648
649 #ifdef CONFIG_MMU
650 /*
651 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
652 * servicing faults for write access. In the normal case, do always want
653 * pte_mkwrite. But get_user_pages can cause write faults for mappings
654 * that do not have writing enabled, when used by access_process_vm.
655 */
656 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
657 {
658 if (likely(vma->vm_flags & VM_WRITE))
659 pte = pte_mkwrite(pte);
660 return pte;
661 }
662
663 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
664 struct page *page);
665 int finish_fault(struct vm_fault *vmf);
666 int finish_mkwrite_fault(struct vm_fault *vmf);
667 #endif
668
669 /*
670 * Multiple processes may "see" the same page. E.g. for untouched
671 * mappings of /dev/null, all processes see the same page full of
672 * zeroes, and text pages of executables and shared libraries have
673 * only one copy in memory, at most, normally.
674 *
675 * For the non-reserved pages, page_count(page) denotes a reference count.
676 * page_count() == 0 means the page is free. page->lru is then used for
677 * freelist management in the buddy allocator.
678 * page_count() > 0 means the page has been allocated.
679 *
680 * Pages are allocated by the slab allocator in order to provide memory
681 * to kmalloc and kmem_cache_alloc. In this case, the management of the
682 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
683 * unless a particular usage is carefully commented. (the responsibility of
684 * freeing the kmalloc memory is the caller's, of course).
685 *
686 * A page may be used by anyone else who does a __get_free_page().
687 * In this case, page_count still tracks the references, and should only
688 * be used through the normal accessor functions. The top bits of page->flags
689 * and page->virtual store page management information, but all other fields
690 * are unused and could be used privately, carefully. The management of this
691 * page is the responsibility of the one who allocated it, and those who have
692 * subsequently been given references to it.
693 *
694 * The other pages (we may call them "pagecache pages") are completely
695 * managed by the Linux memory manager: I/O, buffers, swapping etc.
696 * The following discussion applies only to them.
697 *
698 * A pagecache page contains an opaque `private' member, which belongs to the
699 * page's address_space. Usually, this is the address of a circular list of
700 * the page's disk buffers. PG_private must be set to tell the VM to call
701 * into the filesystem to release these pages.
702 *
703 * A page may belong to an inode's memory mapping. In this case, page->mapping
704 * is the pointer to the inode, and page->index is the file offset of the page,
705 * in units of PAGE_SIZE.
706 *
707 * If pagecache pages are not associated with an inode, they are said to be
708 * anonymous pages. These may become associated with the swapcache, and in that
709 * case PG_swapcache is set, and page->private is an offset into the swapcache.
710 *
711 * In either case (swapcache or inode backed), the pagecache itself holds one
712 * reference to the page. Setting PG_private should also increment the
713 * refcount. The each user mapping also has a reference to the page.
714 *
715 * The pagecache pages are stored in a per-mapping radix tree, which is
716 * rooted at mapping->page_tree, and indexed by offset.
717 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
718 * lists, we instead now tag pages as dirty/writeback in the radix tree.
719 *
720 * All pagecache pages may be subject to I/O:
721 * - inode pages may need to be read from disk,
722 * - inode pages which have been modified and are MAP_SHARED may need
723 * to be written back to the inode on disk,
724 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
725 * modified may need to be swapped out to swap space and (later) to be read
726 * back into memory.
727 */
728
729 /*
730 * The zone field is never updated after free_area_init_core()
731 * sets it, so none of the operations on it need to be atomic.
732 */
733
734 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
735 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
736 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
737 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
738 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
739
740 /*
741 * Define the bit shifts to access each section. For non-existent
742 * sections we define the shift as 0; that plus a 0 mask ensures
743 * the compiler will optimise away reference to them.
744 */
745 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
746 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
747 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
748 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
749
750 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
751 #ifdef NODE_NOT_IN_PAGE_FLAGS
752 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
753 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
754 SECTIONS_PGOFF : ZONES_PGOFF)
755 #else
756 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
757 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
758 NODES_PGOFF : ZONES_PGOFF)
759 #endif
760
761 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
762
763 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
764 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
765 #endif
766
767 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
768 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
769 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
770 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
771 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
772
773 static inline enum zone_type page_zonenum(const struct page *page)
774 {
775 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
776 }
777
778 #ifdef CONFIG_ZONE_DEVICE
779 static inline bool is_zone_device_page(const struct page *page)
780 {
781 return page_zonenum(page) == ZONE_DEVICE;
782 }
783 #else
784 static inline bool is_zone_device_page(const struct page *page)
785 {
786 return false;
787 }
788 #endif
789
790 static inline void get_page(struct page *page)
791 {
792 page = compound_head(page);
793 /*
794 * Getting a normal page or the head of a compound page
795 * requires to already have an elevated page->_refcount.
796 */
797 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
798 page_ref_inc(page);
799 }
800
801 static inline void put_page(struct page *page)
802 {
803 page = compound_head(page);
804
805 if (put_page_testzero(page))
806 __put_page(page);
807 }
808
809 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
810 #define SECTION_IN_PAGE_FLAGS
811 #endif
812
813 /*
814 * The identification function is mainly used by the buddy allocator for
815 * determining if two pages could be buddies. We are not really identifying
816 * the zone since we could be using the section number id if we do not have
817 * node id available in page flags.
818 * We only guarantee that it will return the same value for two combinable
819 * pages in a zone.
820 */
821 static inline int page_zone_id(struct page *page)
822 {
823 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
824 }
825
826 static inline int zone_to_nid(struct zone *zone)
827 {
828 #ifdef CONFIG_NUMA
829 return zone->node;
830 #else
831 return 0;
832 #endif
833 }
834
835 #ifdef NODE_NOT_IN_PAGE_FLAGS
836 extern int page_to_nid(const struct page *page);
837 #else
838 static inline int page_to_nid(const struct page *page)
839 {
840 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
841 }
842 #endif
843
844 #ifdef CONFIG_NUMA_BALANCING
845 static inline int cpu_pid_to_cpupid(int cpu, int pid)
846 {
847 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
848 }
849
850 static inline int cpupid_to_pid(int cpupid)
851 {
852 return cpupid & LAST__PID_MASK;
853 }
854
855 static inline int cpupid_to_cpu(int cpupid)
856 {
857 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
858 }
859
860 static inline int cpupid_to_nid(int cpupid)
861 {
862 return cpu_to_node(cpupid_to_cpu(cpupid));
863 }
864
865 static inline bool cpupid_pid_unset(int cpupid)
866 {
867 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
868 }
869
870 static inline bool cpupid_cpu_unset(int cpupid)
871 {
872 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
873 }
874
875 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
876 {
877 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
878 }
879
880 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
881 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
882 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
883 {
884 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
885 }
886
887 static inline int page_cpupid_last(struct page *page)
888 {
889 return page->_last_cpupid;
890 }
891 static inline void page_cpupid_reset_last(struct page *page)
892 {
893 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
894 }
895 #else
896 static inline int page_cpupid_last(struct page *page)
897 {
898 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
899 }
900
901 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
902
903 static inline void page_cpupid_reset_last(struct page *page)
904 {
905 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
906 }
907 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
908 #else /* !CONFIG_NUMA_BALANCING */
909 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
910 {
911 return page_to_nid(page); /* XXX */
912 }
913
914 static inline int page_cpupid_last(struct page *page)
915 {
916 return page_to_nid(page); /* XXX */
917 }
918
919 static inline int cpupid_to_nid(int cpupid)
920 {
921 return -1;
922 }
923
924 static inline int cpupid_to_pid(int cpupid)
925 {
926 return -1;
927 }
928
929 static inline int cpupid_to_cpu(int cpupid)
930 {
931 return -1;
932 }
933
934 static inline int cpu_pid_to_cpupid(int nid, int pid)
935 {
936 return -1;
937 }
938
939 static inline bool cpupid_pid_unset(int cpupid)
940 {
941 return 1;
942 }
943
944 static inline void page_cpupid_reset_last(struct page *page)
945 {
946 }
947
948 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
949 {
950 return false;
951 }
952 #endif /* CONFIG_NUMA_BALANCING */
953
954 static inline struct zone *page_zone(const struct page *page)
955 {
956 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
957 }
958
959 static inline pg_data_t *page_pgdat(const struct page *page)
960 {
961 return NODE_DATA(page_to_nid(page));
962 }
963
964 #ifdef SECTION_IN_PAGE_FLAGS
965 static inline void set_page_section(struct page *page, unsigned long section)
966 {
967 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
968 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
969 }
970
971 static inline unsigned long page_to_section(const struct page *page)
972 {
973 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
974 }
975 #endif
976
977 static inline void set_page_zone(struct page *page, enum zone_type zone)
978 {
979 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
980 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
981 }
982
983 static inline void set_page_node(struct page *page, unsigned long node)
984 {
985 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
986 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
987 }
988
989 static inline void set_page_links(struct page *page, enum zone_type zone,
990 unsigned long node, unsigned long pfn)
991 {
992 set_page_zone(page, zone);
993 set_page_node(page, node);
994 #ifdef SECTION_IN_PAGE_FLAGS
995 set_page_section(page, pfn_to_section_nr(pfn));
996 #endif
997 }
998
999 #ifdef CONFIG_MEMCG
1000 static inline struct mem_cgroup *page_memcg(struct page *page)
1001 {
1002 return page->mem_cgroup;
1003 }
1004 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1005 {
1006 WARN_ON_ONCE(!rcu_read_lock_held());
1007 return READ_ONCE(page->mem_cgroup);
1008 }
1009 #else
1010 static inline struct mem_cgroup *page_memcg(struct page *page)
1011 {
1012 return NULL;
1013 }
1014 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1015 {
1016 WARN_ON_ONCE(!rcu_read_lock_held());
1017 return NULL;
1018 }
1019 #endif
1020
1021 /*
1022 * Some inline functions in vmstat.h depend on page_zone()
1023 */
1024 #include <linux/vmstat.h>
1025
1026 static __always_inline void *lowmem_page_address(const struct page *page)
1027 {
1028 return page_to_virt(page);
1029 }
1030
1031 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1032 #define HASHED_PAGE_VIRTUAL
1033 #endif
1034
1035 #if defined(WANT_PAGE_VIRTUAL)
1036 static inline void *page_address(const struct page *page)
1037 {
1038 return page->virtual;
1039 }
1040 static inline void set_page_address(struct page *page, void *address)
1041 {
1042 page->virtual = address;
1043 }
1044 #define page_address_init() do { } while(0)
1045 #endif
1046
1047 #if defined(HASHED_PAGE_VIRTUAL)
1048 void *page_address(const struct page *page);
1049 void set_page_address(struct page *page, void *virtual);
1050 void page_address_init(void);
1051 #endif
1052
1053 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1054 #define page_address(page) lowmem_page_address(page)
1055 #define set_page_address(page, address) do { } while(0)
1056 #define page_address_init() do { } while(0)
1057 #endif
1058
1059 extern void *page_rmapping(struct page *page);
1060 extern struct anon_vma *page_anon_vma(struct page *page);
1061 extern struct address_space *page_mapping(struct page *page);
1062
1063 extern struct address_space *__page_file_mapping(struct page *);
1064
1065 static inline
1066 struct address_space *page_file_mapping(struct page *page)
1067 {
1068 if (unlikely(PageSwapCache(page)))
1069 return __page_file_mapping(page);
1070
1071 return page->mapping;
1072 }
1073
1074 extern pgoff_t __page_file_index(struct page *page);
1075
1076 /*
1077 * Return the pagecache index of the passed page. Regular pagecache pages
1078 * use ->index whereas swapcache pages use swp_offset(->private)
1079 */
1080 static inline pgoff_t page_index(struct page *page)
1081 {
1082 if (unlikely(PageSwapCache(page)))
1083 return __page_file_index(page);
1084 return page->index;
1085 }
1086
1087 bool page_mapped(struct page *page);
1088 struct address_space *page_mapping(struct page *page);
1089
1090 /*
1091 * Return true only if the page has been allocated with
1092 * ALLOC_NO_WATERMARKS and the low watermark was not
1093 * met implying that the system is under some pressure.
1094 */
1095 static inline bool page_is_pfmemalloc(struct page *page)
1096 {
1097 /*
1098 * Page index cannot be this large so this must be
1099 * a pfmemalloc page.
1100 */
1101 return page->index == -1UL;
1102 }
1103
1104 /*
1105 * Only to be called by the page allocator on a freshly allocated
1106 * page.
1107 */
1108 static inline void set_page_pfmemalloc(struct page *page)
1109 {
1110 page->index = -1UL;
1111 }
1112
1113 static inline void clear_page_pfmemalloc(struct page *page)
1114 {
1115 page->index = 0;
1116 }
1117
1118 /*
1119 * Different kinds of faults, as returned by handle_mm_fault().
1120 * Used to decide whether a process gets delivered SIGBUS or
1121 * just gets major/minor fault counters bumped up.
1122 */
1123
1124 #define VM_FAULT_OOM 0x0001
1125 #define VM_FAULT_SIGBUS 0x0002
1126 #define VM_FAULT_MAJOR 0x0004
1127 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1128 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1129 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1130 #define VM_FAULT_SIGSEGV 0x0040
1131
1132 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1133 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1134 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1135 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1136 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1137
1138 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1139
1140 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1141 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1142 VM_FAULT_FALLBACK)
1143
1144 #define VM_FAULT_RESULT_TRACE \
1145 { VM_FAULT_OOM, "OOM" }, \
1146 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1147 { VM_FAULT_MAJOR, "MAJOR" }, \
1148 { VM_FAULT_WRITE, "WRITE" }, \
1149 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1150 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1151 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1152 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1153 { VM_FAULT_LOCKED, "LOCKED" }, \
1154 { VM_FAULT_RETRY, "RETRY" }, \
1155 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1156 { VM_FAULT_DONE_COW, "DONE_COW" }
1157
1158 /* Encode hstate index for a hwpoisoned large page */
1159 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1160 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1161
1162 /*
1163 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1164 */
1165 extern void pagefault_out_of_memory(void);
1166
1167 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1168
1169 /*
1170 * Flags passed to show_mem() and show_free_areas() to suppress output in
1171 * various contexts.
1172 */
1173 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1174
1175 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1176
1177 extern bool can_do_mlock(void);
1178 extern int user_shm_lock(size_t, struct user_struct *);
1179 extern void user_shm_unlock(size_t, struct user_struct *);
1180
1181 /*
1182 * Parameter block passed down to zap_pte_range in exceptional cases.
1183 */
1184 struct zap_details {
1185 struct address_space *check_mapping; /* Check page->mapping if set */
1186 pgoff_t first_index; /* Lowest page->index to unmap */
1187 pgoff_t last_index; /* Highest page->index to unmap */
1188 };
1189
1190 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1191 pte_t pte);
1192 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1193 pmd_t pmd);
1194
1195 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1196 unsigned long size);
1197 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1198 unsigned long size);
1199 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1200 unsigned long start, unsigned long end);
1201
1202 /**
1203 * mm_walk - callbacks for walk_page_range
1204 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1205 * this handler should only handle pud_trans_huge() puds.
1206 * the pmd_entry or pte_entry callbacks will be used for
1207 * regular PUDs.
1208 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1209 * this handler is required to be able to handle
1210 * pmd_trans_huge() pmds. They may simply choose to
1211 * split_huge_page() instead of handling it explicitly.
1212 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1213 * @pte_hole: if set, called for each hole at all levels
1214 * @hugetlb_entry: if set, called for each hugetlb entry
1215 * @test_walk: caller specific callback function to determine whether
1216 * we walk over the current vma or not. Returning 0
1217 * value means "do page table walk over the current vma,"
1218 * and a negative one means "abort current page table walk
1219 * right now." 1 means "skip the current vma."
1220 * @mm: mm_struct representing the target process of page table walk
1221 * @vma: vma currently walked (NULL if walking outside vmas)
1222 * @private: private data for callbacks' usage
1223 *
1224 * (see the comment on walk_page_range() for more details)
1225 */
1226 struct mm_walk {
1227 int (*pud_entry)(pud_t *pud, unsigned long addr,
1228 unsigned long next, struct mm_walk *walk);
1229 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1230 unsigned long next, struct mm_walk *walk);
1231 int (*pte_entry)(pte_t *pte, unsigned long addr,
1232 unsigned long next, struct mm_walk *walk);
1233 int (*pte_hole)(unsigned long addr, unsigned long next,
1234 struct mm_walk *walk);
1235 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1236 unsigned long addr, unsigned long next,
1237 struct mm_walk *walk);
1238 int (*test_walk)(unsigned long addr, unsigned long next,
1239 struct mm_walk *walk);
1240 struct mm_struct *mm;
1241 struct vm_area_struct *vma;
1242 void *private;
1243 };
1244
1245 int walk_page_range(unsigned long addr, unsigned long end,
1246 struct mm_walk *walk);
1247 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1248 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1249 unsigned long end, unsigned long floor, unsigned long ceiling);
1250 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1251 struct vm_area_struct *vma);
1252 void unmap_mapping_range(struct address_space *mapping,
1253 loff_t const holebegin, loff_t const holelen, int even_cows);
1254 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1255 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1256 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1257 unsigned long *pfn);
1258 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1259 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1260 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1261 void *buf, int len, int write);
1262
1263 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1264 loff_t const holebegin, loff_t const holelen)
1265 {
1266 unmap_mapping_range(mapping, holebegin, holelen, 0);
1267 }
1268
1269 extern void truncate_pagecache(struct inode *inode, loff_t new);
1270 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1271 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1272 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1273 int truncate_inode_page(struct address_space *mapping, struct page *page);
1274 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1275 int invalidate_inode_page(struct page *page);
1276
1277 #ifdef CONFIG_MMU
1278 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1279 unsigned int flags);
1280 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1281 unsigned long address, unsigned int fault_flags,
1282 bool *unlocked);
1283 #else
1284 static inline int handle_mm_fault(struct vm_area_struct *vma,
1285 unsigned long address, unsigned int flags)
1286 {
1287 /* should never happen if there's no MMU */
1288 BUG();
1289 return VM_FAULT_SIGBUS;
1290 }
1291 static inline int fixup_user_fault(struct task_struct *tsk,
1292 struct mm_struct *mm, unsigned long address,
1293 unsigned int fault_flags, bool *unlocked)
1294 {
1295 /* should never happen if there's no MMU */
1296 BUG();
1297 return -EFAULT;
1298 }
1299 #endif
1300
1301 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1302 unsigned int gup_flags);
1303 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1304 void *buf, int len, unsigned int gup_flags);
1305 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1306 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1307
1308 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1309 unsigned long start, unsigned long nr_pages,
1310 unsigned int gup_flags, struct page **pages,
1311 struct vm_area_struct **vmas, int *locked);
1312 long get_user_pages(unsigned long start, unsigned long nr_pages,
1313 unsigned int gup_flags, struct page **pages,
1314 struct vm_area_struct **vmas);
1315 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1316 unsigned int gup_flags, struct page **pages, int *locked);
1317 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1318 struct page **pages, unsigned int gup_flags);
1319 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1320 struct page **pages);
1321
1322 /* Container for pinned pfns / pages */
1323 struct frame_vector {
1324 unsigned int nr_allocated; /* Number of frames we have space for */
1325 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1326 bool got_ref; /* Did we pin pages by getting page ref? */
1327 bool is_pfns; /* Does array contain pages or pfns? */
1328 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1329 * pfns_vector_pages() or pfns_vector_pfns()
1330 * for access */
1331 };
1332
1333 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1334 void frame_vector_destroy(struct frame_vector *vec);
1335 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1336 unsigned int gup_flags, struct frame_vector *vec);
1337 void put_vaddr_frames(struct frame_vector *vec);
1338 int frame_vector_to_pages(struct frame_vector *vec);
1339 void frame_vector_to_pfns(struct frame_vector *vec);
1340
1341 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1342 {
1343 return vec->nr_frames;
1344 }
1345
1346 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1347 {
1348 if (vec->is_pfns) {
1349 int err = frame_vector_to_pages(vec);
1350
1351 if (err)
1352 return ERR_PTR(err);
1353 }
1354 return (struct page **)(vec->ptrs);
1355 }
1356
1357 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1358 {
1359 if (!vec->is_pfns)
1360 frame_vector_to_pfns(vec);
1361 return (unsigned long *)(vec->ptrs);
1362 }
1363
1364 struct kvec;
1365 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1366 struct page **pages);
1367 int get_kernel_page(unsigned long start, int write, struct page **pages);
1368 struct page *get_dump_page(unsigned long addr);
1369
1370 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1371 extern void do_invalidatepage(struct page *page, unsigned int offset,
1372 unsigned int length);
1373
1374 int __set_page_dirty_nobuffers(struct page *page);
1375 int __set_page_dirty_no_writeback(struct page *page);
1376 int redirty_page_for_writepage(struct writeback_control *wbc,
1377 struct page *page);
1378 void account_page_dirtied(struct page *page, struct address_space *mapping);
1379 void account_page_cleaned(struct page *page, struct address_space *mapping,
1380 struct bdi_writeback *wb);
1381 int set_page_dirty(struct page *page);
1382 int set_page_dirty_lock(struct page *page);
1383 void cancel_dirty_page(struct page *page);
1384 int clear_page_dirty_for_io(struct page *page);
1385
1386 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1387
1388 /* Is the vma a continuation of the stack vma above it? */
1389 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1390 {
1391 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1392 }
1393
1394 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1395 {
1396 return !vma->vm_ops;
1397 }
1398
1399 #ifdef CONFIG_SHMEM
1400 /*
1401 * The vma_is_shmem is not inline because it is used only by slow
1402 * paths in userfault.
1403 */
1404 bool vma_is_shmem(struct vm_area_struct *vma);
1405 #else
1406 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1407 #endif
1408
1409 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1410 unsigned long addr)
1411 {
1412 return (vma->vm_flags & VM_GROWSDOWN) &&
1413 (vma->vm_start == addr) &&
1414 !vma_growsdown(vma->vm_prev, addr);
1415 }
1416
1417 /* Is the vma a continuation of the stack vma below it? */
1418 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1419 {
1420 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1421 }
1422
1423 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1424 unsigned long addr)
1425 {
1426 return (vma->vm_flags & VM_GROWSUP) &&
1427 (vma->vm_end == addr) &&
1428 !vma_growsup(vma->vm_next, addr);
1429 }
1430
1431 int vma_is_stack_for_current(struct vm_area_struct *vma);
1432
1433 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1434 unsigned long old_addr, struct vm_area_struct *new_vma,
1435 unsigned long new_addr, unsigned long len,
1436 bool need_rmap_locks);
1437 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1438 unsigned long end, pgprot_t newprot,
1439 int dirty_accountable, int prot_numa);
1440 extern int mprotect_fixup(struct vm_area_struct *vma,
1441 struct vm_area_struct **pprev, unsigned long start,
1442 unsigned long end, unsigned long newflags);
1443
1444 /*
1445 * doesn't attempt to fault and will return short.
1446 */
1447 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1448 struct page **pages);
1449 /*
1450 * per-process(per-mm_struct) statistics.
1451 */
1452 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1453 {
1454 long val = atomic_long_read(&mm->rss_stat.count[member]);
1455
1456 #ifdef SPLIT_RSS_COUNTING
1457 /*
1458 * counter is updated in asynchronous manner and may go to minus.
1459 * But it's never be expected number for users.
1460 */
1461 if (val < 0)
1462 val = 0;
1463 #endif
1464 return (unsigned long)val;
1465 }
1466
1467 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1468 {
1469 atomic_long_add(value, &mm->rss_stat.count[member]);
1470 }
1471
1472 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1473 {
1474 atomic_long_inc(&mm->rss_stat.count[member]);
1475 }
1476
1477 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1478 {
1479 atomic_long_dec(&mm->rss_stat.count[member]);
1480 }
1481
1482 /* Optimized variant when page is already known not to be PageAnon */
1483 static inline int mm_counter_file(struct page *page)
1484 {
1485 if (PageSwapBacked(page))
1486 return MM_SHMEMPAGES;
1487 return MM_FILEPAGES;
1488 }
1489
1490 static inline int mm_counter(struct page *page)
1491 {
1492 if (PageAnon(page))
1493 return MM_ANONPAGES;
1494 return mm_counter_file(page);
1495 }
1496
1497 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1498 {
1499 return get_mm_counter(mm, MM_FILEPAGES) +
1500 get_mm_counter(mm, MM_ANONPAGES) +
1501 get_mm_counter(mm, MM_SHMEMPAGES);
1502 }
1503
1504 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1505 {
1506 return max(mm->hiwater_rss, get_mm_rss(mm));
1507 }
1508
1509 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1510 {
1511 return max(mm->hiwater_vm, mm->total_vm);
1512 }
1513
1514 static inline void update_hiwater_rss(struct mm_struct *mm)
1515 {
1516 unsigned long _rss = get_mm_rss(mm);
1517
1518 if ((mm)->hiwater_rss < _rss)
1519 (mm)->hiwater_rss = _rss;
1520 }
1521
1522 static inline void update_hiwater_vm(struct mm_struct *mm)
1523 {
1524 if (mm->hiwater_vm < mm->total_vm)
1525 mm->hiwater_vm = mm->total_vm;
1526 }
1527
1528 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1529 {
1530 mm->hiwater_rss = get_mm_rss(mm);
1531 }
1532
1533 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1534 struct mm_struct *mm)
1535 {
1536 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1537
1538 if (*maxrss < hiwater_rss)
1539 *maxrss = hiwater_rss;
1540 }
1541
1542 #if defined(SPLIT_RSS_COUNTING)
1543 void sync_mm_rss(struct mm_struct *mm);
1544 #else
1545 static inline void sync_mm_rss(struct mm_struct *mm)
1546 {
1547 }
1548 #endif
1549
1550 #ifndef __HAVE_ARCH_PTE_DEVMAP
1551 static inline int pte_devmap(pte_t pte)
1552 {
1553 return 0;
1554 }
1555 #endif
1556
1557 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1558
1559 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1560 spinlock_t **ptl);
1561 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1562 spinlock_t **ptl)
1563 {
1564 pte_t *ptep;
1565 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1566 return ptep;
1567 }
1568
1569 #ifdef __PAGETABLE_P4D_FOLDED
1570 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1571 unsigned long address)
1572 {
1573 return 0;
1574 }
1575 #else
1576 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1577 #endif
1578
1579 #ifdef __PAGETABLE_PUD_FOLDED
1580 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1581 unsigned long address)
1582 {
1583 return 0;
1584 }
1585 #else
1586 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1587 #endif
1588
1589 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1590 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1591 unsigned long address)
1592 {
1593 return 0;
1594 }
1595
1596 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1597
1598 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1599 {
1600 return 0;
1601 }
1602
1603 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1604 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1605
1606 #else
1607 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1608
1609 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1610 {
1611 atomic_long_set(&mm->nr_pmds, 0);
1612 }
1613
1614 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1615 {
1616 return atomic_long_read(&mm->nr_pmds);
1617 }
1618
1619 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1620 {
1621 atomic_long_inc(&mm->nr_pmds);
1622 }
1623
1624 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1625 {
1626 atomic_long_dec(&mm->nr_pmds);
1627 }
1628 #endif
1629
1630 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1631 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1632
1633 /*
1634 * The following ifdef needed to get the 4level-fixup.h header to work.
1635 * Remove it when 4level-fixup.h has been removed.
1636 */
1637 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1638
1639 #ifndef __ARCH_HAS_5LEVEL_HACK
1640 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1641 unsigned long address)
1642 {
1643 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1644 NULL : p4d_offset(pgd, address);
1645 }
1646
1647 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1648 unsigned long address)
1649 {
1650 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1651 NULL : pud_offset(p4d, address);
1652 }
1653 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1654
1655 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1656 {
1657 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1658 NULL: pmd_offset(pud, address);
1659 }
1660 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1661
1662 #if USE_SPLIT_PTE_PTLOCKS
1663 #if ALLOC_SPLIT_PTLOCKS
1664 void __init ptlock_cache_init(void);
1665 extern bool ptlock_alloc(struct page *page);
1666 extern void ptlock_free(struct page *page);
1667
1668 static inline spinlock_t *ptlock_ptr(struct page *page)
1669 {
1670 return page->ptl;
1671 }
1672 #else /* ALLOC_SPLIT_PTLOCKS */
1673 static inline void ptlock_cache_init(void)
1674 {
1675 }
1676
1677 static inline bool ptlock_alloc(struct page *page)
1678 {
1679 return true;
1680 }
1681
1682 static inline void ptlock_free(struct page *page)
1683 {
1684 }
1685
1686 static inline spinlock_t *ptlock_ptr(struct page *page)
1687 {
1688 return &page->ptl;
1689 }
1690 #endif /* ALLOC_SPLIT_PTLOCKS */
1691
1692 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1693 {
1694 return ptlock_ptr(pmd_page(*pmd));
1695 }
1696
1697 static inline bool ptlock_init(struct page *page)
1698 {
1699 /*
1700 * prep_new_page() initialize page->private (and therefore page->ptl)
1701 * with 0. Make sure nobody took it in use in between.
1702 *
1703 * It can happen if arch try to use slab for page table allocation:
1704 * slab code uses page->slab_cache, which share storage with page->ptl.
1705 */
1706 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1707 if (!ptlock_alloc(page))
1708 return false;
1709 spin_lock_init(ptlock_ptr(page));
1710 return true;
1711 }
1712
1713 /* Reset page->mapping so free_pages_check won't complain. */
1714 static inline void pte_lock_deinit(struct page *page)
1715 {
1716 page->mapping = NULL;
1717 ptlock_free(page);
1718 }
1719
1720 #else /* !USE_SPLIT_PTE_PTLOCKS */
1721 /*
1722 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1723 */
1724 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1725 {
1726 return &mm->page_table_lock;
1727 }
1728 static inline void ptlock_cache_init(void) {}
1729 static inline bool ptlock_init(struct page *page) { return true; }
1730 static inline void pte_lock_deinit(struct page *page) {}
1731 #endif /* USE_SPLIT_PTE_PTLOCKS */
1732
1733 static inline void pgtable_init(void)
1734 {
1735 ptlock_cache_init();
1736 pgtable_cache_init();
1737 }
1738
1739 static inline bool pgtable_page_ctor(struct page *page)
1740 {
1741 if (!ptlock_init(page))
1742 return false;
1743 inc_zone_page_state(page, NR_PAGETABLE);
1744 return true;
1745 }
1746
1747 static inline void pgtable_page_dtor(struct page *page)
1748 {
1749 pte_lock_deinit(page);
1750 dec_zone_page_state(page, NR_PAGETABLE);
1751 }
1752
1753 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1754 ({ \
1755 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1756 pte_t *__pte = pte_offset_map(pmd, address); \
1757 *(ptlp) = __ptl; \
1758 spin_lock(__ptl); \
1759 __pte; \
1760 })
1761
1762 #define pte_unmap_unlock(pte, ptl) do { \
1763 spin_unlock(ptl); \
1764 pte_unmap(pte); \
1765 } while (0)
1766
1767 #define pte_alloc(mm, pmd, address) \
1768 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1769
1770 #define pte_alloc_map(mm, pmd, address) \
1771 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1772
1773 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1774 (pte_alloc(mm, pmd, address) ? \
1775 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1776
1777 #define pte_alloc_kernel(pmd, address) \
1778 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1779 NULL: pte_offset_kernel(pmd, address))
1780
1781 #if USE_SPLIT_PMD_PTLOCKS
1782
1783 static struct page *pmd_to_page(pmd_t *pmd)
1784 {
1785 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1786 return virt_to_page((void *)((unsigned long) pmd & mask));
1787 }
1788
1789 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1790 {
1791 return ptlock_ptr(pmd_to_page(pmd));
1792 }
1793
1794 static inline bool pgtable_pmd_page_ctor(struct page *page)
1795 {
1796 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1797 page->pmd_huge_pte = NULL;
1798 #endif
1799 return ptlock_init(page);
1800 }
1801
1802 static inline void pgtable_pmd_page_dtor(struct page *page)
1803 {
1804 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1805 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1806 #endif
1807 ptlock_free(page);
1808 }
1809
1810 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1811
1812 #else
1813
1814 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1815 {
1816 return &mm->page_table_lock;
1817 }
1818
1819 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1820 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1821
1822 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1823
1824 #endif
1825
1826 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1827 {
1828 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1829 spin_lock(ptl);
1830 return ptl;
1831 }
1832
1833 /*
1834 * No scalability reason to split PUD locks yet, but follow the same pattern
1835 * as the PMD locks to make it easier if we decide to. The VM should not be
1836 * considered ready to switch to split PUD locks yet; there may be places
1837 * which need to be converted from page_table_lock.
1838 */
1839 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1840 {
1841 return &mm->page_table_lock;
1842 }
1843
1844 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1845 {
1846 spinlock_t *ptl = pud_lockptr(mm, pud);
1847
1848 spin_lock(ptl);
1849 return ptl;
1850 }
1851
1852 extern void __init pagecache_init(void);
1853 extern void free_area_init(unsigned long * zones_size);
1854 extern void free_area_init_node(int nid, unsigned long * zones_size,
1855 unsigned long zone_start_pfn, unsigned long *zholes_size);
1856 extern void free_initmem(void);
1857
1858 /*
1859 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1860 * into the buddy system. The freed pages will be poisoned with pattern
1861 * "poison" if it's within range [0, UCHAR_MAX].
1862 * Return pages freed into the buddy system.
1863 */
1864 extern unsigned long free_reserved_area(void *start, void *end,
1865 int poison, char *s);
1866
1867 #ifdef CONFIG_HIGHMEM
1868 /*
1869 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1870 * and totalram_pages.
1871 */
1872 extern void free_highmem_page(struct page *page);
1873 #endif
1874
1875 extern void adjust_managed_page_count(struct page *page, long count);
1876 extern void mem_init_print_info(const char *str);
1877
1878 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1879
1880 /* Free the reserved page into the buddy system, so it gets managed. */
1881 static inline void __free_reserved_page(struct page *page)
1882 {
1883 ClearPageReserved(page);
1884 init_page_count(page);
1885 __free_page(page);
1886 }
1887
1888 static inline void free_reserved_page(struct page *page)
1889 {
1890 __free_reserved_page(page);
1891 adjust_managed_page_count(page, 1);
1892 }
1893
1894 static inline void mark_page_reserved(struct page *page)
1895 {
1896 SetPageReserved(page);
1897 adjust_managed_page_count(page, -1);
1898 }
1899
1900 /*
1901 * Default method to free all the __init memory into the buddy system.
1902 * The freed pages will be poisoned with pattern "poison" if it's within
1903 * range [0, UCHAR_MAX].
1904 * Return pages freed into the buddy system.
1905 */
1906 static inline unsigned long free_initmem_default(int poison)
1907 {
1908 extern char __init_begin[], __init_end[];
1909
1910 return free_reserved_area(&__init_begin, &__init_end,
1911 poison, "unused kernel");
1912 }
1913
1914 static inline unsigned long get_num_physpages(void)
1915 {
1916 int nid;
1917 unsigned long phys_pages = 0;
1918
1919 for_each_online_node(nid)
1920 phys_pages += node_present_pages(nid);
1921
1922 return phys_pages;
1923 }
1924
1925 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1926 /*
1927 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1928 * zones, allocate the backing mem_map and account for memory holes in a more
1929 * architecture independent manner. This is a substitute for creating the
1930 * zone_sizes[] and zholes_size[] arrays and passing them to
1931 * free_area_init_node()
1932 *
1933 * An architecture is expected to register range of page frames backed by
1934 * physical memory with memblock_add[_node]() before calling
1935 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1936 * usage, an architecture is expected to do something like
1937 *
1938 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1939 * max_highmem_pfn};
1940 * for_each_valid_physical_page_range()
1941 * memblock_add_node(base, size, nid)
1942 * free_area_init_nodes(max_zone_pfns);
1943 *
1944 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1945 * registered physical page range. Similarly
1946 * sparse_memory_present_with_active_regions() calls memory_present() for
1947 * each range when SPARSEMEM is enabled.
1948 *
1949 * See mm/page_alloc.c for more information on each function exposed by
1950 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1951 */
1952 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1953 unsigned long node_map_pfn_alignment(void);
1954 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1955 unsigned long end_pfn);
1956 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1957 unsigned long end_pfn);
1958 extern void get_pfn_range_for_nid(unsigned int nid,
1959 unsigned long *start_pfn, unsigned long *end_pfn);
1960 extern unsigned long find_min_pfn_with_active_regions(void);
1961 extern void free_bootmem_with_active_regions(int nid,
1962 unsigned long max_low_pfn);
1963 extern void sparse_memory_present_with_active_regions(int nid);
1964
1965 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1966
1967 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1968 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1969 static inline int __early_pfn_to_nid(unsigned long pfn,
1970 struct mminit_pfnnid_cache *state)
1971 {
1972 return 0;
1973 }
1974 #else
1975 /* please see mm/page_alloc.c */
1976 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1977 /* there is a per-arch backend function. */
1978 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1979 struct mminit_pfnnid_cache *state);
1980 #endif
1981
1982 extern void set_dma_reserve(unsigned long new_dma_reserve);
1983 extern void memmap_init_zone(unsigned long, int, unsigned long,
1984 unsigned long, enum memmap_context);
1985 extern void setup_per_zone_wmarks(void);
1986 extern int __meminit init_per_zone_wmark_min(void);
1987 extern void mem_init(void);
1988 extern void __init mmap_init(void);
1989 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
1990 extern long si_mem_available(void);
1991 extern void si_meminfo(struct sysinfo * val);
1992 extern void si_meminfo_node(struct sysinfo *val, int nid);
1993 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1994 extern unsigned long arch_reserved_kernel_pages(void);
1995 #endif
1996
1997 extern __printf(3, 4)
1998 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
1999
2000 extern void setup_per_cpu_pageset(void);
2001
2002 extern void zone_pcp_update(struct zone *zone);
2003 extern void zone_pcp_reset(struct zone *zone);
2004
2005 /* page_alloc.c */
2006 extern int min_free_kbytes;
2007 extern int watermark_scale_factor;
2008
2009 /* nommu.c */
2010 extern atomic_long_t mmap_pages_allocated;
2011 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2012
2013 /* interval_tree.c */
2014 void vma_interval_tree_insert(struct vm_area_struct *node,
2015 struct rb_root *root);
2016 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2017 struct vm_area_struct *prev,
2018 struct rb_root *root);
2019 void vma_interval_tree_remove(struct vm_area_struct *node,
2020 struct rb_root *root);
2021 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
2022 unsigned long start, unsigned long last);
2023 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2024 unsigned long start, unsigned long last);
2025
2026 #define vma_interval_tree_foreach(vma, root, start, last) \
2027 for (vma = vma_interval_tree_iter_first(root, start, last); \
2028 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2029
2030 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2031 struct rb_root *root);
2032 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2033 struct rb_root *root);
2034 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
2035 struct rb_root *root, unsigned long start, unsigned long last);
2036 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2037 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2038 #ifdef CONFIG_DEBUG_VM_RB
2039 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2040 #endif
2041
2042 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2043 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2044 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2045
2046 /* mmap.c */
2047 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2048 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2049 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2050 struct vm_area_struct *expand);
2051 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2052 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2053 {
2054 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2055 }
2056 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2057 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2058 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2059 struct mempolicy *, struct vm_userfaultfd_ctx);
2060 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2061 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2062 unsigned long addr, int new_below);
2063 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2064 unsigned long addr, int new_below);
2065 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2066 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2067 struct rb_node **, struct rb_node *);
2068 extern void unlink_file_vma(struct vm_area_struct *);
2069 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2070 unsigned long addr, unsigned long len, pgoff_t pgoff,
2071 bool *need_rmap_locks);
2072 extern void exit_mmap(struct mm_struct *);
2073
2074 static inline int check_data_rlimit(unsigned long rlim,
2075 unsigned long new,
2076 unsigned long start,
2077 unsigned long end_data,
2078 unsigned long start_data)
2079 {
2080 if (rlim < RLIM_INFINITY) {
2081 if (((new - start) + (end_data - start_data)) > rlim)
2082 return -ENOSPC;
2083 }
2084
2085 return 0;
2086 }
2087
2088 extern int mm_take_all_locks(struct mm_struct *mm);
2089 extern void mm_drop_all_locks(struct mm_struct *mm);
2090
2091 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2092 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2093 extern struct file *get_task_exe_file(struct task_struct *task);
2094
2095 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2096 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2097
2098 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2099 const struct vm_special_mapping *sm);
2100 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2101 unsigned long addr, unsigned long len,
2102 unsigned long flags,
2103 const struct vm_special_mapping *spec);
2104 /* This is an obsolete alternative to _install_special_mapping. */
2105 extern int install_special_mapping(struct mm_struct *mm,
2106 unsigned long addr, unsigned long len,
2107 unsigned long flags, struct page **pages);
2108
2109 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2110
2111 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2112 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2113 struct list_head *uf);
2114 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2115 unsigned long len, unsigned long prot, unsigned long flags,
2116 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2117 struct list_head *uf);
2118 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2119 struct list_head *uf);
2120
2121 static inline unsigned long
2122 do_mmap_pgoff(struct file *file, unsigned long addr,
2123 unsigned long len, unsigned long prot, unsigned long flags,
2124 unsigned long pgoff, unsigned long *populate,
2125 struct list_head *uf)
2126 {
2127 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2128 }
2129
2130 #ifdef CONFIG_MMU
2131 extern int __mm_populate(unsigned long addr, unsigned long len,
2132 int ignore_errors);
2133 static inline void mm_populate(unsigned long addr, unsigned long len)
2134 {
2135 /* Ignore errors */
2136 (void) __mm_populate(addr, len, 1);
2137 }
2138 #else
2139 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2140 #endif
2141
2142 /* These take the mm semaphore themselves */
2143 extern int __must_check vm_brk(unsigned long, unsigned long);
2144 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2145 extern int vm_munmap(unsigned long, size_t);
2146 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2147 unsigned long, unsigned long,
2148 unsigned long, unsigned long);
2149
2150 struct vm_unmapped_area_info {
2151 #define VM_UNMAPPED_AREA_TOPDOWN 1
2152 unsigned long flags;
2153 unsigned long length;
2154 unsigned long low_limit;
2155 unsigned long high_limit;
2156 unsigned long align_mask;
2157 unsigned long align_offset;
2158 };
2159
2160 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2161 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2162
2163 /*
2164 * Search for an unmapped address range.
2165 *
2166 * We are looking for a range that:
2167 * - does not intersect with any VMA;
2168 * - is contained within the [low_limit, high_limit) interval;
2169 * - is at least the desired size.
2170 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2171 */
2172 static inline unsigned long
2173 vm_unmapped_area(struct vm_unmapped_area_info *info)
2174 {
2175 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2176 return unmapped_area_topdown(info);
2177 else
2178 return unmapped_area(info);
2179 }
2180
2181 /* truncate.c */
2182 extern void truncate_inode_pages(struct address_space *, loff_t);
2183 extern void truncate_inode_pages_range(struct address_space *,
2184 loff_t lstart, loff_t lend);
2185 extern void truncate_inode_pages_final(struct address_space *);
2186
2187 /* generic vm_area_ops exported for stackable file systems */
2188 extern int filemap_fault(struct vm_fault *vmf);
2189 extern void filemap_map_pages(struct vm_fault *vmf,
2190 pgoff_t start_pgoff, pgoff_t end_pgoff);
2191 extern int filemap_page_mkwrite(struct vm_fault *vmf);
2192
2193 /* mm/page-writeback.c */
2194 int write_one_page(struct page *page, int wait);
2195 void task_dirty_inc(struct task_struct *tsk);
2196
2197 /* readahead.c */
2198 #define VM_MAX_READAHEAD 128 /* kbytes */
2199 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2200
2201 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2202 pgoff_t offset, unsigned long nr_to_read);
2203
2204 void page_cache_sync_readahead(struct address_space *mapping,
2205 struct file_ra_state *ra,
2206 struct file *filp,
2207 pgoff_t offset,
2208 unsigned long size);
2209
2210 void page_cache_async_readahead(struct address_space *mapping,
2211 struct file_ra_state *ra,
2212 struct file *filp,
2213 struct page *pg,
2214 pgoff_t offset,
2215 unsigned long size);
2216
2217 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2218 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2219
2220 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2221 extern int expand_downwards(struct vm_area_struct *vma,
2222 unsigned long address);
2223 #if VM_GROWSUP
2224 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2225 #else
2226 #define expand_upwards(vma, address) (0)
2227 #endif
2228
2229 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2230 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2231 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2232 struct vm_area_struct **pprev);
2233
2234 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2235 NULL if none. Assume start_addr < end_addr. */
2236 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2237 {
2238 struct vm_area_struct * vma = find_vma(mm,start_addr);
2239
2240 if (vma && end_addr <= vma->vm_start)
2241 vma = NULL;
2242 return vma;
2243 }
2244
2245 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2246 {
2247 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2248 }
2249
2250 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2251 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2252 unsigned long vm_start, unsigned long vm_end)
2253 {
2254 struct vm_area_struct *vma = find_vma(mm, vm_start);
2255
2256 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2257 vma = NULL;
2258
2259 return vma;
2260 }
2261
2262 #ifdef CONFIG_MMU
2263 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2264 void vma_set_page_prot(struct vm_area_struct *vma);
2265 #else
2266 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2267 {
2268 return __pgprot(0);
2269 }
2270 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2271 {
2272 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2273 }
2274 #endif
2275
2276 #ifdef CONFIG_NUMA_BALANCING
2277 unsigned long change_prot_numa(struct vm_area_struct *vma,
2278 unsigned long start, unsigned long end);
2279 #endif
2280
2281 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2282 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2283 unsigned long pfn, unsigned long size, pgprot_t);
2284 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2285 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2286 unsigned long pfn);
2287 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2288 unsigned long pfn, pgprot_t pgprot);
2289 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2290 pfn_t pfn);
2291 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2292
2293
2294 struct page *follow_page_mask(struct vm_area_struct *vma,
2295 unsigned long address, unsigned int foll_flags,
2296 unsigned int *page_mask);
2297
2298 static inline struct page *follow_page(struct vm_area_struct *vma,
2299 unsigned long address, unsigned int foll_flags)
2300 {
2301 unsigned int unused_page_mask;
2302 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2303 }
2304
2305 #define FOLL_WRITE 0x01 /* check pte is writable */
2306 #define FOLL_TOUCH 0x02 /* mark page accessed */
2307 #define FOLL_GET 0x04 /* do get_page on page */
2308 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2309 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2310 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2311 * and return without waiting upon it */
2312 #define FOLL_POPULATE 0x40 /* fault in page */
2313 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2314 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2315 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2316 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2317 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2318 #define FOLL_MLOCK 0x1000 /* lock present pages */
2319 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2320 #define FOLL_COW 0x4000 /* internal GUP flag */
2321
2322 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2323 void *data);
2324 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2325 unsigned long size, pte_fn_t fn, void *data);
2326
2327
2328 #ifdef CONFIG_PAGE_POISONING
2329 extern bool page_poisoning_enabled(void);
2330 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2331 extern bool page_is_poisoned(struct page *page);
2332 #else
2333 static inline bool page_poisoning_enabled(void) { return false; }
2334 static inline void kernel_poison_pages(struct page *page, int numpages,
2335 int enable) { }
2336 static inline bool page_is_poisoned(struct page *page) { return false; }
2337 #endif
2338
2339 #ifdef CONFIG_DEBUG_PAGEALLOC
2340 extern bool _debug_pagealloc_enabled;
2341 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2342
2343 static inline bool debug_pagealloc_enabled(void)
2344 {
2345 return _debug_pagealloc_enabled;
2346 }
2347
2348 static inline void
2349 kernel_map_pages(struct page *page, int numpages, int enable)
2350 {
2351 if (!debug_pagealloc_enabled())
2352 return;
2353
2354 __kernel_map_pages(page, numpages, enable);
2355 }
2356 #ifdef CONFIG_HIBERNATION
2357 extern bool kernel_page_present(struct page *page);
2358 #endif /* CONFIG_HIBERNATION */
2359 #else /* CONFIG_DEBUG_PAGEALLOC */
2360 static inline void
2361 kernel_map_pages(struct page *page, int numpages, int enable) {}
2362 #ifdef CONFIG_HIBERNATION
2363 static inline bool kernel_page_present(struct page *page) { return true; }
2364 #endif /* CONFIG_HIBERNATION */
2365 static inline bool debug_pagealloc_enabled(void)
2366 {
2367 return false;
2368 }
2369 #endif /* CONFIG_DEBUG_PAGEALLOC */
2370
2371 #ifdef __HAVE_ARCH_GATE_AREA
2372 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2373 extern int in_gate_area_no_mm(unsigned long addr);
2374 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2375 #else
2376 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2377 {
2378 return NULL;
2379 }
2380 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2381 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2382 {
2383 return 0;
2384 }
2385 #endif /* __HAVE_ARCH_GATE_AREA */
2386
2387 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2388
2389 #ifdef CONFIG_SYSCTL
2390 extern int sysctl_drop_caches;
2391 int drop_caches_sysctl_handler(struct ctl_table *, int,
2392 void __user *, size_t *, loff_t *);
2393 #endif
2394
2395 void drop_slab(void);
2396 void drop_slab_node(int nid);
2397
2398 #ifndef CONFIG_MMU
2399 #define randomize_va_space 0
2400 #else
2401 extern int randomize_va_space;
2402 #endif
2403
2404 const char * arch_vma_name(struct vm_area_struct *vma);
2405 void print_vma_addr(char *prefix, unsigned long rip);
2406
2407 void sparse_mem_maps_populate_node(struct page **map_map,
2408 unsigned long pnum_begin,
2409 unsigned long pnum_end,
2410 unsigned long map_count,
2411 int nodeid);
2412
2413 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2414 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2415 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2416 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2417 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2418 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2419 void *vmemmap_alloc_block(unsigned long size, int node);
2420 struct vmem_altmap;
2421 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2422 struct vmem_altmap *altmap);
2423 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2424 {
2425 return __vmemmap_alloc_block_buf(size, node, NULL);
2426 }
2427
2428 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2429 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2430 int node);
2431 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2432 void vmemmap_populate_print_last(void);
2433 #ifdef CONFIG_MEMORY_HOTPLUG
2434 void vmemmap_free(unsigned long start, unsigned long end);
2435 #endif
2436 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2437 unsigned long size);
2438
2439 enum mf_flags {
2440 MF_COUNT_INCREASED = 1 << 0,
2441 MF_ACTION_REQUIRED = 1 << 1,
2442 MF_MUST_KILL = 1 << 2,
2443 MF_SOFT_OFFLINE = 1 << 3,
2444 };
2445 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2446 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2447 extern int unpoison_memory(unsigned long pfn);
2448 extern int get_hwpoison_page(struct page *page);
2449 #define put_hwpoison_page(page) put_page(page)
2450 extern int sysctl_memory_failure_early_kill;
2451 extern int sysctl_memory_failure_recovery;
2452 extern void shake_page(struct page *p, int access);
2453 extern atomic_long_t num_poisoned_pages;
2454 extern int soft_offline_page(struct page *page, int flags);
2455
2456
2457 /*
2458 * Error handlers for various types of pages.
2459 */
2460 enum mf_result {
2461 MF_IGNORED, /* Error: cannot be handled */
2462 MF_FAILED, /* Error: handling failed */
2463 MF_DELAYED, /* Will be handled later */
2464 MF_RECOVERED, /* Successfully recovered */
2465 };
2466
2467 enum mf_action_page_type {
2468 MF_MSG_KERNEL,
2469 MF_MSG_KERNEL_HIGH_ORDER,
2470 MF_MSG_SLAB,
2471 MF_MSG_DIFFERENT_COMPOUND,
2472 MF_MSG_POISONED_HUGE,
2473 MF_MSG_HUGE,
2474 MF_MSG_FREE_HUGE,
2475 MF_MSG_UNMAP_FAILED,
2476 MF_MSG_DIRTY_SWAPCACHE,
2477 MF_MSG_CLEAN_SWAPCACHE,
2478 MF_MSG_DIRTY_MLOCKED_LRU,
2479 MF_MSG_CLEAN_MLOCKED_LRU,
2480 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2481 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2482 MF_MSG_DIRTY_LRU,
2483 MF_MSG_CLEAN_LRU,
2484 MF_MSG_TRUNCATED_LRU,
2485 MF_MSG_BUDDY,
2486 MF_MSG_BUDDY_2ND,
2487 MF_MSG_UNKNOWN,
2488 };
2489
2490 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2491 extern void clear_huge_page(struct page *page,
2492 unsigned long addr,
2493 unsigned int pages_per_huge_page);
2494 extern void copy_user_huge_page(struct page *dst, struct page *src,
2495 unsigned long addr, struct vm_area_struct *vma,
2496 unsigned int pages_per_huge_page);
2497 extern long copy_huge_page_from_user(struct page *dst_page,
2498 const void __user *usr_src,
2499 unsigned int pages_per_huge_page,
2500 bool allow_pagefault);
2501 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2502
2503 extern struct page_ext_operations debug_guardpage_ops;
2504
2505 #ifdef CONFIG_DEBUG_PAGEALLOC
2506 extern unsigned int _debug_guardpage_minorder;
2507 extern bool _debug_guardpage_enabled;
2508
2509 static inline unsigned int debug_guardpage_minorder(void)
2510 {
2511 return _debug_guardpage_minorder;
2512 }
2513
2514 static inline bool debug_guardpage_enabled(void)
2515 {
2516 return _debug_guardpage_enabled;
2517 }
2518
2519 static inline bool page_is_guard(struct page *page)
2520 {
2521 struct page_ext *page_ext;
2522
2523 if (!debug_guardpage_enabled())
2524 return false;
2525
2526 page_ext = lookup_page_ext(page);
2527 if (unlikely(!page_ext))
2528 return false;
2529
2530 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2531 }
2532 #else
2533 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2534 static inline bool debug_guardpage_enabled(void) { return false; }
2535 static inline bool page_is_guard(struct page *page) { return false; }
2536 #endif /* CONFIG_DEBUG_PAGEALLOC */
2537
2538 #if MAX_NUMNODES > 1
2539 void __init setup_nr_node_ids(void);
2540 #else
2541 static inline void setup_nr_node_ids(void) {}
2542 #endif
2543
2544 #endif /* __KERNEL__ */
2545 #endif /* _LINUX_MM_H */