]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/mm.h
mm: don't use compound_head() in virt_to_head_page()
[mirror_ubuntu-artful-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23
24 struct mempolicy;
25 struct anon_vma;
26 struct anon_vma_chain;
27 struct file_ra_state;
28 struct user_struct;
29 struct writeback_control;
30
31 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
32 extern unsigned long max_mapnr;
33
34 static inline void set_max_mapnr(unsigned long limit)
35 {
36 max_mapnr = limit;
37 }
38 #else
39 static inline void set_max_mapnr(unsigned long limit) { }
40 #endif
41
42 extern unsigned long totalram_pages;
43 extern void * high_memory;
44 extern int page_cluster;
45
46 #ifdef CONFIG_SYSCTL
47 extern int sysctl_legacy_va_layout;
48 #else
49 #define sysctl_legacy_va_layout 0
50 #endif
51
52 #include <asm/page.h>
53 #include <asm/pgtable.h>
54 #include <asm/processor.h>
55
56 #ifndef __pa_symbol
57 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
58 #endif
59
60 /*
61 * To prevent common memory management code establishing
62 * a zero page mapping on a read fault.
63 * This macro should be defined within <asm/pgtable.h>.
64 * s390 does this to prevent multiplexing of hardware bits
65 * related to the physical page in case of virtualization.
66 */
67 #ifndef mm_forbids_zeropage
68 #define mm_forbids_zeropage(X) (0)
69 #endif
70
71 extern unsigned long sysctl_user_reserve_kbytes;
72 extern unsigned long sysctl_admin_reserve_kbytes;
73
74 extern int sysctl_overcommit_memory;
75 extern int sysctl_overcommit_ratio;
76 extern unsigned long sysctl_overcommit_kbytes;
77
78 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
79 size_t *, loff_t *);
80 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82
83 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
84
85 /* to align the pointer to the (next) page boundary */
86 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
87
88 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
89 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
90
91 /*
92 * Linux kernel virtual memory manager primitives.
93 * The idea being to have a "virtual" mm in the same way
94 * we have a virtual fs - giving a cleaner interface to the
95 * mm details, and allowing different kinds of memory mappings
96 * (from shared memory to executable loading to arbitrary
97 * mmap() functions).
98 */
99
100 extern struct kmem_cache *vm_area_cachep;
101
102 #ifndef CONFIG_MMU
103 extern struct rb_root nommu_region_tree;
104 extern struct rw_semaphore nommu_region_sem;
105
106 extern unsigned int kobjsize(const void *objp);
107 #endif
108
109 /*
110 * vm_flags in vm_area_struct, see mm_types.h.
111 */
112 #define VM_NONE 0x00000000
113
114 #define VM_READ 0x00000001 /* currently active flags */
115 #define VM_WRITE 0x00000002
116 #define VM_EXEC 0x00000004
117 #define VM_SHARED 0x00000008
118
119 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
120 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
121 #define VM_MAYWRITE 0x00000020
122 #define VM_MAYEXEC 0x00000040
123 #define VM_MAYSHARE 0x00000080
124
125 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
126 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
127 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
128
129 #define VM_LOCKED 0x00002000
130 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
131
132 /* Used by sys_madvise() */
133 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
134 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
135
136 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
137 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
138 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
139 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
140 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
141 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
142 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
143 #define VM_ARCH_2 0x02000000
144 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
145
146 #ifdef CONFIG_MEM_SOFT_DIRTY
147 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
148 #else
149 # define VM_SOFTDIRTY 0
150 #endif
151
152 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
153 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
154 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
155 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
156
157 #if defined(CONFIG_X86)
158 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
159 #elif defined(CONFIG_PPC)
160 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
161 #elif defined(CONFIG_PARISC)
162 # define VM_GROWSUP VM_ARCH_1
163 #elif defined(CONFIG_METAG)
164 # define VM_GROWSUP VM_ARCH_1
165 #elif defined(CONFIG_IA64)
166 # define VM_GROWSUP VM_ARCH_1
167 #elif !defined(CONFIG_MMU)
168 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
169 #endif
170
171 #if defined(CONFIG_X86)
172 /* MPX specific bounds table or bounds directory */
173 # define VM_MPX VM_ARCH_2
174 #endif
175
176 #ifndef VM_GROWSUP
177 # define VM_GROWSUP VM_NONE
178 #endif
179
180 /* Bits set in the VMA until the stack is in its final location */
181 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
182
183 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
184 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
185 #endif
186
187 #ifdef CONFIG_STACK_GROWSUP
188 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
189 #else
190 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
191 #endif
192
193 /*
194 * Special vmas that are non-mergable, non-mlock()able.
195 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
196 */
197 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
198
199 /* This mask defines which mm->def_flags a process can inherit its parent */
200 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
201
202 /*
203 * mapping from the currently active vm_flags protection bits (the
204 * low four bits) to a page protection mask..
205 */
206 extern pgprot_t protection_map[16];
207
208 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
209 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
210 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
211 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
212 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
213 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
214 #define FAULT_FLAG_TRIED 0x40 /* second try */
215 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
216
217 /*
218 * vm_fault is filled by the the pagefault handler and passed to the vma's
219 * ->fault function. The vma's ->fault is responsible for returning a bitmask
220 * of VM_FAULT_xxx flags that give details about how the fault was handled.
221 *
222 * pgoff should be used in favour of virtual_address, if possible. If pgoff
223 * is used, one may implement ->remap_pages to get nonlinear mapping support.
224 */
225 struct vm_fault {
226 unsigned int flags; /* FAULT_FLAG_xxx flags */
227 pgoff_t pgoff; /* Logical page offset based on vma */
228 void __user *virtual_address; /* Faulting virtual address */
229
230 struct page *page; /* ->fault handlers should return a
231 * page here, unless VM_FAULT_NOPAGE
232 * is set (which is also implied by
233 * VM_FAULT_ERROR).
234 */
235 /* for ->map_pages() only */
236 pgoff_t max_pgoff; /* map pages for offset from pgoff till
237 * max_pgoff inclusive */
238 pte_t *pte; /* pte entry associated with ->pgoff */
239 };
240
241 /*
242 * These are the virtual MM functions - opening of an area, closing and
243 * unmapping it (needed to keep files on disk up-to-date etc), pointer
244 * to the functions called when a no-page or a wp-page exception occurs.
245 */
246 struct vm_operations_struct {
247 void (*open)(struct vm_area_struct * area);
248 void (*close)(struct vm_area_struct * area);
249 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
250 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
251
252 /* notification that a previously read-only page is about to become
253 * writable, if an error is returned it will cause a SIGBUS */
254 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
255
256 /* called by access_process_vm when get_user_pages() fails, typically
257 * for use by special VMAs that can switch between memory and hardware
258 */
259 int (*access)(struct vm_area_struct *vma, unsigned long addr,
260 void *buf, int len, int write);
261
262 /* Called by the /proc/PID/maps code to ask the vma whether it
263 * has a special name. Returning non-NULL will also cause this
264 * vma to be dumped unconditionally. */
265 const char *(*name)(struct vm_area_struct *vma);
266
267 #ifdef CONFIG_NUMA
268 /*
269 * set_policy() op must add a reference to any non-NULL @new mempolicy
270 * to hold the policy upon return. Caller should pass NULL @new to
271 * remove a policy and fall back to surrounding context--i.e. do not
272 * install a MPOL_DEFAULT policy, nor the task or system default
273 * mempolicy.
274 */
275 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
276
277 /*
278 * get_policy() op must add reference [mpol_get()] to any policy at
279 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
280 * in mm/mempolicy.c will do this automatically.
281 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
282 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
283 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
284 * must return NULL--i.e., do not "fallback" to task or system default
285 * policy.
286 */
287 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
288 unsigned long addr);
289 #endif
290 /* called by sys_remap_file_pages() to populate non-linear mapping */
291 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
292 unsigned long size, pgoff_t pgoff);
293 };
294
295 struct mmu_gather;
296 struct inode;
297
298 #define page_private(page) ((page)->private)
299 #define set_page_private(page, v) ((page)->private = (v))
300
301 /* It's valid only if the page is free path or free_list */
302 static inline void set_freepage_migratetype(struct page *page, int migratetype)
303 {
304 page->index = migratetype;
305 }
306
307 /* It's valid only if the page is free path or free_list */
308 static inline int get_freepage_migratetype(struct page *page)
309 {
310 return page->index;
311 }
312
313 /*
314 * FIXME: take this include out, include page-flags.h in
315 * files which need it (119 of them)
316 */
317 #include <linux/page-flags.h>
318 #include <linux/huge_mm.h>
319
320 /*
321 * Methods to modify the page usage count.
322 *
323 * What counts for a page usage:
324 * - cache mapping (page->mapping)
325 * - private data (page->private)
326 * - page mapped in a task's page tables, each mapping
327 * is counted separately
328 *
329 * Also, many kernel routines increase the page count before a critical
330 * routine so they can be sure the page doesn't go away from under them.
331 */
332
333 /*
334 * Drop a ref, return true if the refcount fell to zero (the page has no users)
335 */
336 static inline int put_page_testzero(struct page *page)
337 {
338 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
339 return atomic_dec_and_test(&page->_count);
340 }
341
342 /*
343 * Try to grab a ref unless the page has a refcount of zero, return false if
344 * that is the case.
345 * This can be called when MMU is off so it must not access
346 * any of the virtual mappings.
347 */
348 static inline int get_page_unless_zero(struct page *page)
349 {
350 return atomic_inc_not_zero(&page->_count);
351 }
352
353 /*
354 * Try to drop a ref unless the page has a refcount of one, return false if
355 * that is the case.
356 * This is to make sure that the refcount won't become zero after this drop.
357 * This can be called when MMU is off so it must not access
358 * any of the virtual mappings.
359 */
360 static inline int put_page_unless_one(struct page *page)
361 {
362 return atomic_add_unless(&page->_count, -1, 1);
363 }
364
365 extern int page_is_ram(unsigned long pfn);
366 extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
367
368 /* Support for virtually mapped pages */
369 struct page *vmalloc_to_page(const void *addr);
370 unsigned long vmalloc_to_pfn(const void *addr);
371
372 /*
373 * Determine if an address is within the vmalloc range
374 *
375 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
376 * is no special casing required.
377 */
378 static inline int is_vmalloc_addr(const void *x)
379 {
380 #ifdef CONFIG_MMU
381 unsigned long addr = (unsigned long)x;
382
383 return addr >= VMALLOC_START && addr < VMALLOC_END;
384 #else
385 return 0;
386 #endif
387 }
388 #ifdef CONFIG_MMU
389 extern int is_vmalloc_or_module_addr(const void *x);
390 #else
391 static inline int is_vmalloc_or_module_addr(const void *x)
392 {
393 return 0;
394 }
395 #endif
396
397 extern void kvfree(const void *addr);
398
399 static inline void compound_lock(struct page *page)
400 {
401 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
402 VM_BUG_ON_PAGE(PageSlab(page), page);
403 bit_spin_lock(PG_compound_lock, &page->flags);
404 #endif
405 }
406
407 static inline void compound_unlock(struct page *page)
408 {
409 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
410 VM_BUG_ON_PAGE(PageSlab(page), page);
411 bit_spin_unlock(PG_compound_lock, &page->flags);
412 #endif
413 }
414
415 static inline unsigned long compound_lock_irqsave(struct page *page)
416 {
417 unsigned long uninitialized_var(flags);
418 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
419 local_irq_save(flags);
420 compound_lock(page);
421 #endif
422 return flags;
423 }
424
425 static inline void compound_unlock_irqrestore(struct page *page,
426 unsigned long flags)
427 {
428 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
429 compound_unlock(page);
430 local_irq_restore(flags);
431 #endif
432 }
433
434 static inline struct page *compound_head_by_tail(struct page *tail)
435 {
436 struct page *head = tail->first_page;
437
438 /*
439 * page->first_page may be a dangling pointer to an old
440 * compound page, so recheck that it is still a tail
441 * page before returning.
442 */
443 smp_rmb();
444 if (likely(PageTail(tail)))
445 return head;
446 return tail;
447 }
448
449 /*
450 * Since either compound page could be dismantled asynchronously in THP
451 * or we access asynchronously arbitrary positioned struct page, there
452 * would be tail flag race. To handle this race, we should call
453 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
454 */
455 static inline struct page *compound_head(struct page *page)
456 {
457 if (unlikely(PageTail(page)))
458 return compound_head_by_tail(page);
459 return page;
460 }
461
462 /*
463 * If we access compound page synchronously such as access to
464 * allocated page, there is no need to handle tail flag race, so we can
465 * check tail flag directly without any synchronization primitive.
466 */
467 static inline struct page *compound_head_fast(struct page *page)
468 {
469 if (unlikely(PageTail(page)))
470 return page->first_page;
471 return page;
472 }
473
474 /*
475 * The atomic page->_mapcount, starts from -1: so that transitions
476 * both from it and to it can be tracked, using atomic_inc_and_test
477 * and atomic_add_negative(-1).
478 */
479 static inline void page_mapcount_reset(struct page *page)
480 {
481 atomic_set(&(page)->_mapcount, -1);
482 }
483
484 static inline int page_mapcount(struct page *page)
485 {
486 return atomic_read(&(page)->_mapcount) + 1;
487 }
488
489 static inline int page_count(struct page *page)
490 {
491 return atomic_read(&compound_head(page)->_count);
492 }
493
494 #ifdef CONFIG_HUGETLB_PAGE
495 extern int PageHeadHuge(struct page *page_head);
496 #else /* CONFIG_HUGETLB_PAGE */
497 static inline int PageHeadHuge(struct page *page_head)
498 {
499 return 0;
500 }
501 #endif /* CONFIG_HUGETLB_PAGE */
502
503 static inline bool __compound_tail_refcounted(struct page *page)
504 {
505 return !PageSlab(page) && !PageHeadHuge(page);
506 }
507
508 /*
509 * This takes a head page as parameter and tells if the
510 * tail page reference counting can be skipped.
511 *
512 * For this to be safe, PageSlab and PageHeadHuge must remain true on
513 * any given page where they return true here, until all tail pins
514 * have been released.
515 */
516 static inline bool compound_tail_refcounted(struct page *page)
517 {
518 VM_BUG_ON_PAGE(!PageHead(page), page);
519 return __compound_tail_refcounted(page);
520 }
521
522 static inline void get_huge_page_tail(struct page *page)
523 {
524 /*
525 * __split_huge_page_refcount() cannot run from under us.
526 */
527 VM_BUG_ON_PAGE(!PageTail(page), page);
528 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
529 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
530 if (compound_tail_refcounted(page->first_page))
531 atomic_inc(&page->_mapcount);
532 }
533
534 extern bool __get_page_tail(struct page *page);
535
536 static inline void get_page(struct page *page)
537 {
538 if (unlikely(PageTail(page)))
539 if (likely(__get_page_tail(page)))
540 return;
541 /*
542 * Getting a normal page or the head of a compound page
543 * requires to already have an elevated page->_count.
544 */
545 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
546 atomic_inc(&page->_count);
547 }
548
549 static inline struct page *virt_to_head_page(const void *x)
550 {
551 struct page *page = virt_to_page(x);
552
553 /*
554 * We don't need to worry about synchronization of tail flag
555 * when we call virt_to_head_page() since it is only called for
556 * already allocated page and this page won't be freed until
557 * this virt_to_head_page() is finished. So use _fast variant.
558 */
559 return compound_head_fast(page);
560 }
561
562 /*
563 * Setup the page count before being freed into the page allocator for
564 * the first time (boot or memory hotplug)
565 */
566 static inline void init_page_count(struct page *page)
567 {
568 atomic_set(&page->_count, 1);
569 }
570
571 /*
572 * PageBuddy() indicate that the page is free and in the buddy system
573 * (see mm/page_alloc.c).
574 *
575 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
576 * -2 so that an underflow of the page_mapcount() won't be mistaken
577 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
578 * efficiently by most CPU architectures.
579 */
580 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
581
582 static inline int PageBuddy(struct page *page)
583 {
584 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
585 }
586
587 static inline void __SetPageBuddy(struct page *page)
588 {
589 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
590 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
591 }
592
593 static inline void __ClearPageBuddy(struct page *page)
594 {
595 VM_BUG_ON_PAGE(!PageBuddy(page), page);
596 atomic_set(&page->_mapcount, -1);
597 }
598
599 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
600
601 static inline int PageBalloon(struct page *page)
602 {
603 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
604 }
605
606 static inline void __SetPageBalloon(struct page *page)
607 {
608 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
609 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
610 }
611
612 static inline void __ClearPageBalloon(struct page *page)
613 {
614 VM_BUG_ON_PAGE(!PageBalloon(page), page);
615 atomic_set(&page->_mapcount, -1);
616 }
617
618 void put_page(struct page *page);
619 void put_pages_list(struct list_head *pages);
620
621 void split_page(struct page *page, unsigned int order);
622 int split_free_page(struct page *page);
623
624 /*
625 * Compound pages have a destructor function. Provide a
626 * prototype for that function and accessor functions.
627 * These are _only_ valid on the head of a PG_compound page.
628 */
629 typedef void compound_page_dtor(struct page *);
630
631 static inline void set_compound_page_dtor(struct page *page,
632 compound_page_dtor *dtor)
633 {
634 page[1].lru.next = (void *)dtor;
635 }
636
637 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
638 {
639 return (compound_page_dtor *)page[1].lru.next;
640 }
641
642 static inline int compound_order(struct page *page)
643 {
644 if (!PageHead(page))
645 return 0;
646 return (unsigned long)page[1].lru.prev;
647 }
648
649 static inline void set_compound_order(struct page *page, unsigned long order)
650 {
651 page[1].lru.prev = (void *)order;
652 }
653
654 #ifdef CONFIG_MMU
655 /*
656 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
657 * servicing faults for write access. In the normal case, do always want
658 * pte_mkwrite. But get_user_pages can cause write faults for mappings
659 * that do not have writing enabled, when used by access_process_vm.
660 */
661 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
662 {
663 if (likely(vma->vm_flags & VM_WRITE))
664 pte = pte_mkwrite(pte);
665 return pte;
666 }
667
668 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
669 struct page *page, pte_t *pte, bool write, bool anon);
670 #endif
671
672 /*
673 * Multiple processes may "see" the same page. E.g. for untouched
674 * mappings of /dev/null, all processes see the same page full of
675 * zeroes, and text pages of executables and shared libraries have
676 * only one copy in memory, at most, normally.
677 *
678 * For the non-reserved pages, page_count(page) denotes a reference count.
679 * page_count() == 0 means the page is free. page->lru is then used for
680 * freelist management in the buddy allocator.
681 * page_count() > 0 means the page has been allocated.
682 *
683 * Pages are allocated by the slab allocator in order to provide memory
684 * to kmalloc and kmem_cache_alloc. In this case, the management of the
685 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
686 * unless a particular usage is carefully commented. (the responsibility of
687 * freeing the kmalloc memory is the caller's, of course).
688 *
689 * A page may be used by anyone else who does a __get_free_page().
690 * In this case, page_count still tracks the references, and should only
691 * be used through the normal accessor functions. The top bits of page->flags
692 * and page->virtual store page management information, but all other fields
693 * are unused and could be used privately, carefully. The management of this
694 * page is the responsibility of the one who allocated it, and those who have
695 * subsequently been given references to it.
696 *
697 * The other pages (we may call them "pagecache pages") are completely
698 * managed by the Linux memory manager: I/O, buffers, swapping etc.
699 * The following discussion applies only to them.
700 *
701 * A pagecache page contains an opaque `private' member, which belongs to the
702 * page's address_space. Usually, this is the address of a circular list of
703 * the page's disk buffers. PG_private must be set to tell the VM to call
704 * into the filesystem to release these pages.
705 *
706 * A page may belong to an inode's memory mapping. In this case, page->mapping
707 * is the pointer to the inode, and page->index is the file offset of the page,
708 * in units of PAGE_CACHE_SIZE.
709 *
710 * If pagecache pages are not associated with an inode, they are said to be
711 * anonymous pages. These may become associated with the swapcache, and in that
712 * case PG_swapcache is set, and page->private is an offset into the swapcache.
713 *
714 * In either case (swapcache or inode backed), the pagecache itself holds one
715 * reference to the page. Setting PG_private should also increment the
716 * refcount. The each user mapping also has a reference to the page.
717 *
718 * The pagecache pages are stored in a per-mapping radix tree, which is
719 * rooted at mapping->page_tree, and indexed by offset.
720 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
721 * lists, we instead now tag pages as dirty/writeback in the radix tree.
722 *
723 * All pagecache pages may be subject to I/O:
724 * - inode pages may need to be read from disk,
725 * - inode pages which have been modified and are MAP_SHARED may need
726 * to be written back to the inode on disk,
727 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
728 * modified may need to be swapped out to swap space and (later) to be read
729 * back into memory.
730 */
731
732 /*
733 * The zone field is never updated after free_area_init_core()
734 * sets it, so none of the operations on it need to be atomic.
735 */
736
737 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
738 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
739 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
740 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
741 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
742
743 /*
744 * Define the bit shifts to access each section. For non-existent
745 * sections we define the shift as 0; that plus a 0 mask ensures
746 * the compiler will optimise away reference to them.
747 */
748 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
749 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
750 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
751 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
752
753 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
754 #ifdef NODE_NOT_IN_PAGE_FLAGS
755 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
756 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
757 SECTIONS_PGOFF : ZONES_PGOFF)
758 #else
759 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
760 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
761 NODES_PGOFF : ZONES_PGOFF)
762 #endif
763
764 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
765
766 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
767 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
768 #endif
769
770 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
771 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
772 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
773 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
774 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
775
776 static inline enum zone_type page_zonenum(const struct page *page)
777 {
778 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
779 }
780
781 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
782 #define SECTION_IN_PAGE_FLAGS
783 #endif
784
785 /*
786 * The identification function is mainly used by the buddy allocator for
787 * determining if two pages could be buddies. We are not really identifying
788 * the zone since we could be using the section number id if we do not have
789 * node id available in page flags.
790 * We only guarantee that it will return the same value for two combinable
791 * pages in a zone.
792 */
793 static inline int page_zone_id(struct page *page)
794 {
795 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
796 }
797
798 static inline int zone_to_nid(struct zone *zone)
799 {
800 #ifdef CONFIG_NUMA
801 return zone->node;
802 #else
803 return 0;
804 #endif
805 }
806
807 #ifdef NODE_NOT_IN_PAGE_FLAGS
808 extern int page_to_nid(const struct page *page);
809 #else
810 static inline int page_to_nid(const struct page *page)
811 {
812 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
813 }
814 #endif
815
816 #ifdef CONFIG_NUMA_BALANCING
817 static inline int cpu_pid_to_cpupid(int cpu, int pid)
818 {
819 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
820 }
821
822 static inline int cpupid_to_pid(int cpupid)
823 {
824 return cpupid & LAST__PID_MASK;
825 }
826
827 static inline int cpupid_to_cpu(int cpupid)
828 {
829 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
830 }
831
832 static inline int cpupid_to_nid(int cpupid)
833 {
834 return cpu_to_node(cpupid_to_cpu(cpupid));
835 }
836
837 static inline bool cpupid_pid_unset(int cpupid)
838 {
839 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
840 }
841
842 static inline bool cpupid_cpu_unset(int cpupid)
843 {
844 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
845 }
846
847 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
848 {
849 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
850 }
851
852 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
853 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
854 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
855 {
856 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
857 }
858
859 static inline int page_cpupid_last(struct page *page)
860 {
861 return page->_last_cpupid;
862 }
863 static inline void page_cpupid_reset_last(struct page *page)
864 {
865 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
866 }
867 #else
868 static inline int page_cpupid_last(struct page *page)
869 {
870 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
871 }
872
873 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
874
875 static inline void page_cpupid_reset_last(struct page *page)
876 {
877 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
878
879 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
880 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
881 }
882 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
883 #else /* !CONFIG_NUMA_BALANCING */
884 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
885 {
886 return page_to_nid(page); /* XXX */
887 }
888
889 static inline int page_cpupid_last(struct page *page)
890 {
891 return page_to_nid(page); /* XXX */
892 }
893
894 static inline int cpupid_to_nid(int cpupid)
895 {
896 return -1;
897 }
898
899 static inline int cpupid_to_pid(int cpupid)
900 {
901 return -1;
902 }
903
904 static inline int cpupid_to_cpu(int cpupid)
905 {
906 return -1;
907 }
908
909 static inline int cpu_pid_to_cpupid(int nid, int pid)
910 {
911 return -1;
912 }
913
914 static inline bool cpupid_pid_unset(int cpupid)
915 {
916 return 1;
917 }
918
919 static inline void page_cpupid_reset_last(struct page *page)
920 {
921 }
922
923 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
924 {
925 return false;
926 }
927 #endif /* CONFIG_NUMA_BALANCING */
928
929 static inline struct zone *page_zone(const struct page *page)
930 {
931 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
932 }
933
934 #ifdef SECTION_IN_PAGE_FLAGS
935 static inline void set_page_section(struct page *page, unsigned long section)
936 {
937 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
938 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
939 }
940
941 static inline unsigned long page_to_section(const struct page *page)
942 {
943 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
944 }
945 #endif
946
947 static inline void set_page_zone(struct page *page, enum zone_type zone)
948 {
949 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
950 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
951 }
952
953 static inline void set_page_node(struct page *page, unsigned long node)
954 {
955 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
956 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
957 }
958
959 static inline void set_page_links(struct page *page, enum zone_type zone,
960 unsigned long node, unsigned long pfn)
961 {
962 set_page_zone(page, zone);
963 set_page_node(page, node);
964 #ifdef SECTION_IN_PAGE_FLAGS
965 set_page_section(page, pfn_to_section_nr(pfn));
966 #endif
967 }
968
969 /*
970 * Some inline functions in vmstat.h depend on page_zone()
971 */
972 #include <linux/vmstat.h>
973
974 static __always_inline void *lowmem_page_address(const struct page *page)
975 {
976 return __va(PFN_PHYS(page_to_pfn(page)));
977 }
978
979 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
980 #define HASHED_PAGE_VIRTUAL
981 #endif
982
983 #if defined(WANT_PAGE_VIRTUAL)
984 static inline void *page_address(const struct page *page)
985 {
986 return page->virtual;
987 }
988 static inline void set_page_address(struct page *page, void *address)
989 {
990 page->virtual = address;
991 }
992 #define page_address_init() do { } while(0)
993 #endif
994
995 #if defined(HASHED_PAGE_VIRTUAL)
996 void *page_address(const struct page *page);
997 void set_page_address(struct page *page, void *virtual);
998 void page_address_init(void);
999 #endif
1000
1001 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1002 #define page_address(page) lowmem_page_address(page)
1003 #define set_page_address(page, address) do { } while(0)
1004 #define page_address_init() do { } while(0)
1005 #endif
1006
1007 /*
1008 * On an anonymous page mapped into a user virtual memory area,
1009 * page->mapping points to its anon_vma, not to a struct address_space;
1010 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
1011 *
1012 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
1013 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
1014 * and then page->mapping points, not to an anon_vma, but to a private
1015 * structure which KSM associates with that merged page. See ksm.h.
1016 *
1017 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1018 *
1019 * Please note that, confusingly, "page_mapping" refers to the inode
1020 * address_space which maps the page from disk; whereas "page_mapped"
1021 * refers to user virtual address space into which the page is mapped.
1022 */
1023 #define PAGE_MAPPING_ANON 1
1024 #define PAGE_MAPPING_KSM 2
1025 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1026
1027 extern struct address_space *page_mapping(struct page *page);
1028
1029 /* Neutral page->mapping pointer to address_space or anon_vma or other */
1030 static inline void *page_rmapping(struct page *page)
1031 {
1032 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
1033 }
1034
1035 extern struct address_space *__page_file_mapping(struct page *);
1036
1037 static inline
1038 struct address_space *page_file_mapping(struct page *page)
1039 {
1040 if (unlikely(PageSwapCache(page)))
1041 return __page_file_mapping(page);
1042
1043 return page->mapping;
1044 }
1045
1046 static inline int PageAnon(struct page *page)
1047 {
1048 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1049 }
1050
1051 /*
1052 * Return the pagecache index of the passed page. Regular pagecache pages
1053 * use ->index whereas swapcache pages use ->private
1054 */
1055 static inline pgoff_t page_index(struct page *page)
1056 {
1057 if (unlikely(PageSwapCache(page)))
1058 return page_private(page);
1059 return page->index;
1060 }
1061
1062 extern pgoff_t __page_file_index(struct page *page);
1063
1064 /*
1065 * Return the file index of the page. Regular pagecache pages use ->index
1066 * whereas swapcache pages use swp_offset(->private)
1067 */
1068 static inline pgoff_t page_file_index(struct page *page)
1069 {
1070 if (unlikely(PageSwapCache(page)))
1071 return __page_file_index(page);
1072
1073 return page->index;
1074 }
1075
1076 /*
1077 * Return true if this page is mapped into pagetables.
1078 */
1079 static inline int page_mapped(struct page *page)
1080 {
1081 return atomic_read(&(page)->_mapcount) >= 0;
1082 }
1083
1084 /*
1085 * Different kinds of faults, as returned by handle_mm_fault().
1086 * Used to decide whether a process gets delivered SIGBUS or
1087 * just gets major/minor fault counters bumped up.
1088 */
1089
1090 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1091
1092 #define VM_FAULT_OOM 0x0001
1093 #define VM_FAULT_SIGBUS 0x0002
1094 #define VM_FAULT_MAJOR 0x0004
1095 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1096 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1097 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1098 #define VM_FAULT_SIGSEGV 0x0040
1099
1100 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1101 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1102 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1103 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1104
1105 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1106
1107 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1108 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1109 VM_FAULT_FALLBACK)
1110
1111 /* Encode hstate index for a hwpoisoned large page */
1112 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1113 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1114
1115 /*
1116 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1117 */
1118 extern void pagefault_out_of_memory(void);
1119
1120 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1121
1122 /*
1123 * Flags passed to show_mem() and show_free_areas() to suppress output in
1124 * various contexts.
1125 */
1126 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1127
1128 extern void show_free_areas(unsigned int flags);
1129 extern bool skip_free_areas_node(unsigned int flags, int nid);
1130
1131 int shmem_zero_setup(struct vm_area_struct *);
1132 #ifdef CONFIG_SHMEM
1133 bool shmem_mapping(struct address_space *mapping);
1134 #else
1135 static inline bool shmem_mapping(struct address_space *mapping)
1136 {
1137 return false;
1138 }
1139 #endif
1140
1141 extern int can_do_mlock(void);
1142 extern int user_shm_lock(size_t, struct user_struct *);
1143 extern void user_shm_unlock(size_t, struct user_struct *);
1144
1145 /*
1146 * Parameter block passed down to zap_pte_range in exceptional cases.
1147 */
1148 struct zap_details {
1149 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1150 struct address_space *check_mapping; /* Check page->mapping if set */
1151 pgoff_t first_index; /* Lowest page->index to unmap */
1152 pgoff_t last_index; /* Highest page->index to unmap */
1153 };
1154
1155 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1156 pte_t pte);
1157
1158 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1159 unsigned long size);
1160 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1161 unsigned long size, struct zap_details *);
1162 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1163 unsigned long start, unsigned long end);
1164
1165 /**
1166 * mm_walk - callbacks for walk_page_range
1167 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1168 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1169 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1170 * this handler is required to be able to handle
1171 * pmd_trans_huge() pmds. They may simply choose to
1172 * split_huge_page() instead of handling it explicitly.
1173 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1174 * @pte_hole: if set, called for each hole at all levels
1175 * @hugetlb_entry: if set, called for each hugetlb entry
1176 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1177 * is used.
1178 *
1179 * (see walk_page_range for more details)
1180 */
1181 struct mm_walk {
1182 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1183 unsigned long next, struct mm_walk *walk);
1184 int (*pud_entry)(pud_t *pud, unsigned long addr,
1185 unsigned long next, struct mm_walk *walk);
1186 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1187 unsigned long next, struct mm_walk *walk);
1188 int (*pte_entry)(pte_t *pte, unsigned long addr,
1189 unsigned long next, struct mm_walk *walk);
1190 int (*pte_hole)(unsigned long addr, unsigned long next,
1191 struct mm_walk *walk);
1192 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1193 unsigned long addr, unsigned long next,
1194 struct mm_walk *walk);
1195 struct mm_struct *mm;
1196 void *private;
1197 };
1198
1199 int walk_page_range(unsigned long addr, unsigned long end,
1200 struct mm_walk *walk);
1201 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1202 unsigned long end, unsigned long floor, unsigned long ceiling);
1203 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1204 struct vm_area_struct *vma);
1205 void unmap_mapping_range(struct address_space *mapping,
1206 loff_t const holebegin, loff_t const holelen, int even_cows);
1207 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1208 unsigned long *pfn);
1209 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1210 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1211 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1212 void *buf, int len, int write);
1213
1214 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1215 loff_t const holebegin, loff_t const holelen)
1216 {
1217 unmap_mapping_range(mapping, holebegin, holelen, 0);
1218 }
1219
1220 extern void truncate_pagecache(struct inode *inode, loff_t new);
1221 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1222 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1223 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1224 int truncate_inode_page(struct address_space *mapping, struct page *page);
1225 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1226 int invalidate_inode_page(struct page *page);
1227
1228 #ifdef CONFIG_MMU
1229 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1230 unsigned long address, unsigned int flags);
1231 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1232 unsigned long address, unsigned int fault_flags);
1233 #else
1234 static inline int handle_mm_fault(struct mm_struct *mm,
1235 struct vm_area_struct *vma, unsigned long address,
1236 unsigned int flags)
1237 {
1238 /* should never happen if there's no MMU */
1239 BUG();
1240 return VM_FAULT_SIGBUS;
1241 }
1242 static inline int fixup_user_fault(struct task_struct *tsk,
1243 struct mm_struct *mm, unsigned long address,
1244 unsigned int fault_flags)
1245 {
1246 /* should never happen if there's no MMU */
1247 BUG();
1248 return -EFAULT;
1249 }
1250 #endif
1251
1252 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1253 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1254 void *buf, int len, int write);
1255
1256 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1257 unsigned long start, unsigned long nr_pages,
1258 unsigned int foll_flags, struct page **pages,
1259 struct vm_area_struct **vmas, int *nonblocking);
1260 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1261 unsigned long start, unsigned long nr_pages,
1262 int write, int force, struct page **pages,
1263 struct vm_area_struct **vmas);
1264 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1265 struct page **pages);
1266 struct kvec;
1267 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1268 struct page **pages);
1269 int get_kernel_page(unsigned long start, int write, struct page **pages);
1270 struct page *get_dump_page(unsigned long addr);
1271
1272 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1273 extern void do_invalidatepage(struct page *page, unsigned int offset,
1274 unsigned int length);
1275
1276 int __set_page_dirty_nobuffers(struct page *page);
1277 int __set_page_dirty_no_writeback(struct page *page);
1278 int redirty_page_for_writepage(struct writeback_control *wbc,
1279 struct page *page);
1280 void account_page_dirtied(struct page *page, struct address_space *mapping);
1281 int set_page_dirty(struct page *page);
1282 int set_page_dirty_lock(struct page *page);
1283 int clear_page_dirty_for_io(struct page *page);
1284 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1285
1286 /* Is the vma a continuation of the stack vma above it? */
1287 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1288 {
1289 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1290 }
1291
1292 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1293 unsigned long addr)
1294 {
1295 return (vma->vm_flags & VM_GROWSDOWN) &&
1296 (vma->vm_start == addr) &&
1297 !vma_growsdown(vma->vm_prev, addr);
1298 }
1299
1300 /* Is the vma a continuation of the stack vma below it? */
1301 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1302 {
1303 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1304 }
1305
1306 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1307 unsigned long addr)
1308 {
1309 return (vma->vm_flags & VM_GROWSUP) &&
1310 (vma->vm_end == addr) &&
1311 !vma_growsup(vma->vm_next, addr);
1312 }
1313
1314 extern struct task_struct *task_of_stack(struct task_struct *task,
1315 struct vm_area_struct *vma, bool in_group);
1316
1317 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1318 unsigned long old_addr, struct vm_area_struct *new_vma,
1319 unsigned long new_addr, unsigned long len,
1320 bool need_rmap_locks);
1321 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1322 unsigned long end, pgprot_t newprot,
1323 int dirty_accountable, int prot_numa);
1324 extern int mprotect_fixup(struct vm_area_struct *vma,
1325 struct vm_area_struct **pprev, unsigned long start,
1326 unsigned long end, unsigned long newflags);
1327
1328 /*
1329 * doesn't attempt to fault and will return short.
1330 */
1331 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1332 struct page **pages);
1333 /*
1334 * per-process(per-mm_struct) statistics.
1335 */
1336 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1337 {
1338 long val = atomic_long_read(&mm->rss_stat.count[member]);
1339
1340 #ifdef SPLIT_RSS_COUNTING
1341 /*
1342 * counter is updated in asynchronous manner and may go to minus.
1343 * But it's never be expected number for users.
1344 */
1345 if (val < 0)
1346 val = 0;
1347 #endif
1348 return (unsigned long)val;
1349 }
1350
1351 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1352 {
1353 atomic_long_add(value, &mm->rss_stat.count[member]);
1354 }
1355
1356 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1357 {
1358 atomic_long_inc(&mm->rss_stat.count[member]);
1359 }
1360
1361 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1362 {
1363 atomic_long_dec(&mm->rss_stat.count[member]);
1364 }
1365
1366 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1367 {
1368 return get_mm_counter(mm, MM_FILEPAGES) +
1369 get_mm_counter(mm, MM_ANONPAGES);
1370 }
1371
1372 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1373 {
1374 return max(mm->hiwater_rss, get_mm_rss(mm));
1375 }
1376
1377 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1378 {
1379 return max(mm->hiwater_vm, mm->total_vm);
1380 }
1381
1382 static inline void update_hiwater_rss(struct mm_struct *mm)
1383 {
1384 unsigned long _rss = get_mm_rss(mm);
1385
1386 if ((mm)->hiwater_rss < _rss)
1387 (mm)->hiwater_rss = _rss;
1388 }
1389
1390 static inline void update_hiwater_vm(struct mm_struct *mm)
1391 {
1392 if (mm->hiwater_vm < mm->total_vm)
1393 mm->hiwater_vm = mm->total_vm;
1394 }
1395
1396 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1397 struct mm_struct *mm)
1398 {
1399 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1400
1401 if (*maxrss < hiwater_rss)
1402 *maxrss = hiwater_rss;
1403 }
1404
1405 #if defined(SPLIT_RSS_COUNTING)
1406 void sync_mm_rss(struct mm_struct *mm);
1407 #else
1408 static inline void sync_mm_rss(struct mm_struct *mm)
1409 {
1410 }
1411 #endif
1412
1413 int vma_wants_writenotify(struct vm_area_struct *vma);
1414
1415 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1416 spinlock_t **ptl);
1417 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1418 spinlock_t **ptl)
1419 {
1420 pte_t *ptep;
1421 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1422 return ptep;
1423 }
1424
1425 #ifdef __PAGETABLE_PUD_FOLDED
1426 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1427 unsigned long address)
1428 {
1429 return 0;
1430 }
1431 #else
1432 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1433 #endif
1434
1435 #ifdef __PAGETABLE_PMD_FOLDED
1436 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1437 unsigned long address)
1438 {
1439 return 0;
1440 }
1441 #else
1442 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1443 #endif
1444
1445 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1446 pmd_t *pmd, unsigned long address);
1447 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1448
1449 /*
1450 * The following ifdef needed to get the 4level-fixup.h header to work.
1451 * Remove it when 4level-fixup.h has been removed.
1452 */
1453 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1454 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1455 {
1456 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1457 NULL: pud_offset(pgd, address);
1458 }
1459
1460 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1461 {
1462 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1463 NULL: pmd_offset(pud, address);
1464 }
1465 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1466
1467 #if USE_SPLIT_PTE_PTLOCKS
1468 #if ALLOC_SPLIT_PTLOCKS
1469 void __init ptlock_cache_init(void);
1470 extern bool ptlock_alloc(struct page *page);
1471 extern void ptlock_free(struct page *page);
1472
1473 static inline spinlock_t *ptlock_ptr(struct page *page)
1474 {
1475 return page->ptl;
1476 }
1477 #else /* ALLOC_SPLIT_PTLOCKS */
1478 static inline void ptlock_cache_init(void)
1479 {
1480 }
1481
1482 static inline bool ptlock_alloc(struct page *page)
1483 {
1484 return true;
1485 }
1486
1487 static inline void ptlock_free(struct page *page)
1488 {
1489 }
1490
1491 static inline spinlock_t *ptlock_ptr(struct page *page)
1492 {
1493 return &page->ptl;
1494 }
1495 #endif /* ALLOC_SPLIT_PTLOCKS */
1496
1497 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1498 {
1499 return ptlock_ptr(pmd_page(*pmd));
1500 }
1501
1502 static inline bool ptlock_init(struct page *page)
1503 {
1504 /*
1505 * prep_new_page() initialize page->private (and therefore page->ptl)
1506 * with 0. Make sure nobody took it in use in between.
1507 *
1508 * It can happen if arch try to use slab for page table allocation:
1509 * slab code uses page->slab_cache and page->first_page (for tail
1510 * pages), which share storage with page->ptl.
1511 */
1512 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1513 if (!ptlock_alloc(page))
1514 return false;
1515 spin_lock_init(ptlock_ptr(page));
1516 return true;
1517 }
1518
1519 /* Reset page->mapping so free_pages_check won't complain. */
1520 static inline void pte_lock_deinit(struct page *page)
1521 {
1522 page->mapping = NULL;
1523 ptlock_free(page);
1524 }
1525
1526 #else /* !USE_SPLIT_PTE_PTLOCKS */
1527 /*
1528 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1529 */
1530 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1531 {
1532 return &mm->page_table_lock;
1533 }
1534 static inline void ptlock_cache_init(void) {}
1535 static inline bool ptlock_init(struct page *page) { return true; }
1536 static inline void pte_lock_deinit(struct page *page) {}
1537 #endif /* USE_SPLIT_PTE_PTLOCKS */
1538
1539 static inline void pgtable_init(void)
1540 {
1541 ptlock_cache_init();
1542 pgtable_cache_init();
1543 }
1544
1545 static inline bool pgtable_page_ctor(struct page *page)
1546 {
1547 inc_zone_page_state(page, NR_PAGETABLE);
1548 return ptlock_init(page);
1549 }
1550
1551 static inline void pgtable_page_dtor(struct page *page)
1552 {
1553 pte_lock_deinit(page);
1554 dec_zone_page_state(page, NR_PAGETABLE);
1555 }
1556
1557 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1558 ({ \
1559 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1560 pte_t *__pte = pte_offset_map(pmd, address); \
1561 *(ptlp) = __ptl; \
1562 spin_lock(__ptl); \
1563 __pte; \
1564 })
1565
1566 #define pte_unmap_unlock(pte, ptl) do { \
1567 spin_unlock(ptl); \
1568 pte_unmap(pte); \
1569 } while (0)
1570
1571 #define pte_alloc_map(mm, vma, pmd, address) \
1572 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1573 pmd, address))? \
1574 NULL: pte_offset_map(pmd, address))
1575
1576 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1577 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1578 pmd, address))? \
1579 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1580
1581 #define pte_alloc_kernel(pmd, address) \
1582 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1583 NULL: pte_offset_kernel(pmd, address))
1584
1585 #if USE_SPLIT_PMD_PTLOCKS
1586
1587 static struct page *pmd_to_page(pmd_t *pmd)
1588 {
1589 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1590 return virt_to_page((void *)((unsigned long) pmd & mask));
1591 }
1592
1593 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1594 {
1595 return ptlock_ptr(pmd_to_page(pmd));
1596 }
1597
1598 static inline bool pgtable_pmd_page_ctor(struct page *page)
1599 {
1600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1601 page->pmd_huge_pte = NULL;
1602 #endif
1603 return ptlock_init(page);
1604 }
1605
1606 static inline void pgtable_pmd_page_dtor(struct page *page)
1607 {
1608 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1609 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1610 #endif
1611 ptlock_free(page);
1612 }
1613
1614 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1615
1616 #else
1617
1618 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1619 {
1620 return &mm->page_table_lock;
1621 }
1622
1623 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1624 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1625
1626 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1627
1628 #endif
1629
1630 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1631 {
1632 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1633 spin_lock(ptl);
1634 return ptl;
1635 }
1636
1637 extern void free_area_init(unsigned long * zones_size);
1638 extern void free_area_init_node(int nid, unsigned long * zones_size,
1639 unsigned long zone_start_pfn, unsigned long *zholes_size);
1640 extern void free_initmem(void);
1641
1642 /*
1643 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1644 * into the buddy system. The freed pages will be poisoned with pattern
1645 * "poison" if it's within range [0, UCHAR_MAX].
1646 * Return pages freed into the buddy system.
1647 */
1648 extern unsigned long free_reserved_area(void *start, void *end,
1649 int poison, char *s);
1650
1651 #ifdef CONFIG_HIGHMEM
1652 /*
1653 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1654 * and totalram_pages.
1655 */
1656 extern void free_highmem_page(struct page *page);
1657 #endif
1658
1659 extern void adjust_managed_page_count(struct page *page, long count);
1660 extern void mem_init_print_info(const char *str);
1661
1662 /* Free the reserved page into the buddy system, so it gets managed. */
1663 static inline void __free_reserved_page(struct page *page)
1664 {
1665 ClearPageReserved(page);
1666 init_page_count(page);
1667 __free_page(page);
1668 }
1669
1670 static inline void free_reserved_page(struct page *page)
1671 {
1672 __free_reserved_page(page);
1673 adjust_managed_page_count(page, 1);
1674 }
1675
1676 static inline void mark_page_reserved(struct page *page)
1677 {
1678 SetPageReserved(page);
1679 adjust_managed_page_count(page, -1);
1680 }
1681
1682 /*
1683 * Default method to free all the __init memory into the buddy system.
1684 * The freed pages will be poisoned with pattern "poison" if it's within
1685 * range [0, UCHAR_MAX].
1686 * Return pages freed into the buddy system.
1687 */
1688 static inline unsigned long free_initmem_default(int poison)
1689 {
1690 extern char __init_begin[], __init_end[];
1691
1692 return free_reserved_area(&__init_begin, &__init_end,
1693 poison, "unused kernel");
1694 }
1695
1696 static inline unsigned long get_num_physpages(void)
1697 {
1698 int nid;
1699 unsigned long phys_pages = 0;
1700
1701 for_each_online_node(nid)
1702 phys_pages += node_present_pages(nid);
1703
1704 return phys_pages;
1705 }
1706
1707 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1708 /*
1709 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1710 * zones, allocate the backing mem_map and account for memory holes in a more
1711 * architecture independent manner. This is a substitute for creating the
1712 * zone_sizes[] and zholes_size[] arrays and passing them to
1713 * free_area_init_node()
1714 *
1715 * An architecture is expected to register range of page frames backed by
1716 * physical memory with memblock_add[_node]() before calling
1717 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1718 * usage, an architecture is expected to do something like
1719 *
1720 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1721 * max_highmem_pfn};
1722 * for_each_valid_physical_page_range()
1723 * memblock_add_node(base, size, nid)
1724 * free_area_init_nodes(max_zone_pfns);
1725 *
1726 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1727 * registered physical page range. Similarly
1728 * sparse_memory_present_with_active_regions() calls memory_present() for
1729 * each range when SPARSEMEM is enabled.
1730 *
1731 * See mm/page_alloc.c for more information on each function exposed by
1732 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1733 */
1734 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1735 unsigned long node_map_pfn_alignment(void);
1736 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1737 unsigned long end_pfn);
1738 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1739 unsigned long end_pfn);
1740 extern void get_pfn_range_for_nid(unsigned int nid,
1741 unsigned long *start_pfn, unsigned long *end_pfn);
1742 extern unsigned long find_min_pfn_with_active_regions(void);
1743 extern void free_bootmem_with_active_regions(int nid,
1744 unsigned long max_low_pfn);
1745 extern void sparse_memory_present_with_active_regions(int nid);
1746
1747 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1748
1749 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1750 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1751 static inline int __early_pfn_to_nid(unsigned long pfn)
1752 {
1753 return 0;
1754 }
1755 #else
1756 /* please see mm/page_alloc.c */
1757 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1758 /* there is a per-arch backend function. */
1759 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1760 #endif
1761
1762 extern void set_dma_reserve(unsigned long new_dma_reserve);
1763 extern void memmap_init_zone(unsigned long, int, unsigned long,
1764 unsigned long, enum memmap_context);
1765 extern void setup_per_zone_wmarks(void);
1766 extern int __meminit init_per_zone_wmark_min(void);
1767 extern void mem_init(void);
1768 extern void __init mmap_init(void);
1769 extern void show_mem(unsigned int flags);
1770 extern void si_meminfo(struct sysinfo * val);
1771 extern void si_meminfo_node(struct sysinfo *val, int nid);
1772
1773 extern __printf(3, 4)
1774 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1775
1776 extern void setup_per_cpu_pageset(void);
1777
1778 extern void zone_pcp_update(struct zone *zone);
1779 extern void zone_pcp_reset(struct zone *zone);
1780
1781 /* page_alloc.c */
1782 extern int min_free_kbytes;
1783
1784 /* nommu.c */
1785 extern atomic_long_t mmap_pages_allocated;
1786 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1787
1788 /* interval_tree.c */
1789 void vma_interval_tree_insert(struct vm_area_struct *node,
1790 struct rb_root *root);
1791 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1792 struct vm_area_struct *prev,
1793 struct rb_root *root);
1794 void vma_interval_tree_remove(struct vm_area_struct *node,
1795 struct rb_root *root);
1796 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1797 unsigned long start, unsigned long last);
1798 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1799 unsigned long start, unsigned long last);
1800
1801 #define vma_interval_tree_foreach(vma, root, start, last) \
1802 for (vma = vma_interval_tree_iter_first(root, start, last); \
1803 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1804
1805 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1806 struct list_head *list)
1807 {
1808 list_add_tail(&vma->shared.nonlinear, list);
1809 }
1810
1811 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1812 struct rb_root *root);
1813 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1814 struct rb_root *root);
1815 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1816 struct rb_root *root, unsigned long start, unsigned long last);
1817 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1818 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1819 #ifdef CONFIG_DEBUG_VM_RB
1820 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1821 #endif
1822
1823 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1824 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1825 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1826
1827 /* mmap.c */
1828 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1829 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1830 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1831 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1832 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1833 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1834 struct mempolicy *);
1835 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1836 extern int split_vma(struct mm_struct *,
1837 struct vm_area_struct *, unsigned long addr, int new_below);
1838 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1839 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1840 struct rb_node **, struct rb_node *);
1841 extern void unlink_file_vma(struct vm_area_struct *);
1842 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1843 unsigned long addr, unsigned long len, pgoff_t pgoff,
1844 bool *need_rmap_locks);
1845 extern void exit_mmap(struct mm_struct *);
1846
1847 static inline int check_data_rlimit(unsigned long rlim,
1848 unsigned long new,
1849 unsigned long start,
1850 unsigned long end_data,
1851 unsigned long start_data)
1852 {
1853 if (rlim < RLIM_INFINITY) {
1854 if (((new - start) + (end_data - start_data)) > rlim)
1855 return -ENOSPC;
1856 }
1857
1858 return 0;
1859 }
1860
1861 extern int mm_take_all_locks(struct mm_struct *mm);
1862 extern void mm_drop_all_locks(struct mm_struct *mm);
1863
1864 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1865 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1866
1867 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1868 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1869 unsigned long addr, unsigned long len,
1870 unsigned long flags,
1871 const struct vm_special_mapping *spec);
1872 /* This is an obsolete alternative to _install_special_mapping. */
1873 extern int install_special_mapping(struct mm_struct *mm,
1874 unsigned long addr, unsigned long len,
1875 unsigned long flags, struct page **pages);
1876
1877 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1878
1879 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1880 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1881 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1882 unsigned long len, unsigned long prot, unsigned long flags,
1883 unsigned long pgoff, unsigned long *populate);
1884 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1885
1886 #ifdef CONFIG_MMU
1887 extern int __mm_populate(unsigned long addr, unsigned long len,
1888 int ignore_errors);
1889 static inline void mm_populate(unsigned long addr, unsigned long len)
1890 {
1891 /* Ignore errors */
1892 (void) __mm_populate(addr, len, 1);
1893 }
1894 #else
1895 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1896 #endif
1897
1898 /* These take the mm semaphore themselves */
1899 extern unsigned long vm_brk(unsigned long, unsigned long);
1900 extern int vm_munmap(unsigned long, size_t);
1901 extern unsigned long vm_mmap(struct file *, unsigned long,
1902 unsigned long, unsigned long,
1903 unsigned long, unsigned long);
1904
1905 struct vm_unmapped_area_info {
1906 #define VM_UNMAPPED_AREA_TOPDOWN 1
1907 unsigned long flags;
1908 unsigned long length;
1909 unsigned long low_limit;
1910 unsigned long high_limit;
1911 unsigned long align_mask;
1912 unsigned long align_offset;
1913 };
1914
1915 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1916 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1917
1918 /*
1919 * Search for an unmapped address range.
1920 *
1921 * We are looking for a range that:
1922 * - does not intersect with any VMA;
1923 * - is contained within the [low_limit, high_limit) interval;
1924 * - is at least the desired size.
1925 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1926 */
1927 static inline unsigned long
1928 vm_unmapped_area(struct vm_unmapped_area_info *info)
1929 {
1930 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1931 return unmapped_area(info);
1932 else
1933 return unmapped_area_topdown(info);
1934 }
1935
1936 /* truncate.c */
1937 extern void truncate_inode_pages(struct address_space *, loff_t);
1938 extern void truncate_inode_pages_range(struct address_space *,
1939 loff_t lstart, loff_t lend);
1940 extern void truncate_inode_pages_final(struct address_space *);
1941
1942 /* generic vm_area_ops exported for stackable file systems */
1943 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1944 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1945 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1946
1947 /* mm/page-writeback.c */
1948 int write_one_page(struct page *page, int wait);
1949 void task_dirty_inc(struct task_struct *tsk);
1950
1951 /* readahead.c */
1952 #define VM_MAX_READAHEAD 128 /* kbytes */
1953 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1954
1955 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1956 pgoff_t offset, unsigned long nr_to_read);
1957
1958 void page_cache_sync_readahead(struct address_space *mapping,
1959 struct file_ra_state *ra,
1960 struct file *filp,
1961 pgoff_t offset,
1962 unsigned long size);
1963
1964 void page_cache_async_readahead(struct address_space *mapping,
1965 struct file_ra_state *ra,
1966 struct file *filp,
1967 struct page *pg,
1968 pgoff_t offset,
1969 unsigned long size);
1970
1971 unsigned long max_sane_readahead(unsigned long nr);
1972
1973 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1974 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1975
1976 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1977 extern int expand_downwards(struct vm_area_struct *vma,
1978 unsigned long address);
1979 #if VM_GROWSUP
1980 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1981 #else
1982 #define expand_upwards(vma, address) (0)
1983 #endif
1984
1985 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1986 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1987 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1988 struct vm_area_struct **pprev);
1989
1990 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1991 NULL if none. Assume start_addr < end_addr. */
1992 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1993 {
1994 struct vm_area_struct * vma = find_vma(mm,start_addr);
1995
1996 if (vma && end_addr <= vma->vm_start)
1997 vma = NULL;
1998 return vma;
1999 }
2000
2001 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2002 {
2003 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2004 }
2005
2006 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2007 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2008 unsigned long vm_start, unsigned long vm_end)
2009 {
2010 struct vm_area_struct *vma = find_vma(mm, vm_start);
2011
2012 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2013 vma = NULL;
2014
2015 return vma;
2016 }
2017
2018 #ifdef CONFIG_MMU
2019 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2020 void vma_set_page_prot(struct vm_area_struct *vma);
2021 #else
2022 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2023 {
2024 return __pgprot(0);
2025 }
2026 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2027 {
2028 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2029 }
2030 #endif
2031
2032 #ifdef CONFIG_NUMA_BALANCING
2033 unsigned long change_prot_numa(struct vm_area_struct *vma,
2034 unsigned long start, unsigned long end);
2035 #endif
2036
2037 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2038 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2039 unsigned long pfn, unsigned long size, pgprot_t);
2040 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2041 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2042 unsigned long pfn);
2043 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2044 unsigned long pfn);
2045 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2046
2047
2048 struct page *follow_page_mask(struct vm_area_struct *vma,
2049 unsigned long address, unsigned int foll_flags,
2050 unsigned int *page_mask);
2051
2052 static inline struct page *follow_page(struct vm_area_struct *vma,
2053 unsigned long address, unsigned int foll_flags)
2054 {
2055 unsigned int unused_page_mask;
2056 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2057 }
2058
2059 #define FOLL_WRITE 0x01 /* check pte is writable */
2060 #define FOLL_TOUCH 0x02 /* mark page accessed */
2061 #define FOLL_GET 0x04 /* do get_page on page */
2062 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2063 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2064 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2065 * and return without waiting upon it */
2066 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
2067 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2068 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2069 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2070 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2071 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2072
2073 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2074 void *data);
2075 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2076 unsigned long size, pte_fn_t fn, void *data);
2077
2078 #ifdef CONFIG_PROC_FS
2079 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2080 #else
2081 static inline void vm_stat_account(struct mm_struct *mm,
2082 unsigned long flags, struct file *file, long pages)
2083 {
2084 mm->total_vm += pages;
2085 }
2086 #endif /* CONFIG_PROC_FS */
2087
2088 #ifdef CONFIG_DEBUG_PAGEALLOC
2089 extern bool _debug_pagealloc_enabled;
2090 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2091
2092 static inline bool debug_pagealloc_enabled(void)
2093 {
2094 return _debug_pagealloc_enabled;
2095 }
2096
2097 static inline void
2098 kernel_map_pages(struct page *page, int numpages, int enable)
2099 {
2100 if (!debug_pagealloc_enabled())
2101 return;
2102
2103 __kernel_map_pages(page, numpages, enable);
2104 }
2105 #ifdef CONFIG_HIBERNATION
2106 extern bool kernel_page_present(struct page *page);
2107 #endif /* CONFIG_HIBERNATION */
2108 #else
2109 static inline void
2110 kernel_map_pages(struct page *page, int numpages, int enable) {}
2111 #ifdef CONFIG_HIBERNATION
2112 static inline bool kernel_page_present(struct page *page) { return true; }
2113 #endif /* CONFIG_HIBERNATION */
2114 #endif
2115
2116 #ifdef __HAVE_ARCH_GATE_AREA
2117 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2118 extern int in_gate_area_no_mm(unsigned long addr);
2119 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2120 #else
2121 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2122 {
2123 return NULL;
2124 }
2125 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2126 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2127 {
2128 return 0;
2129 }
2130 #endif /* __HAVE_ARCH_GATE_AREA */
2131
2132 #ifdef CONFIG_SYSCTL
2133 extern int sysctl_drop_caches;
2134 int drop_caches_sysctl_handler(struct ctl_table *, int,
2135 void __user *, size_t *, loff_t *);
2136 #endif
2137
2138 unsigned long shrink_node_slabs(gfp_t gfp_mask, int nid,
2139 unsigned long nr_scanned,
2140 unsigned long nr_eligible);
2141
2142 #ifndef CONFIG_MMU
2143 #define randomize_va_space 0
2144 #else
2145 extern int randomize_va_space;
2146 #endif
2147
2148 const char * arch_vma_name(struct vm_area_struct *vma);
2149 void print_vma_addr(char *prefix, unsigned long rip);
2150
2151 void sparse_mem_maps_populate_node(struct page **map_map,
2152 unsigned long pnum_begin,
2153 unsigned long pnum_end,
2154 unsigned long map_count,
2155 int nodeid);
2156
2157 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2158 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2159 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2160 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2161 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2162 void *vmemmap_alloc_block(unsigned long size, int node);
2163 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2164 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2165 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2166 int node);
2167 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2168 void vmemmap_populate_print_last(void);
2169 #ifdef CONFIG_MEMORY_HOTPLUG
2170 void vmemmap_free(unsigned long start, unsigned long end);
2171 #endif
2172 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2173 unsigned long size);
2174
2175 enum mf_flags {
2176 MF_COUNT_INCREASED = 1 << 0,
2177 MF_ACTION_REQUIRED = 1 << 1,
2178 MF_MUST_KILL = 1 << 2,
2179 MF_SOFT_OFFLINE = 1 << 3,
2180 };
2181 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2182 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2183 extern int unpoison_memory(unsigned long pfn);
2184 extern int sysctl_memory_failure_early_kill;
2185 extern int sysctl_memory_failure_recovery;
2186 extern void shake_page(struct page *p, int access);
2187 extern atomic_long_t num_poisoned_pages;
2188 extern int soft_offline_page(struct page *page, int flags);
2189
2190 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2191 extern void clear_huge_page(struct page *page,
2192 unsigned long addr,
2193 unsigned int pages_per_huge_page);
2194 extern void copy_user_huge_page(struct page *dst, struct page *src,
2195 unsigned long addr, struct vm_area_struct *vma,
2196 unsigned int pages_per_huge_page);
2197 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2198
2199 extern struct page_ext_operations debug_guardpage_ops;
2200 extern struct page_ext_operations page_poisoning_ops;
2201
2202 #ifdef CONFIG_DEBUG_PAGEALLOC
2203 extern unsigned int _debug_guardpage_minorder;
2204 extern bool _debug_guardpage_enabled;
2205
2206 static inline unsigned int debug_guardpage_minorder(void)
2207 {
2208 return _debug_guardpage_minorder;
2209 }
2210
2211 static inline bool debug_guardpage_enabled(void)
2212 {
2213 return _debug_guardpage_enabled;
2214 }
2215
2216 static inline bool page_is_guard(struct page *page)
2217 {
2218 struct page_ext *page_ext;
2219
2220 if (!debug_guardpage_enabled())
2221 return false;
2222
2223 page_ext = lookup_page_ext(page);
2224 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2225 }
2226 #else
2227 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2228 static inline bool debug_guardpage_enabled(void) { return false; }
2229 static inline bool page_is_guard(struct page *page) { return false; }
2230 #endif /* CONFIG_DEBUG_PAGEALLOC */
2231
2232 #if MAX_NUMNODES > 1
2233 void __init setup_nr_node_ids(void);
2234 #else
2235 static inline void setup_nr_node_ids(void) {}
2236 #endif
2237
2238 #endif /* __KERNEL__ */
2239 #endif /* _LINUX_MM_H */