]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/mm.h
UBUNTU: SAUCE: AUFS
[mirror_ubuntu-jammy-kernel.git] / include / linux / mm.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
35
36 struct mempolicy;
37 struct anon_vma;
38 struct anon_vma_chain;
39 struct file_ra_state;
40 struct user_struct;
41 struct writeback_control;
42 struct bdi_writeback;
43 struct pt_regs;
44
45 extern int sysctl_page_lock_unfairness;
46
47 void init_mm_internals(void);
48
49 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
50 extern unsigned long max_mapnr;
51
52 static inline void set_max_mapnr(unsigned long limit)
53 {
54 max_mapnr = limit;
55 }
56 #else
57 static inline void set_max_mapnr(unsigned long limit) { }
58 #endif
59
60 extern atomic_long_t _totalram_pages;
61 static inline unsigned long totalram_pages(void)
62 {
63 return (unsigned long)atomic_long_read(&_totalram_pages);
64 }
65
66 static inline void totalram_pages_inc(void)
67 {
68 atomic_long_inc(&_totalram_pages);
69 }
70
71 static inline void totalram_pages_dec(void)
72 {
73 atomic_long_dec(&_totalram_pages);
74 }
75
76 static inline void totalram_pages_add(long count)
77 {
78 atomic_long_add(count, &_totalram_pages);
79 }
80
81 extern void * high_memory;
82 extern int page_cluster;
83
84 #ifdef CONFIG_SYSCTL
85 extern int sysctl_legacy_va_layout;
86 #else
87 #define sysctl_legacy_va_layout 0
88 #endif
89
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91 extern const int mmap_rnd_bits_min;
92 extern const int mmap_rnd_bits_max;
93 extern int mmap_rnd_bits __read_mostly;
94 #endif
95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96 extern const int mmap_rnd_compat_bits_min;
97 extern const int mmap_rnd_compat_bits_max;
98 extern int mmap_rnd_compat_bits __read_mostly;
99 #endif
100
101 #include <asm/page.h>
102 #include <asm/processor.h>
103
104 /*
105 * Architectures that support memory tagging (assigning tags to memory regions,
106 * embedding these tags into addresses that point to these memory regions, and
107 * checking that the memory and the pointer tags match on memory accesses)
108 * redefine this macro to strip tags from pointers.
109 * It's defined as noop for architectures that don't support memory tagging.
110 */
111 #ifndef untagged_addr
112 #define untagged_addr(addr) (addr)
113 #endif
114
115 #ifndef __pa_symbol
116 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
117 #endif
118
119 #ifndef page_to_virt
120 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
121 #endif
122
123 #ifndef lm_alias
124 #define lm_alias(x) __va(__pa_symbol(x))
125 #endif
126
127 /*
128 * To prevent common memory management code establishing
129 * a zero page mapping on a read fault.
130 * This macro should be defined within <asm/pgtable.h>.
131 * s390 does this to prevent multiplexing of hardware bits
132 * related to the physical page in case of virtualization.
133 */
134 #ifndef mm_forbids_zeropage
135 #define mm_forbids_zeropage(X) (0)
136 #endif
137
138 /*
139 * On some architectures it is expensive to call memset() for small sizes.
140 * If an architecture decides to implement their own version of
141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
142 * define their own version of this macro in <asm/pgtable.h>
143 */
144 #if BITS_PER_LONG == 64
145 /* This function must be updated when the size of struct page grows above 80
146 * or reduces below 56. The idea that compiler optimizes out switch()
147 * statement, and only leaves move/store instructions. Also the compiler can
148 * combine write statements if they are both assignments and can be reordered,
149 * this can result in several of the writes here being dropped.
150 */
151 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
152 static inline void __mm_zero_struct_page(struct page *page)
153 {
154 unsigned long *_pp = (void *)page;
155
156 /* Check that struct page is either 56, 64, 72, or 80 bytes */
157 BUILD_BUG_ON(sizeof(struct page) & 7);
158 BUILD_BUG_ON(sizeof(struct page) < 56);
159 BUILD_BUG_ON(sizeof(struct page) > 80);
160
161 switch (sizeof(struct page)) {
162 case 80:
163 _pp[9] = 0;
164 fallthrough;
165 case 72:
166 _pp[8] = 0;
167 fallthrough;
168 case 64:
169 _pp[7] = 0;
170 fallthrough;
171 case 56:
172 _pp[6] = 0;
173 _pp[5] = 0;
174 _pp[4] = 0;
175 _pp[3] = 0;
176 _pp[2] = 0;
177 _pp[1] = 0;
178 _pp[0] = 0;
179 }
180 }
181 #else
182 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
183 #endif
184
185 /*
186 * Default maximum number of active map areas, this limits the number of vmas
187 * per mm struct. Users can overwrite this number by sysctl but there is a
188 * problem.
189 *
190 * When a program's coredump is generated as ELF format, a section is created
191 * per a vma. In ELF, the number of sections is represented in unsigned short.
192 * This means the number of sections should be smaller than 65535 at coredump.
193 * Because the kernel adds some informative sections to a image of program at
194 * generating coredump, we need some margin. The number of extra sections is
195 * 1-3 now and depends on arch. We use "5" as safe margin, here.
196 *
197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
198 * not a hard limit any more. Although some userspace tools can be surprised by
199 * that.
200 */
201 #define MAPCOUNT_ELF_CORE_MARGIN (5)
202 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203
204 extern int sysctl_max_map_count;
205
206 extern unsigned long sysctl_user_reserve_kbytes;
207 extern unsigned long sysctl_admin_reserve_kbytes;
208
209 extern int sysctl_overcommit_memory;
210 extern int sysctl_overcommit_ratio;
211 extern unsigned long sysctl_overcommit_kbytes;
212
213 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 loff_t *);
215 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 loff_t *);
217 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
218 loff_t *);
219 /*
220 * Any attempt to mark this function as static leads to build failure
221 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
222 * is referred to by BPF code. This must be visible for error injection.
223 */
224 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
225 pgoff_t index, gfp_t gfp, void **shadowp);
226
227 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
228 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
229 #else
230 #define nth_page(page,n) ((page) + (n))
231 #endif
232
233 /* to align the pointer to the (next) page boundary */
234 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
235
236 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
237 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
238
239 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
240
241 void setup_initial_init_mm(void *start_code, void *end_code,
242 void *end_data, void *brk);
243
244 /*
245 * Linux kernel virtual memory manager primitives.
246 * The idea being to have a "virtual" mm in the same way
247 * we have a virtual fs - giving a cleaner interface to the
248 * mm details, and allowing different kinds of memory mappings
249 * (from shared memory to executable loading to arbitrary
250 * mmap() functions).
251 */
252
253 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
254 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
255 void vm_area_free(struct vm_area_struct *);
256
257 #ifndef CONFIG_MMU
258 extern struct rb_root nommu_region_tree;
259 extern struct rw_semaphore nommu_region_sem;
260
261 extern unsigned int kobjsize(const void *objp);
262 #endif
263
264 /*
265 * vm_flags in vm_area_struct, see mm_types.h.
266 * When changing, update also include/trace/events/mmflags.h
267 */
268 #define VM_NONE 0x00000000
269
270 #define VM_READ 0x00000001 /* currently active flags */
271 #define VM_WRITE 0x00000002
272 #define VM_EXEC 0x00000004
273 #define VM_SHARED 0x00000008
274
275 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
276 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
277 #define VM_MAYWRITE 0x00000020
278 #define VM_MAYEXEC 0x00000040
279 #define VM_MAYSHARE 0x00000080
280
281 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
282 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
283 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
284 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
285
286 #define VM_LOCKED 0x00002000
287 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
288
289 /* Used by sys_madvise() */
290 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
291 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
292
293 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
294 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
295 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
296 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
297 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
298 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
299 #define VM_SYNC 0x00800000 /* Synchronous page faults */
300 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
301 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
302 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
303
304 #ifdef CONFIG_MEM_SOFT_DIRTY
305 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
306 #else
307 # define VM_SOFTDIRTY 0
308 #endif
309
310 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
311 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
312 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
313 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
314
315 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
316 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
317 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
322 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
323 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
324 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
325 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
326 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
327
328 #ifdef CONFIG_ARCH_HAS_PKEYS
329 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
330 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
331 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
332 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
333 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
334 #ifdef CONFIG_PPC
335 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
336 #else
337 # define VM_PKEY_BIT4 0
338 #endif
339 #endif /* CONFIG_ARCH_HAS_PKEYS */
340
341 #if defined(CONFIG_X86)
342 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
343 #elif defined(CONFIG_PPC)
344 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
345 #elif defined(CONFIG_PARISC)
346 # define VM_GROWSUP VM_ARCH_1
347 #elif defined(CONFIG_IA64)
348 # define VM_GROWSUP VM_ARCH_1
349 #elif defined(CONFIG_SPARC64)
350 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
351 # define VM_ARCH_CLEAR VM_SPARC_ADI
352 #elif defined(CONFIG_ARM64)
353 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
354 # define VM_ARCH_CLEAR VM_ARM64_BTI
355 #elif !defined(CONFIG_MMU)
356 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
357 #endif
358
359 #if defined(CONFIG_ARM64_MTE)
360 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
361 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
362 #else
363 # define VM_MTE VM_NONE
364 # define VM_MTE_ALLOWED VM_NONE
365 #endif
366
367 #ifndef VM_GROWSUP
368 # define VM_GROWSUP VM_NONE
369 #endif
370
371 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
372 # define VM_UFFD_MINOR_BIT 37
373 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
374 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
375 # define VM_UFFD_MINOR VM_NONE
376 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
377
378 /* Bits set in the VMA until the stack is in its final location */
379 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
380
381 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
382
383 /* Common data flag combinations */
384 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
385 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
386 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
387 VM_MAYWRITE | VM_MAYEXEC)
388 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
389 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
390
391 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
392 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
393 #endif
394
395 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
396 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
397 #endif
398
399 #ifdef CONFIG_STACK_GROWSUP
400 #define VM_STACK VM_GROWSUP
401 #else
402 #define VM_STACK VM_GROWSDOWN
403 #endif
404
405 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
406
407 /* VMA basic access permission flags */
408 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
409
410
411 /*
412 * Special vmas that are non-mergable, non-mlock()able.
413 */
414 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
415
416 /* This mask prevents VMA from being scanned with khugepaged */
417 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
418
419 /* This mask defines which mm->def_flags a process can inherit its parent */
420 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
421
422 /* This mask is used to clear all the VMA flags used by mlock */
423 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
424
425 /* Arch-specific flags to clear when updating VM flags on protection change */
426 #ifndef VM_ARCH_CLEAR
427 # define VM_ARCH_CLEAR VM_NONE
428 #endif
429 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
430
431 /*
432 * mapping from the currently active vm_flags protection bits (the
433 * low four bits) to a page protection mask..
434 */
435 extern pgprot_t protection_map[16];
436
437 /**
438 * enum fault_flag - Fault flag definitions.
439 * @FAULT_FLAG_WRITE: Fault was a write fault.
440 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
441 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
442 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
443 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
444 * @FAULT_FLAG_TRIED: The fault has been tried once.
445 * @FAULT_FLAG_USER: The fault originated in userspace.
446 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
447 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
448 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
449 *
450 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
451 * whether we would allow page faults to retry by specifying these two
452 * fault flags correctly. Currently there can be three legal combinations:
453 *
454 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
455 * this is the first try
456 *
457 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
458 * we've already tried at least once
459 *
460 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
461 *
462 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
463 * be used. Note that page faults can be allowed to retry for multiple times,
464 * in which case we'll have an initial fault with flags (a) then later on
465 * continuous faults with flags (b). We should always try to detect pending
466 * signals before a retry to make sure the continuous page faults can still be
467 * interrupted if necessary.
468 */
469 enum fault_flag {
470 FAULT_FLAG_WRITE = 1 << 0,
471 FAULT_FLAG_MKWRITE = 1 << 1,
472 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
473 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
474 FAULT_FLAG_KILLABLE = 1 << 4,
475 FAULT_FLAG_TRIED = 1 << 5,
476 FAULT_FLAG_USER = 1 << 6,
477 FAULT_FLAG_REMOTE = 1 << 7,
478 FAULT_FLAG_INSTRUCTION = 1 << 8,
479 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
480 };
481
482 /*
483 * The default fault flags that should be used by most of the
484 * arch-specific page fault handlers.
485 */
486 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
487 FAULT_FLAG_KILLABLE | \
488 FAULT_FLAG_INTERRUPTIBLE)
489
490 /**
491 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
492 * @flags: Fault flags.
493 *
494 * This is mostly used for places where we want to try to avoid taking
495 * the mmap_lock for too long a time when waiting for another condition
496 * to change, in which case we can try to be polite to release the
497 * mmap_lock in the first round to avoid potential starvation of other
498 * processes that would also want the mmap_lock.
499 *
500 * Return: true if the page fault allows retry and this is the first
501 * attempt of the fault handling; false otherwise.
502 */
503 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
504 {
505 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
506 (!(flags & FAULT_FLAG_TRIED));
507 }
508
509 #define FAULT_FLAG_TRACE \
510 { FAULT_FLAG_WRITE, "WRITE" }, \
511 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
512 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
513 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
514 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
515 { FAULT_FLAG_TRIED, "TRIED" }, \
516 { FAULT_FLAG_USER, "USER" }, \
517 { FAULT_FLAG_REMOTE, "REMOTE" }, \
518 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
519 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
520
521 /*
522 * vm_fault is filled by the pagefault handler and passed to the vma's
523 * ->fault function. The vma's ->fault is responsible for returning a bitmask
524 * of VM_FAULT_xxx flags that give details about how the fault was handled.
525 *
526 * MM layer fills up gfp_mask for page allocations but fault handler might
527 * alter it if its implementation requires a different allocation context.
528 *
529 * pgoff should be used in favour of virtual_address, if possible.
530 */
531 struct vm_fault {
532 const struct {
533 struct vm_area_struct *vma; /* Target VMA */
534 gfp_t gfp_mask; /* gfp mask to be used for allocations */
535 pgoff_t pgoff; /* Logical page offset based on vma */
536 unsigned long address; /* Faulting virtual address */
537 };
538 enum fault_flag flags; /* FAULT_FLAG_xxx flags
539 * XXX: should really be 'const' */
540 pmd_t *pmd; /* Pointer to pmd entry matching
541 * the 'address' */
542 pud_t *pud; /* Pointer to pud entry matching
543 * the 'address'
544 */
545 union {
546 pte_t orig_pte; /* Value of PTE at the time of fault */
547 pmd_t orig_pmd; /* Value of PMD at the time of fault,
548 * used by PMD fault only.
549 */
550 };
551
552 struct page *cow_page; /* Page handler may use for COW fault */
553 struct page *page; /* ->fault handlers should return a
554 * page here, unless VM_FAULT_NOPAGE
555 * is set (which is also implied by
556 * VM_FAULT_ERROR).
557 */
558 /* These three entries are valid only while holding ptl lock */
559 pte_t *pte; /* Pointer to pte entry matching
560 * the 'address'. NULL if the page
561 * table hasn't been allocated.
562 */
563 spinlock_t *ptl; /* Page table lock.
564 * Protects pte page table if 'pte'
565 * is not NULL, otherwise pmd.
566 */
567 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
568 * vm_ops->map_pages() sets up a page
569 * table from atomic context.
570 * do_fault_around() pre-allocates
571 * page table to avoid allocation from
572 * atomic context.
573 */
574 };
575
576 /* page entry size for vm->huge_fault() */
577 enum page_entry_size {
578 PE_SIZE_PTE = 0,
579 PE_SIZE_PMD,
580 PE_SIZE_PUD,
581 };
582
583 /*
584 * These are the virtual MM functions - opening of an area, closing and
585 * unmapping it (needed to keep files on disk up-to-date etc), pointer
586 * to the functions called when a no-page or a wp-page exception occurs.
587 */
588 struct vm_operations_struct {
589 void (*open)(struct vm_area_struct * area);
590 void (*close)(struct vm_area_struct * area);
591 /* Called any time before splitting to check if it's allowed */
592 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
593 int (*mremap)(struct vm_area_struct *area);
594 /*
595 * Called by mprotect() to make driver-specific permission
596 * checks before mprotect() is finalised. The VMA must not
597 * be modified. Returns 0 if eprotect() can proceed.
598 */
599 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
600 unsigned long end, unsigned long newflags);
601 vm_fault_t (*fault)(struct vm_fault *vmf);
602 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
603 enum page_entry_size pe_size);
604 vm_fault_t (*map_pages)(struct vm_fault *vmf,
605 pgoff_t start_pgoff, pgoff_t end_pgoff);
606 unsigned long (*pagesize)(struct vm_area_struct * area);
607
608 /* notification that a previously read-only page is about to become
609 * writable, if an error is returned it will cause a SIGBUS */
610 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
611
612 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
613 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
614
615 /* called by access_process_vm when get_user_pages() fails, typically
616 * for use by special VMAs. See also generic_access_phys() for a generic
617 * implementation useful for any iomem mapping.
618 */
619 int (*access)(struct vm_area_struct *vma, unsigned long addr,
620 void *buf, int len, int write);
621
622 /* Called by the /proc/PID/maps code to ask the vma whether it
623 * has a special name. Returning non-NULL will also cause this
624 * vma to be dumped unconditionally. */
625 const char *(*name)(struct vm_area_struct *vma);
626
627 #ifdef CONFIG_NUMA
628 /*
629 * set_policy() op must add a reference to any non-NULL @new mempolicy
630 * to hold the policy upon return. Caller should pass NULL @new to
631 * remove a policy and fall back to surrounding context--i.e. do not
632 * install a MPOL_DEFAULT policy, nor the task or system default
633 * mempolicy.
634 */
635 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
636
637 /*
638 * get_policy() op must add reference [mpol_get()] to any policy at
639 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
640 * in mm/mempolicy.c will do this automatically.
641 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
642 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
643 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
644 * must return NULL--i.e., do not "fallback" to task or system default
645 * policy.
646 */
647 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
648 unsigned long addr);
649 #endif
650 /*
651 * Called by vm_normal_page() for special PTEs to find the
652 * page for @addr. This is useful if the default behavior
653 * (using pte_page()) would not find the correct page.
654 */
655 struct page *(*find_special_page)(struct vm_area_struct *vma,
656 unsigned long addr);
657 };
658
659 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
660 {
661 static const struct vm_operations_struct dummy_vm_ops = {};
662
663 memset(vma, 0, sizeof(*vma));
664 vma->vm_mm = mm;
665 vma->vm_ops = &dummy_vm_ops;
666 INIT_LIST_HEAD(&vma->anon_vma_chain);
667 }
668
669 static inline void vma_set_anonymous(struct vm_area_struct *vma)
670 {
671 vma->vm_ops = NULL;
672 }
673
674 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
675 {
676 return !vma->vm_ops;
677 }
678
679 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
680 {
681 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
682
683 if (!maybe_stack)
684 return false;
685
686 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
687 VM_STACK_INCOMPLETE_SETUP)
688 return true;
689
690 return false;
691 }
692
693 static inline bool vma_is_foreign(struct vm_area_struct *vma)
694 {
695 if (!current->mm)
696 return true;
697
698 if (current->mm != vma->vm_mm)
699 return true;
700
701 return false;
702 }
703
704 static inline bool vma_is_accessible(struct vm_area_struct *vma)
705 {
706 return vma->vm_flags & VM_ACCESS_FLAGS;
707 }
708
709 #ifdef CONFIG_SHMEM
710 /*
711 * The vma_is_shmem is not inline because it is used only by slow
712 * paths in userfault.
713 */
714 bool vma_is_shmem(struct vm_area_struct *vma);
715 #else
716 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
717 #endif
718
719 int vma_is_stack_for_current(struct vm_area_struct *vma);
720
721 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
722 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
723
724 struct mmu_gather;
725 struct inode;
726
727 #include <linux/huge_mm.h>
728
729 /*
730 * Methods to modify the page usage count.
731 *
732 * What counts for a page usage:
733 * - cache mapping (page->mapping)
734 * - private data (page->private)
735 * - page mapped in a task's page tables, each mapping
736 * is counted separately
737 *
738 * Also, many kernel routines increase the page count before a critical
739 * routine so they can be sure the page doesn't go away from under them.
740 */
741
742 /*
743 * Drop a ref, return true if the refcount fell to zero (the page has no users)
744 */
745 static inline int put_page_testzero(struct page *page)
746 {
747 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
748 return page_ref_dec_and_test(page);
749 }
750
751 /*
752 * Try to grab a ref unless the page has a refcount of zero, return false if
753 * that is the case.
754 * This can be called when MMU is off so it must not access
755 * any of the virtual mappings.
756 */
757 static inline int get_page_unless_zero(struct page *page)
758 {
759 return page_ref_add_unless(page, 1, 0);
760 }
761
762 extern int page_is_ram(unsigned long pfn);
763
764 enum {
765 REGION_INTERSECTS,
766 REGION_DISJOINT,
767 REGION_MIXED,
768 };
769
770 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
771 unsigned long desc);
772
773 /* Support for virtually mapped pages */
774 struct page *vmalloc_to_page(const void *addr);
775 unsigned long vmalloc_to_pfn(const void *addr);
776
777 /*
778 * Determine if an address is within the vmalloc range
779 *
780 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
781 * is no special casing required.
782 */
783
784 #ifndef is_ioremap_addr
785 #define is_ioremap_addr(x) is_vmalloc_addr(x)
786 #endif
787
788 #ifdef CONFIG_MMU
789 extern bool is_vmalloc_addr(const void *x);
790 extern int is_vmalloc_or_module_addr(const void *x);
791 #else
792 static inline bool is_vmalloc_addr(const void *x)
793 {
794 return false;
795 }
796 static inline int is_vmalloc_or_module_addr(const void *x)
797 {
798 return 0;
799 }
800 #endif
801
802 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
803 static inline void *kvmalloc(size_t size, gfp_t flags)
804 {
805 return kvmalloc_node(size, flags, NUMA_NO_NODE);
806 }
807 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
808 {
809 return kvmalloc_node(size, flags | __GFP_ZERO, node);
810 }
811 static inline void *kvzalloc(size_t size, gfp_t flags)
812 {
813 return kvmalloc(size, flags | __GFP_ZERO);
814 }
815
816 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
817 {
818 size_t bytes;
819
820 if (unlikely(check_mul_overflow(n, size, &bytes)))
821 return NULL;
822
823 return kvmalloc(bytes, flags);
824 }
825
826 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
827 {
828 return kvmalloc_array(n, size, flags | __GFP_ZERO);
829 }
830
831 extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize,
832 gfp_t flags);
833 extern void kvfree(const void *addr);
834 extern void kvfree_sensitive(const void *addr, size_t len);
835
836 static inline int head_compound_mapcount(struct page *head)
837 {
838 return atomic_read(compound_mapcount_ptr(head)) + 1;
839 }
840
841 /*
842 * Mapcount of compound page as a whole, does not include mapped sub-pages.
843 *
844 * Must be called only for compound pages or any their tail sub-pages.
845 */
846 static inline int compound_mapcount(struct page *page)
847 {
848 VM_BUG_ON_PAGE(!PageCompound(page), page);
849 page = compound_head(page);
850 return head_compound_mapcount(page);
851 }
852
853 /*
854 * The atomic page->_mapcount, starts from -1: so that transitions
855 * both from it and to it can be tracked, using atomic_inc_and_test
856 * and atomic_add_negative(-1).
857 */
858 static inline void page_mapcount_reset(struct page *page)
859 {
860 atomic_set(&(page)->_mapcount, -1);
861 }
862
863 int __page_mapcount(struct page *page);
864
865 /*
866 * Mapcount of 0-order page; when compound sub-page, includes
867 * compound_mapcount().
868 *
869 * Result is undefined for pages which cannot be mapped into userspace.
870 * For example SLAB or special types of pages. See function page_has_type().
871 * They use this place in struct page differently.
872 */
873 static inline int page_mapcount(struct page *page)
874 {
875 if (unlikely(PageCompound(page)))
876 return __page_mapcount(page);
877 return atomic_read(&page->_mapcount) + 1;
878 }
879
880 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
881 int total_mapcount(struct page *page);
882 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
883 #else
884 static inline int total_mapcount(struct page *page)
885 {
886 return page_mapcount(page);
887 }
888 static inline int page_trans_huge_mapcount(struct page *page,
889 int *total_mapcount)
890 {
891 int mapcount = page_mapcount(page);
892 if (total_mapcount)
893 *total_mapcount = mapcount;
894 return mapcount;
895 }
896 #endif
897
898 static inline struct page *virt_to_head_page(const void *x)
899 {
900 struct page *page = virt_to_page(x);
901
902 return compound_head(page);
903 }
904
905 void __put_page(struct page *page);
906
907 void put_pages_list(struct list_head *pages);
908
909 void split_page(struct page *page, unsigned int order);
910 void copy_huge_page(struct page *dst, struct page *src);
911
912 /*
913 * Compound pages have a destructor function. Provide a
914 * prototype for that function and accessor functions.
915 * These are _only_ valid on the head of a compound page.
916 */
917 typedef void compound_page_dtor(struct page *);
918
919 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
920 enum compound_dtor_id {
921 NULL_COMPOUND_DTOR,
922 COMPOUND_PAGE_DTOR,
923 #ifdef CONFIG_HUGETLB_PAGE
924 HUGETLB_PAGE_DTOR,
925 #endif
926 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
927 TRANSHUGE_PAGE_DTOR,
928 #endif
929 NR_COMPOUND_DTORS,
930 };
931 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
932
933 static inline void set_compound_page_dtor(struct page *page,
934 enum compound_dtor_id compound_dtor)
935 {
936 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
937 page[1].compound_dtor = compound_dtor;
938 }
939
940 static inline void destroy_compound_page(struct page *page)
941 {
942 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
943 compound_page_dtors[page[1].compound_dtor](page);
944 }
945
946 static inline unsigned int compound_order(struct page *page)
947 {
948 if (!PageHead(page))
949 return 0;
950 return page[1].compound_order;
951 }
952
953 static inline bool hpage_pincount_available(struct page *page)
954 {
955 /*
956 * Can the page->hpage_pinned_refcount field be used? That field is in
957 * the 3rd page of the compound page, so the smallest (2-page) compound
958 * pages cannot support it.
959 */
960 page = compound_head(page);
961 return PageCompound(page) && compound_order(page) > 1;
962 }
963
964 static inline int head_compound_pincount(struct page *head)
965 {
966 return atomic_read(compound_pincount_ptr(head));
967 }
968
969 static inline int compound_pincount(struct page *page)
970 {
971 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
972 page = compound_head(page);
973 return head_compound_pincount(page);
974 }
975
976 static inline void set_compound_order(struct page *page, unsigned int order)
977 {
978 page[1].compound_order = order;
979 page[1].compound_nr = 1U << order;
980 }
981
982 /* Returns the number of pages in this potentially compound page. */
983 static inline unsigned long compound_nr(struct page *page)
984 {
985 if (!PageHead(page))
986 return 1;
987 return page[1].compound_nr;
988 }
989
990 /* Returns the number of bytes in this potentially compound page. */
991 static inline unsigned long page_size(struct page *page)
992 {
993 return PAGE_SIZE << compound_order(page);
994 }
995
996 /* Returns the number of bits needed for the number of bytes in a page */
997 static inline unsigned int page_shift(struct page *page)
998 {
999 return PAGE_SHIFT + compound_order(page);
1000 }
1001
1002 void free_compound_page(struct page *page);
1003
1004 #ifdef CONFIG_MMU
1005 /*
1006 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1007 * servicing faults for write access. In the normal case, do always want
1008 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1009 * that do not have writing enabled, when used by access_process_vm.
1010 */
1011 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1012 {
1013 if (likely(vma->vm_flags & VM_WRITE))
1014 pte = pte_mkwrite(pte);
1015 return pte;
1016 }
1017
1018 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1019 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1020
1021 vm_fault_t finish_fault(struct vm_fault *vmf);
1022 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1023 #endif
1024
1025 /*
1026 * Multiple processes may "see" the same page. E.g. for untouched
1027 * mappings of /dev/null, all processes see the same page full of
1028 * zeroes, and text pages of executables and shared libraries have
1029 * only one copy in memory, at most, normally.
1030 *
1031 * For the non-reserved pages, page_count(page) denotes a reference count.
1032 * page_count() == 0 means the page is free. page->lru is then used for
1033 * freelist management in the buddy allocator.
1034 * page_count() > 0 means the page has been allocated.
1035 *
1036 * Pages are allocated by the slab allocator in order to provide memory
1037 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1038 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1039 * unless a particular usage is carefully commented. (the responsibility of
1040 * freeing the kmalloc memory is the caller's, of course).
1041 *
1042 * A page may be used by anyone else who does a __get_free_page().
1043 * In this case, page_count still tracks the references, and should only
1044 * be used through the normal accessor functions. The top bits of page->flags
1045 * and page->virtual store page management information, but all other fields
1046 * are unused and could be used privately, carefully. The management of this
1047 * page is the responsibility of the one who allocated it, and those who have
1048 * subsequently been given references to it.
1049 *
1050 * The other pages (we may call them "pagecache pages") are completely
1051 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1052 * The following discussion applies only to them.
1053 *
1054 * A pagecache page contains an opaque `private' member, which belongs to the
1055 * page's address_space. Usually, this is the address of a circular list of
1056 * the page's disk buffers. PG_private must be set to tell the VM to call
1057 * into the filesystem to release these pages.
1058 *
1059 * A page may belong to an inode's memory mapping. In this case, page->mapping
1060 * is the pointer to the inode, and page->index is the file offset of the page,
1061 * in units of PAGE_SIZE.
1062 *
1063 * If pagecache pages are not associated with an inode, they are said to be
1064 * anonymous pages. These may become associated with the swapcache, and in that
1065 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1066 *
1067 * In either case (swapcache or inode backed), the pagecache itself holds one
1068 * reference to the page. Setting PG_private should also increment the
1069 * refcount. The each user mapping also has a reference to the page.
1070 *
1071 * The pagecache pages are stored in a per-mapping radix tree, which is
1072 * rooted at mapping->i_pages, and indexed by offset.
1073 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1074 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1075 *
1076 * All pagecache pages may be subject to I/O:
1077 * - inode pages may need to be read from disk,
1078 * - inode pages which have been modified and are MAP_SHARED may need
1079 * to be written back to the inode on disk,
1080 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1081 * modified may need to be swapped out to swap space and (later) to be read
1082 * back into memory.
1083 */
1084
1085 /*
1086 * The zone field is never updated after free_area_init_core()
1087 * sets it, so none of the operations on it need to be atomic.
1088 */
1089
1090 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1091 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1092 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1093 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1094 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1095 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1096
1097 /*
1098 * Define the bit shifts to access each section. For non-existent
1099 * sections we define the shift as 0; that plus a 0 mask ensures
1100 * the compiler will optimise away reference to them.
1101 */
1102 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1103 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1104 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1105 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1106 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1107
1108 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1109 #ifdef NODE_NOT_IN_PAGE_FLAGS
1110 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1111 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1112 SECTIONS_PGOFF : ZONES_PGOFF)
1113 #else
1114 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1115 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1116 NODES_PGOFF : ZONES_PGOFF)
1117 #endif
1118
1119 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1120
1121 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1122 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1123 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1124 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1125 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1126 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1127
1128 static inline enum zone_type page_zonenum(const struct page *page)
1129 {
1130 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1131 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1132 }
1133
1134 #ifdef CONFIG_ZONE_DEVICE
1135 static inline bool is_zone_device_page(const struct page *page)
1136 {
1137 return page_zonenum(page) == ZONE_DEVICE;
1138 }
1139 extern void memmap_init_zone_device(struct zone *, unsigned long,
1140 unsigned long, struct dev_pagemap *);
1141 #else
1142 static inline bool is_zone_device_page(const struct page *page)
1143 {
1144 return false;
1145 }
1146 #endif
1147
1148 static inline bool is_zone_movable_page(const struct page *page)
1149 {
1150 return page_zonenum(page) == ZONE_MOVABLE;
1151 }
1152
1153 #ifdef CONFIG_DEV_PAGEMAP_OPS
1154 void free_devmap_managed_page(struct page *page);
1155 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1156
1157 static inline bool page_is_devmap_managed(struct page *page)
1158 {
1159 if (!static_branch_unlikely(&devmap_managed_key))
1160 return false;
1161 if (!is_zone_device_page(page))
1162 return false;
1163 switch (page->pgmap->type) {
1164 case MEMORY_DEVICE_PRIVATE:
1165 case MEMORY_DEVICE_FS_DAX:
1166 return true;
1167 default:
1168 break;
1169 }
1170 return false;
1171 }
1172
1173 void put_devmap_managed_page(struct page *page);
1174
1175 #else /* CONFIG_DEV_PAGEMAP_OPS */
1176 static inline bool page_is_devmap_managed(struct page *page)
1177 {
1178 return false;
1179 }
1180
1181 static inline void put_devmap_managed_page(struct page *page)
1182 {
1183 }
1184 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1185
1186 static inline bool is_device_private_page(const struct page *page)
1187 {
1188 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1189 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1190 is_zone_device_page(page) &&
1191 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1192 }
1193
1194 static inline bool is_pci_p2pdma_page(const struct page *page)
1195 {
1196 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1197 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1198 is_zone_device_page(page) &&
1199 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1200 }
1201
1202 /* 127: arbitrary random number, small enough to assemble well */
1203 #define page_ref_zero_or_close_to_overflow(page) \
1204 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1205
1206 static inline void get_page(struct page *page)
1207 {
1208 page = compound_head(page);
1209 /*
1210 * Getting a normal page or the head of a compound page
1211 * requires to already have an elevated page->_refcount.
1212 */
1213 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1214 page_ref_inc(page);
1215 }
1216
1217 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1218 struct page *try_grab_compound_head(struct page *page, int refs,
1219 unsigned int flags);
1220
1221
1222 static inline __must_check bool try_get_page(struct page *page)
1223 {
1224 page = compound_head(page);
1225 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1226 return false;
1227 page_ref_inc(page);
1228 return true;
1229 }
1230
1231 static inline void put_page(struct page *page)
1232 {
1233 page = compound_head(page);
1234
1235 /*
1236 * For devmap managed pages we need to catch refcount transition from
1237 * 2 to 1, when refcount reach one it means the page is free and we
1238 * need to inform the device driver through callback. See
1239 * include/linux/memremap.h and HMM for details.
1240 */
1241 if (page_is_devmap_managed(page)) {
1242 put_devmap_managed_page(page);
1243 return;
1244 }
1245
1246 if (put_page_testzero(page))
1247 __put_page(page);
1248 }
1249
1250 /*
1251 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1252 * the page's refcount so that two separate items are tracked: the original page
1253 * reference count, and also a new count of how many pin_user_pages() calls were
1254 * made against the page. ("gup-pinned" is another term for the latter).
1255 *
1256 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1257 * distinct from normal pages. As such, the unpin_user_page() call (and its
1258 * variants) must be used in order to release gup-pinned pages.
1259 *
1260 * Choice of value:
1261 *
1262 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1263 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1264 * simpler, due to the fact that adding an even power of two to the page
1265 * refcount has the effect of using only the upper N bits, for the code that
1266 * counts up using the bias value. This means that the lower bits are left for
1267 * the exclusive use of the original code that increments and decrements by one
1268 * (or at least, by much smaller values than the bias value).
1269 *
1270 * Of course, once the lower bits overflow into the upper bits (and this is
1271 * OK, because subtraction recovers the original values), then visual inspection
1272 * no longer suffices to directly view the separate counts. However, for normal
1273 * applications that don't have huge page reference counts, this won't be an
1274 * issue.
1275 *
1276 * Locking: the lockless algorithm described in page_cache_get_speculative()
1277 * and page_cache_gup_pin_speculative() provides safe operation for
1278 * get_user_pages and page_mkclean and other calls that race to set up page
1279 * table entries.
1280 */
1281 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1282
1283 void unpin_user_page(struct page *page);
1284 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1285 bool make_dirty);
1286 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1287 bool make_dirty);
1288 void unpin_user_pages(struct page **pages, unsigned long npages);
1289
1290 /**
1291 * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1292 * @page: The page.
1293 *
1294 * This function checks if a page has been pinned via a call to
1295 * a function in the pin_user_pages() family.
1296 *
1297 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1298 * because it means "definitely not pinned for DMA", but true means "probably
1299 * pinned for DMA, but possibly a false positive due to having at least
1300 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1301 *
1302 * False positives are OK, because: a) it's unlikely for a page to get that many
1303 * refcounts, and b) all the callers of this routine are expected to be able to
1304 * deal gracefully with a false positive.
1305 *
1306 * For huge pages, the result will be exactly correct. That's because we have
1307 * more tracking data available: the 3rd struct page in the compound page is
1308 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1309 * scheme).
1310 *
1311 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1312 *
1313 * Return: True, if it is likely that the page has been "dma-pinned".
1314 * False, if the page is definitely not dma-pinned.
1315 */
1316 static inline bool page_maybe_dma_pinned(struct page *page)
1317 {
1318 if (hpage_pincount_available(page))
1319 return compound_pincount(page) > 0;
1320
1321 /*
1322 * page_ref_count() is signed. If that refcount overflows, then
1323 * page_ref_count() returns a negative value, and callers will avoid
1324 * further incrementing the refcount.
1325 *
1326 * Here, for that overflow case, use the signed bit to count a little
1327 * bit higher via unsigned math, and thus still get an accurate result.
1328 */
1329 return ((unsigned int)page_ref_count(compound_head(page))) >=
1330 GUP_PIN_COUNTING_BIAS;
1331 }
1332
1333 static inline bool is_cow_mapping(vm_flags_t flags)
1334 {
1335 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1336 }
1337
1338 /*
1339 * This should most likely only be called during fork() to see whether we
1340 * should break the cow immediately for a page on the src mm.
1341 */
1342 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1343 struct page *page)
1344 {
1345 if (!is_cow_mapping(vma->vm_flags))
1346 return false;
1347
1348 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1349 return false;
1350
1351 return page_maybe_dma_pinned(page);
1352 }
1353
1354 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1355 #define SECTION_IN_PAGE_FLAGS
1356 #endif
1357
1358 /*
1359 * The identification function is mainly used by the buddy allocator for
1360 * determining if two pages could be buddies. We are not really identifying
1361 * the zone since we could be using the section number id if we do not have
1362 * node id available in page flags.
1363 * We only guarantee that it will return the same value for two combinable
1364 * pages in a zone.
1365 */
1366 static inline int page_zone_id(struct page *page)
1367 {
1368 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1369 }
1370
1371 #ifdef NODE_NOT_IN_PAGE_FLAGS
1372 extern int page_to_nid(const struct page *page);
1373 #else
1374 static inline int page_to_nid(const struct page *page)
1375 {
1376 struct page *p = (struct page *)page;
1377
1378 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1379 }
1380 #endif
1381
1382 #ifdef CONFIG_NUMA_BALANCING
1383 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1384 {
1385 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1386 }
1387
1388 static inline int cpupid_to_pid(int cpupid)
1389 {
1390 return cpupid & LAST__PID_MASK;
1391 }
1392
1393 static inline int cpupid_to_cpu(int cpupid)
1394 {
1395 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1396 }
1397
1398 static inline int cpupid_to_nid(int cpupid)
1399 {
1400 return cpu_to_node(cpupid_to_cpu(cpupid));
1401 }
1402
1403 static inline bool cpupid_pid_unset(int cpupid)
1404 {
1405 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1406 }
1407
1408 static inline bool cpupid_cpu_unset(int cpupid)
1409 {
1410 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1411 }
1412
1413 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1414 {
1415 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1416 }
1417
1418 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1419 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1420 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1421 {
1422 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1423 }
1424
1425 static inline int page_cpupid_last(struct page *page)
1426 {
1427 return page->_last_cpupid;
1428 }
1429 static inline void page_cpupid_reset_last(struct page *page)
1430 {
1431 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1432 }
1433 #else
1434 static inline int page_cpupid_last(struct page *page)
1435 {
1436 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1437 }
1438
1439 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1440
1441 static inline void page_cpupid_reset_last(struct page *page)
1442 {
1443 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1444 }
1445 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1446 #else /* !CONFIG_NUMA_BALANCING */
1447 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1448 {
1449 return page_to_nid(page); /* XXX */
1450 }
1451
1452 static inline int page_cpupid_last(struct page *page)
1453 {
1454 return page_to_nid(page); /* XXX */
1455 }
1456
1457 static inline int cpupid_to_nid(int cpupid)
1458 {
1459 return -1;
1460 }
1461
1462 static inline int cpupid_to_pid(int cpupid)
1463 {
1464 return -1;
1465 }
1466
1467 static inline int cpupid_to_cpu(int cpupid)
1468 {
1469 return -1;
1470 }
1471
1472 static inline int cpu_pid_to_cpupid(int nid, int pid)
1473 {
1474 return -1;
1475 }
1476
1477 static inline bool cpupid_pid_unset(int cpupid)
1478 {
1479 return true;
1480 }
1481
1482 static inline void page_cpupid_reset_last(struct page *page)
1483 {
1484 }
1485
1486 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1487 {
1488 return false;
1489 }
1490 #endif /* CONFIG_NUMA_BALANCING */
1491
1492 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1493
1494 /*
1495 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1496 * setting tags for all pages to native kernel tag value 0xff, as the default
1497 * value 0x00 maps to 0xff.
1498 */
1499
1500 static inline u8 page_kasan_tag(const struct page *page)
1501 {
1502 u8 tag = 0xff;
1503
1504 if (kasan_enabled()) {
1505 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1506 tag ^= 0xff;
1507 }
1508
1509 return tag;
1510 }
1511
1512 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1513 {
1514 unsigned long old_flags, flags;
1515
1516 if (!kasan_enabled())
1517 return;
1518
1519 tag ^= 0xff;
1520 old_flags = READ_ONCE(page->flags);
1521 do {
1522 flags = old_flags;
1523 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1524 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1525 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1526 }
1527
1528 static inline void page_kasan_tag_reset(struct page *page)
1529 {
1530 if (kasan_enabled())
1531 page_kasan_tag_set(page, 0xff);
1532 }
1533
1534 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1535
1536 static inline u8 page_kasan_tag(const struct page *page)
1537 {
1538 return 0xff;
1539 }
1540
1541 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1542 static inline void page_kasan_tag_reset(struct page *page) { }
1543
1544 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1545
1546 static inline struct zone *page_zone(const struct page *page)
1547 {
1548 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1549 }
1550
1551 static inline pg_data_t *page_pgdat(const struct page *page)
1552 {
1553 return NODE_DATA(page_to_nid(page));
1554 }
1555
1556 #ifdef SECTION_IN_PAGE_FLAGS
1557 static inline void set_page_section(struct page *page, unsigned long section)
1558 {
1559 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1560 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1561 }
1562
1563 static inline unsigned long page_to_section(const struct page *page)
1564 {
1565 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1566 }
1567 #endif
1568
1569 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1570 #ifdef CONFIG_MIGRATION
1571 static inline bool is_pinnable_page(struct page *page)
1572 {
1573 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1574 is_zero_pfn(page_to_pfn(page));
1575 }
1576 #else
1577 static inline bool is_pinnable_page(struct page *page)
1578 {
1579 return true;
1580 }
1581 #endif
1582
1583 static inline void set_page_zone(struct page *page, enum zone_type zone)
1584 {
1585 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1586 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1587 }
1588
1589 static inline void set_page_node(struct page *page, unsigned long node)
1590 {
1591 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1592 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1593 }
1594
1595 static inline void set_page_links(struct page *page, enum zone_type zone,
1596 unsigned long node, unsigned long pfn)
1597 {
1598 set_page_zone(page, zone);
1599 set_page_node(page, node);
1600 #ifdef SECTION_IN_PAGE_FLAGS
1601 set_page_section(page, pfn_to_section_nr(pfn));
1602 #endif
1603 }
1604
1605 /*
1606 * Some inline functions in vmstat.h depend on page_zone()
1607 */
1608 #include <linux/vmstat.h>
1609
1610 static __always_inline void *lowmem_page_address(const struct page *page)
1611 {
1612 return page_to_virt(page);
1613 }
1614
1615 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1616 #define HASHED_PAGE_VIRTUAL
1617 #endif
1618
1619 #if defined(WANT_PAGE_VIRTUAL)
1620 static inline void *page_address(const struct page *page)
1621 {
1622 return page->virtual;
1623 }
1624 static inline void set_page_address(struct page *page, void *address)
1625 {
1626 page->virtual = address;
1627 }
1628 #define page_address_init() do { } while(0)
1629 #endif
1630
1631 #if defined(HASHED_PAGE_VIRTUAL)
1632 void *page_address(const struct page *page);
1633 void set_page_address(struct page *page, void *virtual);
1634 void page_address_init(void);
1635 #endif
1636
1637 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1638 #define page_address(page) lowmem_page_address(page)
1639 #define set_page_address(page, address) do { } while(0)
1640 #define page_address_init() do { } while(0)
1641 #endif
1642
1643 extern void *page_rmapping(struct page *page);
1644 extern struct anon_vma *page_anon_vma(struct page *page);
1645 extern struct address_space *page_mapping(struct page *page);
1646
1647 extern struct address_space *__page_file_mapping(struct page *);
1648
1649 static inline
1650 struct address_space *page_file_mapping(struct page *page)
1651 {
1652 if (unlikely(PageSwapCache(page)))
1653 return __page_file_mapping(page);
1654
1655 return page->mapping;
1656 }
1657
1658 extern pgoff_t __page_file_index(struct page *page);
1659
1660 /*
1661 * Return the pagecache index of the passed page. Regular pagecache pages
1662 * use ->index whereas swapcache pages use swp_offset(->private)
1663 */
1664 static inline pgoff_t page_index(struct page *page)
1665 {
1666 if (unlikely(PageSwapCache(page)))
1667 return __page_file_index(page);
1668 return page->index;
1669 }
1670
1671 bool page_mapped(struct page *page);
1672 struct address_space *page_mapping(struct page *page);
1673
1674 /*
1675 * Return true only if the page has been allocated with
1676 * ALLOC_NO_WATERMARKS and the low watermark was not
1677 * met implying that the system is under some pressure.
1678 */
1679 static inline bool page_is_pfmemalloc(const struct page *page)
1680 {
1681 /*
1682 * lru.next has bit 1 set if the page is allocated from the
1683 * pfmemalloc reserves. Callers may simply overwrite it if
1684 * they do not need to preserve that information.
1685 */
1686 return (uintptr_t)page->lru.next & BIT(1);
1687 }
1688
1689 /*
1690 * Only to be called by the page allocator on a freshly allocated
1691 * page.
1692 */
1693 static inline void set_page_pfmemalloc(struct page *page)
1694 {
1695 page->lru.next = (void *)BIT(1);
1696 }
1697
1698 static inline void clear_page_pfmemalloc(struct page *page)
1699 {
1700 page->lru.next = NULL;
1701 }
1702
1703 /*
1704 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1705 */
1706 extern void pagefault_out_of_memory(void);
1707
1708 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1709 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1710
1711 /*
1712 * Flags passed to show_mem() and show_free_areas() to suppress output in
1713 * various contexts.
1714 */
1715 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1716
1717 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1718
1719 #ifdef CONFIG_MMU
1720 extern bool can_do_mlock(void);
1721 #else
1722 static inline bool can_do_mlock(void) { return false; }
1723 #endif
1724 extern int user_shm_lock(size_t, struct ucounts *);
1725 extern void user_shm_unlock(size_t, struct ucounts *);
1726
1727 /*
1728 * Parameter block passed down to zap_pte_range in exceptional cases.
1729 */
1730 struct zap_details {
1731 struct address_space *check_mapping; /* Check page->mapping if set */
1732 pgoff_t first_index; /* Lowest page->index to unmap */
1733 pgoff_t last_index; /* Highest page->index to unmap */
1734 struct page *single_page; /* Locked page to be unmapped */
1735 };
1736
1737 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1738 pte_t pte);
1739 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1740 pmd_t pmd);
1741
1742 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1743 unsigned long size);
1744 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1745 unsigned long size);
1746 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1747 unsigned long start, unsigned long end);
1748
1749 struct mmu_notifier_range;
1750
1751 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1752 unsigned long end, unsigned long floor, unsigned long ceiling);
1753 int
1754 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1755 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1756 struct mmu_notifier_range *range, pte_t **ptepp,
1757 pmd_t **pmdpp, spinlock_t **ptlp);
1758 int follow_pte(struct mm_struct *mm, unsigned long address,
1759 pte_t **ptepp, spinlock_t **ptlp);
1760 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1761 unsigned long *pfn);
1762 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1763 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1764 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1765 void *buf, int len, int write);
1766
1767 extern void truncate_pagecache(struct inode *inode, loff_t new);
1768 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1769 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1770 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1771 int truncate_inode_page(struct address_space *mapping, struct page *page);
1772 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1773 int invalidate_inode_page(struct page *page);
1774
1775 #ifdef CONFIG_MMU
1776 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1777 unsigned long address, unsigned int flags,
1778 struct pt_regs *regs);
1779 extern int fixup_user_fault(struct mm_struct *mm,
1780 unsigned long address, unsigned int fault_flags,
1781 bool *unlocked);
1782 void unmap_mapping_page(struct page *page);
1783 void unmap_mapping_pages(struct address_space *mapping,
1784 pgoff_t start, pgoff_t nr, bool even_cows);
1785 void unmap_mapping_range(struct address_space *mapping,
1786 loff_t const holebegin, loff_t const holelen, int even_cows);
1787 #else
1788 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1789 unsigned long address, unsigned int flags,
1790 struct pt_regs *regs)
1791 {
1792 /* should never happen if there's no MMU */
1793 BUG();
1794 return VM_FAULT_SIGBUS;
1795 }
1796 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1797 unsigned int fault_flags, bool *unlocked)
1798 {
1799 /* should never happen if there's no MMU */
1800 BUG();
1801 return -EFAULT;
1802 }
1803 static inline void unmap_mapping_page(struct page *page) { }
1804 static inline void unmap_mapping_pages(struct address_space *mapping,
1805 pgoff_t start, pgoff_t nr, bool even_cows) { }
1806 static inline void unmap_mapping_range(struct address_space *mapping,
1807 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1808 #endif
1809
1810 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1811 loff_t const holebegin, loff_t const holelen)
1812 {
1813 unmap_mapping_range(mapping, holebegin, holelen, 0);
1814 }
1815
1816 extern void vma_do_file_update_time(struct vm_area_struct *, const char[], int);
1817 extern struct file *vma_do_pr_or_file(struct vm_area_struct *, const char[],
1818 int);
1819 extern void vma_do_get_file(struct vm_area_struct *, const char[], int);
1820 extern void vma_do_fput(struct vm_area_struct *, const char[], int);
1821
1822 #define vma_file_update_time(vma) vma_do_file_update_time(vma, __func__, \
1823 __LINE__)
1824 #define vma_pr_or_file(vma) vma_do_pr_or_file(vma, __func__, \
1825 __LINE__)
1826 #define vma_get_file(vma) vma_do_get_file(vma, __func__, __LINE__)
1827 #define vma_fput(vma) vma_do_fput(vma, __func__, __LINE__)
1828
1829 #ifndef CONFIG_MMU
1830 extern struct file *vmr_do_pr_or_file(struct vm_region *, const char[], int);
1831 extern void vmr_do_fput(struct vm_region *, const char[], int);
1832
1833 #define vmr_pr_or_file(region) vmr_do_pr_or_file(region, __func__, \
1834 __LINE__)
1835 #define vmr_fput(region) vmr_do_fput(region, __func__, __LINE__)
1836 #endif /* !CONFIG_MMU */
1837
1838 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1839 void *buf, int len, unsigned int gup_flags);
1840 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1841 void *buf, int len, unsigned int gup_flags);
1842 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1843 void *buf, int len, unsigned int gup_flags);
1844
1845 long get_user_pages_remote(struct mm_struct *mm,
1846 unsigned long start, unsigned long nr_pages,
1847 unsigned int gup_flags, struct page **pages,
1848 struct vm_area_struct **vmas, int *locked);
1849 long pin_user_pages_remote(struct mm_struct *mm,
1850 unsigned long start, unsigned long nr_pages,
1851 unsigned int gup_flags, struct page **pages,
1852 struct vm_area_struct **vmas, int *locked);
1853 long get_user_pages(unsigned long start, unsigned long nr_pages,
1854 unsigned int gup_flags, struct page **pages,
1855 struct vm_area_struct **vmas);
1856 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1857 unsigned int gup_flags, struct page **pages,
1858 struct vm_area_struct **vmas);
1859 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1860 unsigned int gup_flags, struct page **pages, int *locked);
1861 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1862 unsigned int gup_flags, struct page **pages, int *locked);
1863 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1864 struct page **pages, unsigned int gup_flags);
1865 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1866 struct page **pages, unsigned int gup_flags);
1867
1868 int get_user_pages_fast(unsigned long start, int nr_pages,
1869 unsigned int gup_flags, struct page **pages);
1870 int pin_user_pages_fast(unsigned long start, int nr_pages,
1871 unsigned int gup_flags, struct page **pages);
1872
1873 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1874 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1875 struct task_struct *task, bool bypass_rlim);
1876
1877 struct kvec;
1878 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1879 struct page **pages);
1880 struct page *get_dump_page(unsigned long addr);
1881
1882 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1883 extern void do_invalidatepage(struct page *page, unsigned int offset,
1884 unsigned int length);
1885
1886 int redirty_page_for_writepage(struct writeback_control *wbc,
1887 struct page *page);
1888 void account_page_cleaned(struct page *page, struct address_space *mapping,
1889 struct bdi_writeback *wb);
1890 int set_page_dirty(struct page *page);
1891 int set_page_dirty_lock(struct page *page);
1892 void __cancel_dirty_page(struct page *page);
1893 static inline void cancel_dirty_page(struct page *page)
1894 {
1895 /* Avoid atomic ops, locking, etc. when not actually needed. */
1896 if (PageDirty(page))
1897 __cancel_dirty_page(page);
1898 }
1899 int clear_page_dirty_for_io(struct page *page);
1900
1901 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1902
1903 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1904 unsigned long old_addr, struct vm_area_struct *new_vma,
1905 unsigned long new_addr, unsigned long len,
1906 bool need_rmap_locks);
1907
1908 /*
1909 * Flags used by change_protection(). For now we make it a bitmap so
1910 * that we can pass in multiple flags just like parameters. However
1911 * for now all the callers are only use one of the flags at the same
1912 * time.
1913 */
1914 /* Whether we should allow dirty bit accounting */
1915 #define MM_CP_DIRTY_ACCT (1UL << 0)
1916 /* Whether this protection change is for NUMA hints */
1917 #define MM_CP_PROT_NUMA (1UL << 1)
1918 /* Whether this change is for write protecting */
1919 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1920 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1921 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1922 MM_CP_UFFD_WP_RESOLVE)
1923
1924 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1925 unsigned long end, pgprot_t newprot,
1926 unsigned long cp_flags);
1927 extern int mprotect_fixup(struct vm_area_struct *vma,
1928 struct vm_area_struct **pprev, unsigned long start,
1929 unsigned long end, unsigned long newflags);
1930
1931 /*
1932 * doesn't attempt to fault and will return short.
1933 */
1934 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1935 unsigned int gup_flags, struct page **pages);
1936 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1937 unsigned int gup_flags, struct page **pages);
1938
1939 static inline bool get_user_page_fast_only(unsigned long addr,
1940 unsigned int gup_flags, struct page **pagep)
1941 {
1942 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1943 }
1944 /*
1945 * per-process(per-mm_struct) statistics.
1946 */
1947 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1948 {
1949 long val = atomic_long_read(&mm->rss_stat.count[member]);
1950
1951 #ifdef SPLIT_RSS_COUNTING
1952 /*
1953 * counter is updated in asynchronous manner and may go to minus.
1954 * But it's never be expected number for users.
1955 */
1956 if (val < 0)
1957 val = 0;
1958 #endif
1959 return (unsigned long)val;
1960 }
1961
1962 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1963
1964 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1965 {
1966 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1967
1968 mm_trace_rss_stat(mm, member, count);
1969 }
1970
1971 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1972 {
1973 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1974
1975 mm_trace_rss_stat(mm, member, count);
1976 }
1977
1978 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1979 {
1980 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1981
1982 mm_trace_rss_stat(mm, member, count);
1983 }
1984
1985 /* Optimized variant when page is already known not to be PageAnon */
1986 static inline int mm_counter_file(struct page *page)
1987 {
1988 if (PageSwapBacked(page))
1989 return MM_SHMEMPAGES;
1990 return MM_FILEPAGES;
1991 }
1992
1993 static inline int mm_counter(struct page *page)
1994 {
1995 if (PageAnon(page))
1996 return MM_ANONPAGES;
1997 return mm_counter_file(page);
1998 }
1999
2000 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2001 {
2002 return get_mm_counter(mm, MM_FILEPAGES) +
2003 get_mm_counter(mm, MM_ANONPAGES) +
2004 get_mm_counter(mm, MM_SHMEMPAGES);
2005 }
2006
2007 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2008 {
2009 return max(mm->hiwater_rss, get_mm_rss(mm));
2010 }
2011
2012 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2013 {
2014 return max(mm->hiwater_vm, mm->total_vm);
2015 }
2016
2017 static inline void update_hiwater_rss(struct mm_struct *mm)
2018 {
2019 unsigned long _rss = get_mm_rss(mm);
2020
2021 if ((mm)->hiwater_rss < _rss)
2022 (mm)->hiwater_rss = _rss;
2023 }
2024
2025 static inline void update_hiwater_vm(struct mm_struct *mm)
2026 {
2027 if (mm->hiwater_vm < mm->total_vm)
2028 mm->hiwater_vm = mm->total_vm;
2029 }
2030
2031 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2032 {
2033 mm->hiwater_rss = get_mm_rss(mm);
2034 }
2035
2036 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2037 struct mm_struct *mm)
2038 {
2039 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2040
2041 if (*maxrss < hiwater_rss)
2042 *maxrss = hiwater_rss;
2043 }
2044
2045 #if defined(SPLIT_RSS_COUNTING)
2046 void sync_mm_rss(struct mm_struct *mm);
2047 #else
2048 static inline void sync_mm_rss(struct mm_struct *mm)
2049 {
2050 }
2051 #endif
2052
2053 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2054 static inline int pte_special(pte_t pte)
2055 {
2056 return 0;
2057 }
2058
2059 static inline pte_t pte_mkspecial(pte_t pte)
2060 {
2061 return pte;
2062 }
2063 #endif
2064
2065 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2066 static inline int pte_devmap(pte_t pte)
2067 {
2068 return 0;
2069 }
2070 #endif
2071
2072 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2073
2074 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2075 spinlock_t **ptl);
2076 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2077 spinlock_t **ptl)
2078 {
2079 pte_t *ptep;
2080 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2081 return ptep;
2082 }
2083
2084 #ifdef __PAGETABLE_P4D_FOLDED
2085 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2086 unsigned long address)
2087 {
2088 return 0;
2089 }
2090 #else
2091 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2092 #endif
2093
2094 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2095 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2096 unsigned long address)
2097 {
2098 return 0;
2099 }
2100 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2101 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2102
2103 #else
2104 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2105
2106 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2107 {
2108 if (mm_pud_folded(mm))
2109 return;
2110 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2111 }
2112
2113 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2114 {
2115 if (mm_pud_folded(mm))
2116 return;
2117 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2118 }
2119 #endif
2120
2121 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2122 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2123 unsigned long address)
2124 {
2125 return 0;
2126 }
2127
2128 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2129 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2130
2131 #else
2132 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2133
2134 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2135 {
2136 if (mm_pmd_folded(mm))
2137 return;
2138 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2139 }
2140
2141 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2142 {
2143 if (mm_pmd_folded(mm))
2144 return;
2145 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2146 }
2147 #endif
2148
2149 #ifdef CONFIG_MMU
2150 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2151 {
2152 atomic_long_set(&mm->pgtables_bytes, 0);
2153 }
2154
2155 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2156 {
2157 return atomic_long_read(&mm->pgtables_bytes);
2158 }
2159
2160 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2161 {
2162 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2163 }
2164
2165 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2166 {
2167 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2168 }
2169 #else
2170
2171 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2172 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2173 {
2174 return 0;
2175 }
2176
2177 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2178 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2179 #endif
2180
2181 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2182 int __pte_alloc_kernel(pmd_t *pmd);
2183
2184 #if defined(CONFIG_MMU)
2185
2186 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2187 unsigned long address)
2188 {
2189 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2190 NULL : p4d_offset(pgd, address);
2191 }
2192
2193 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2194 unsigned long address)
2195 {
2196 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2197 NULL : pud_offset(p4d, address);
2198 }
2199
2200 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2201 {
2202 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2203 NULL: pmd_offset(pud, address);
2204 }
2205 #endif /* CONFIG_MMU */
2206
2207 #if USE_SPLIT_PTE_PTLOCKS
2208 #if ALLOC_SPLIT_PTLOCKS
2209 void __init ptlock_cache_init(void);
2210 extern bool ptlock_alloc(struct page *page);
2211 extern void ptlock_free(struct page *page);
2212
2213 static inline spinlock_t *ptlock_ptr(struct page *page)
2214 {
2215 return page->ptl;
2216 }
2217 #else /* ALLOC_SPLIT_PTLOCKS */
2218 static inline void ptlock_cache_init(void)
2219 {
2220 }
2221
2222 static inline bool ptlock_alloc(struct page *page)
2223 {
2224 return true;
2225 }
2226
2227 static inline void ptlock_free(struct page *page)
2228 {
2229 }
2230
2231 static inline spinlock_t *ptlock_ptr(struct page *page)
2232 {
2233 return &page->ptl;
2234 }
2235 #endif /* ALLOC_SPLIT_PTLOCKS */
2236
2237 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2238 {
2239 return ptlock_ptr(pmd_page(*pmd));
2240 }
2241
2242 static inline bool ptlock_init(struct page *page)
2243 {
2244 /*
2245 * prep_new_page() initialize page->private (and therefore page->ptl)
2246 * with 0. Make sure nobody took it in use in between.
2247 *
2248 * It can happen if arch try to use slab for page table allocation:
2249 * slab code uses page->slab_cache, which share storage with page->ptl.
2250 */
2251 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2252 if (!ptlock_alloc(page))
2253 return false;
2254 spin_lock_init(ptlock_ptr(page));
2255 return true;
2256 }
2257
2258 #else /* !USE_SPLIT_PTE_PTLOCKS */
2259 /*
2260 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2261 */
2262 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2263 {
2264 return &mm->page_table_lock;
2265 }
2266 static inline void ptlock_cache_init(void) {}
2267 static inline bool ptlock_init(struct page *page) { return true; }
2268 static inline void ptlock_free(struct page *page) {}
2269 #endif /* USE_SPLIT_PTE_PTLOCKS */
2270
2271 static inline void pgtable_init(void)
2272 {
2273 ptlock_cache_init();
2274 pgtable_cache_init();
2275 }
2276
2277 static inline bool pgtable_pte_page_ctor(struct page *page)
2278 {
2279 if (!ptlock_init(page))
2280 return false;
2281 __SetPageTable(page);
2282 inc_lruvec_page_state(page, NR_PAGETABLE);
2283 return true;
2284 }
2285
2286 static inline void pgtable_pte_page_dtor(struct page *page)
2287 {
2288 ptlock_free(page);
2289 __ClearPageTable(page);
2290 dec_lruvec_page_state(page, NR_PAGETABLE);
2291 }
2292
2293 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
2294 ({ \
2295 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2296 pte_t *__pte = pte_offset_map(pmd, address); \
2297 *(ptlp) = __ptl; \
2298 spin_lock(__ptl); \
2299 __pte; \
2300 })
2301
2302 #define pte_unmap_unlock(pte, ptl) do { \
2303 spin_unlock(ptl); \
2304 pte_unmap(pte); \
2305 } while (0)
2306
2307 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2308
2309 #define pte_alloc_map(mm, pmd, address) \
2310 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2311
2312 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2313 (pte_alloc(mm, pmd) ? \
2314 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2315
2316 #define pte_alloc_kernel(pmd, address) \
2317 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2318 NULL: pte_offset_kernel(pmd, address))
2319
2320 #if USE_SPLIT_PMD_PTLOCKS
2321
2322 static struct page *pmd_to_page(pmd_t *pmd)
2323 {
2324 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2325 return virt_to_page((void *)((unsigned long) pmd & mask));
2326 }
2327
2328 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2329 {
2330 return ptlock_ptr(pmd_to_page(pmd));
2331 }
2332
2333 static inline bool pmd_ptlock_init(struct page *page)
2334 {
2335 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2336 page->pmd_huge_pte = NULL;
2337 #endif
2338 return ptlock_init(page);
2339 }
2340
2341 static inline void pmd_ptlock_free(struct page *page)
2342 {
2343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2344 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2345 #endif
2346 ptlock_free(page);
2347 }
2348
2349 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2350
2351 #else
2352
2353 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2354 {
2355 return &mm->page_table_lock;
2356 }
2357
2358 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2359 static inline void pmd_ptlock_free(struct page *page) {}
2360
2361 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2362
2363 #endif
2364
2365 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2366 {
2367 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2368 spin_lock(ptl);
2369 return ptl;
2370 }
2371
2372 static inline bool pgtable_pmd_page_ctor(struct page *page)
2373 {
2374 if (!pmd_ptlock_init(page))
2375 return false;
2376 __SetPageTable(page);
2377 inc_lruvec_page_state(page, NR_PAGETABLE);
2378 return true;
2379 }
2380
2381 static inline void pgtable_pmd_page_dtor(struct page *page)
2382 {
2383 pmd_ptlock_free(page);
2384 __ClearPageTable(page);
2385 dec_lruvec_page_state(page, NR_PAGETABLE);
2386 }
2387
2388 /*
2389 * No scalability reason to split PUD locks yet, but follow the same pattern
2390 * as the PMD locks to make it easier if we decide to. The VM should not be
2391 * considered ready to switch to split PUD locks yet; there may be places
2392 * which need to be converted from page_table_lock.
2393 */
2394 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2395 {
2396 return &mm->page_table_lock;
2397 }
2398
2399 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2400 {
2401 spinlock_t *ptl = pud_lockptr(mm, pud);
2402
2403 spin_lock(ptl);
2404 return ptl;
2405 }
2406
2407 extern void __init pagecache_init(void);
2408 extern void __init free_area_init_memoryless_node(int nid);
2409 extern void free_initmem(void);
2410
2411 /*
2412 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2413 * into the buddy system. The freed pages will be poisoned with pattern
2414 * "poison" if it's within range [0, UCHAR_MAX].
2415 * Return pages freed into the buddy system.
2416 */
2417 extern unsigned long free_reserved_area(void *start, void *end,
2418 int poison, const char *s);
2419
2420 extern void adjust_managed_page_count(struct page *page, long count);
2421 extern void mem_init_print_info(void);
2422
2423 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2424
2425 /* Free the reserved page into the buddy system, so it gets managed. */
2426 static inline void free_reserved_page(struct page *page)
2427 {
2428 ClearPageReserved(page);
2429 init_page_count(page);
2430 __free_page(page);
2431 adjust_managed_page_count(page, 1);
2432 }
2433 #define free_highmem_page(page) free_reserved_page(page)
2434
2435 static inline void mark_page_reserved(struct page *page)
2436 {
2437 SetPageReserved(page);
2438 adjust_managed_page_count(page, -1);
2439 }
2440
2441 /*
2442 * Default method to free all the __init memory into the buddy system.
2443 * The freed pages will be poisoned with pattern "poison" if it's within
2444 * range [0, UCHAR_MAX].
2445 * Return pages freed into the buddy system.
2446 */
2447 static inline unsigned long free_initmem_default(int poison)
2448 {
2449 extern char __init_begin[], __init_end[];
2450
2451 return free_reserved_area(&__init_begin, &__init_end,
2452 poison, "unused kernel image (initmem)");
2453 }
2454
2455 static inline unsigned long get_num_physpages(void)
2456 {
2457 int nid;
2458 unsigned long phys_pages = 0;
2459
2460 for_each_online_node(nid)
2461 phys_pages += node_present_pages(nid);
2462
2463 return phys_pages;
2464 }
2465
2466 /*
2467 * Using memblock node mappings, an architecture may initialise its
2468 * zones, allocate the backing mem_map and account for memory holes in an
2469 * architecture independent manner.
2470 *
2471 * An architecture is expected to register range of page frames backed by
2472 * physical memory with memblock_add[_node]() before calling
2473 * free_area_init() passing in the PFN each zone ends at. At a basic
2474 * usage, an architecture is expected to do something like
2475 *
2476 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2477 * max_highmem_pfn};
2478 * for_each_valid_physical_page_range()
2479 * memblock_add_node(base, size, nid)
2480 * free_area_init(max_zone_pfns);
2481 */
2482 void free_area_init(unsigned long *max_zone_pfn);
2483 unsigned long node_map_pfn_alignment(void);
2484 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2485 unsigned long end_pfn);
2486 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2487 unsigned long end_pfn);
2488 extern void get_pfn_range_for_nid(unsigned int nid,
2489 unsigned long *start_pfn, unsigned long *end_pfn);
2490 extern unsigned long find_min_pfn_with_active_regions(void);
2491
2492 #ifndef CONFIG_NUMA
2493 static inline int early_pfn_to_nid(unsigned long pfn)
2494 {
2495 return 0;
2496 }
2497 #else
2498 /* please see mm/page_alloc.c */
2499 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2500 #endif
2501
2502 extern void set_dma_reserve(unsigned long new_dma_reserve);
2503 extern void memmap_init_range(unsigned long, int, unsigned long,
2504 unsigned long, unsigned long, enum meminit_context,
2505 struct vmem_altmap *, int migratetype);
2506 extern void setup_per_zone_wmarks(void);
2507 extern int __meminit init_per_zone_wmark_min(void);
2508 extern void mem_init(void);
2509 extern void __init mmap_init(void);
2510 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2511 extern long si_mem_available(void);
2512 extern void si_meminfo(struct sysinfo * val);
2513 extern void si_meminfo_node(struct sysinfo *val, int nid);
2514 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2515 extern unsigned long arch_reserved_kernel_pages(void);
2516 #endif
2517
2518 extern __printf(3, 4)
2519 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2520
2521 extern void setup_per_cpu_pageset(void);
2522
2523 /* page_alloc.c */
2524 extern int min_free_kbytes;
2525 extern int watermark_boost_factor;
2526 extern int watermark_scale_factor;
2527 extern bool arch_has_descending_max_zone_pfns(void);
2528
2529 /* nommu.c */
2530 extern atomic_long_t mmap_pages_allocated;
2531 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2532
2533 /* interval_tree.c */
2534 void vma_interval_tree_insert(struct vm_area_struct *node,
2535 struct rb_root_cached *root);
2536 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2537 struct vm_area_struct *prev,
2538 struct rb_root_cached *root);
2539 void vma_interval_tree_remove(struct vm_area_struct *node,
2540 struct rb_root_cached *root);
2541 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2542 unsigned long start, unsigned long last);
2543 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2544 unsigned long start, unsigned long last);
2545
2546 #define vma_interval_tree_foreach(vma, root, start, last) \
2547 for (vma = vma_interval_tree_iter_first(root, start, last); \
2548 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2549
2550 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2551 struct rb_root_cached *root);
2552 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2553 struct rb_root_cached *root);
2554 struct anon_vma_chain *
2555 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2556 unsigned long start, unsigned long last);
2557 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2558 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2559 #ifdef CONFIG_DEBUG_VM_RB
2560 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2561 #endif
2562
2563 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2564 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2565 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2566
2567 /* mmap.c */
2568 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2569 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2570 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2571 struct vm_area_struct *expand);
2572 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2573 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2574 {
2575 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2576 }
2577 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2578 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2579 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2580 struct mempolicy *, struct vm_userfaultfd_ctx);
2581 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2582 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2583 unsigned long addr, int new_below);
2584 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2585 unsigned long addr, int new_below);
2586 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2587 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2588 struct rb_node **, struct rb_node *);
2589 extern void unlink_file_vma(struct vm_area_struct *);
2590 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2591 unsigned long addr, unsigned long len, pgoff_t pgoff,
2592 bool *need_rmap_locks);
2593 extern void exit_mmap(struct mm_struct *);
2594
2595 static inline int check_data_rlimit(unsigned long rlim,
2596 unsigned long new,
2597 unsigned long start,
2598 unsigned long end_data,
2599 unsigned long start_data)
2600 {
2601 if (rlim < RLIM_INFINITY) {
2602 if (((new - start) + (end_data - start_data)) > rlim)
2603 return -ENOSPC;
2604 }
2605
2606 return 0;
2607 }
2608
2609 extern int mm_take_all_locks(struct mm_struct *mm);
2610 extern void mm_drop_all_locks(struct mm_struct *mm);
2611
2612 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2613 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2614 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2615 extern struct file *get_task_exe_file(struct task_struct *task);
2616
2617 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2618 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2619
2620 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2621 const struct vm_special_mapping *sm);
2622 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2623 unsigned long addr, unsigned long len,
2624 unsigned long flags,
2625 const struct vm_special_mapping *spec);
2626 /* This is an obsolete alternative to _install_special_mapping. */
2627 extern int install_special_mapping(struct mm_struct *mm,
2628 unsigned long addr, unsigned long len,
2629 unsigned long flags, struct page **pages);
2630
2631 unsigned long randomize_stack_top(unsigned long stack_top);
2632
2633 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2634
2635 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2636 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2637 struct list_head *uf);
2638 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2639 unsigned long len, unsigned long prot, unsigned long flags,
2640 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2641 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2642 struct list_head *uf, bool downgrade);
2643 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2644 struct list_head *uf);
2645 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2646
2647 #ifdef CONFIG_MMU
2648 extern int __mm_populate(unsigned long addr, unsigned long len,
2649 int ignore_errors);
2650 static inline void mm_populate(unsigned long addr, unsigned long len)
2651 {
2652 /* Ignore errors */
2653 (void) __mm_populate(addr, len, 1);
2654 }
2655 #else
2656 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2657 #endif
2658
2659 /* These take the mm semaphore themselves */
2660 extern int __must_check vm_brk(unsigned long, unsigned long);
2661 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2662 extern int vm_munmap(unsigned long, size_t);
2663 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2664 unsigned long, unsigned long,
2665 unsigned long, unsigned long);
2666
2667 struct vm_unmapped_area_info {
2668 #define VM_UNMAPPED_AREA_TOPDOWN 1
2669 unsigned long flags;
2670 unsigned long length;
2671 unsigned long low_limit;
2672 unsigned long high_limit;
2673 unsigned long align_mask;
2674 unsigned long align_offset;
2675 };
2676
2677 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2678
2679 /* truncate.c */
2680 extern void truncate_inode_pages(struct address_space *, loff_t);
2681 extern void truncate_inode_pages_range(struct address_space *,
2682 loff_t lstart, loff_t lend);
2683 extern void truncate_inode_pages_final(struct address_space *);
2684
2685 /* generic vm_area_ops exported for stackable file systems */
2686 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2687 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2688 pgoff_t start_pgoff, pgoff_t end_pgoff);
2689 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2690
2691 /* mm/page-writeback.c */
2692 int __must_check write_one_page(struct page *page);
2693 void task_dirty_inc(struct task_struct *tsk);
2694
2695 extern unsigned long stack_guard_gap;
2696 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2697 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2698
2699 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2700 extern int expand_downwards(struct vm_area_struct *vma,
2701 unsigned long address);
2702 #if VM_GROWSUP
2703 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2704 #else
2705 #define expand_upwards(vma, address) (0)
2706 #endif
2707
2708 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2709 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2710 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2711 struct vm_area_struct **pprev);
2712
2713 /**
2714 * find_vma_intersection() - Look up the first VMA which intersects the interval
2715 * @mm: The process address space.
2716 * @start_addr: The inclusive start user address.
2717 * @end_addr: The exclusive end user address.
2718 *
2719 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2720 * start_addr < end_addr.
2721 */
2722 static inline
2723 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2724 unsigned long start_addr,
2725 unsigned long end_addr)
2726 {
2727 struct vm_area_struct *vma = find_vma(mm, start_addr);
2728
2729 if (vma && end_addr <= vma->vm_start)
2730 vma = NULL;
2731 return vma;
2732 }
2733
2734 /**
2735 * vma_lookup() - Find a VMA at a specific address
2736 * @mm: The process address space.
2737 * @addr: The user address.
2738 *
2739 * Return: The vm_area_struct at the given address, %NULL otherwise.
2740 */
2741 static inline
2742 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2743 {
2744 struct vm_area_struct *vma = find_vma(mm, addr);
2745
2746 if (vma && addr < vma->vm_start)
2747 vma = NULL;
2748
2749 return vma;
2750 }
2751
2752 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2753 {
2754 unsigned long vm_start = vma->vm_start;
2755
2756 if (vma->vm_flags & VM_GROWSDOWN) {
2757 vm_start -= stack_guard_gap;
2758 if (vm_start > vma->vm_start)
2759 vm_start = 0;
2760 }
2761 return vm_start;
2762 }
2763
2764 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2765 {
2766 unsigned long vm_end = vma->vm_end;
2767
2768 if (vma->vm_flags & VM_GROWSUP) {
2769 vm_end += stack_guard_gap;
2770 if (vm_end < vma->vm_end)
2771 vm_end = -PAGE_SIZE;
2772 }
2773 return vm_end;
2774 }
2775
2776 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2777 {
2778 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2779 }
2780
2781 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2782 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2783 unsigned long vm_start, unsigned long vm_end)
2784 {
2785 struct vm_area_struct *vma = find_vma(mm, vm_start);
2786
2787 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2788 vma = NULL;
2789
2790 return vma;
2791 }
2792
2793 static inline bool range_in_vma(struct vm_area_struct *vma,
2794 unsigned long start, unsigned long end)
2795 {
2796 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2797 }
2798
2799 #ifdef CONFIG_MMU
2800 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2801 void vma_set_page_prot(struct vm_area_struct *vma);
2802 #else
2803 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2804 {
2805 return __pgprot(0);
2806 }
2807 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2808 {
2809 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2810 }
2811 #endif
2812
2813 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2814
2815 #ifdef CONFIG_NUMA_BALANCING
2816 unsigned long change_prot_numa(struct vm_area_struct *vma,
2817 unsigned long start, unsigned long end);
2818 #endif
2819
2820 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2821 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2822 unsigned long pfn, unsigned long size, pgprot_t);
2823 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2824 unsigned long pfn, unsigned long size, pgprot_t prot);
2825 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2826 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2827 struct page **pages, unsigned long *num);
2828 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2829 unsigned long num);
2830 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2831 unsigned long num);
2832 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2833 unsigned long pfn);
2834 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2835 unsigned long pfn, pgprot_t pgprot);
2836 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2837 pfn_t pfn);
2838 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2839 pfn_t pfn, pgprot_t pgprot);
2840 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2841 unsigned long addr, pfn_t pfn);
2842 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2843
2844 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2845 unsigned long addr, struct page *page)
2846 {
2847 int err = vm_insert_page(vma, addr, page);
2848
2849 if (err == -ENOMEM)
2850 return VM_FAULT_OOM;
2851 if (err < 0 && err != -EBUSY)
2852 return VM_FAULT_SIGBUS;
2853
2854 return VM_FAULT_NOPAGE;
2855 }
2856
2857 #ifndef io_remap_pfn_range
2858 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2859 unsigned long addr, unsigned long pfn,
2860 unsigned long size, pgprot_t prot)
2861 {
2862 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2863 }
2864 #endif
2865
2866 static inline vm_fault_t vmf_error(int err)
2867 {
2868 if (err == -ENOMEM)
2869 return VM_FAULT_OOM;
2870 return VM_FAULT_SIGBUS;
2871 }
2872
2873 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2874 unsigned int foll_flags);
2875
2876 #define FOLL_WRITE 0x01 /* check pte is writable */
2877 #define FOLL_TOUCH 0x02 /* mark page accessed */
2878 #define FOLL_GET 0x04 /* do get_page on page */
2879 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2880 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2881 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2882 * and return without waiting upon it */
2883 #define FOLL_POPULATE 0x40 /* fault in page */
2884 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2885 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2886 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2887 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2888 #define FOLL_MLOCK 0x1000 /* lock present pages */
2889 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2890 #define FOLL_COW 0x4000 /* internal GUP flag */
2891 #define FOLL_ANON 0x8000 /* don't do file mappings */
2892 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2893 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2894 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2895 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2896
2897 /*
2898 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2899 * other. Here is what they mean, and how to use them:
2900 *
2901 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2902 * period _often_ under userspace control. This is in contrast to
2903 * iov_iter_get_pages(), whose usages are transient.
2904 *
2905 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2906 * lifetime enforced by the filesystem and we need guarantees that longterm
2907 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2908 * the filesystem. Ideas for this coordination include revoking the longterm
2909 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2910 * added after the problem with filesystems was found FS DAX VMAs are
2911 * specifically failed. Filesystem pages are still subject to bugs and use of
2912 * FOLL_LONGTERM should be avoided on those pages.
2913 *
2914 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2915 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2916 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2917 * is due to an incompatibility with the FS DAX check and
2918 * FAULT_FLAG_ALLOW_RETRY.
2919 *
2920 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2921 * that region. And so, CMA attempts to migrate the page before pinning, when
2922 * FOLL_LONGTERM is specified.
2923 *
2924 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2925 * but an additional pin counting system) will be invoked. This is intended for
2926 * anything that gets a page reference and then touches page data (for example,
2927 * Direct IO). This lets the filesystem know that some non-file-system entity is
2928 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2929 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2930 * a call to unpin_user_page().
2931 *
2932 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2933 * and separate refcounting mechanisms, however, and that means that each has
2934 * its own acquire and release mechanisms:
2935 *
2936 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2937 *
2938 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2939 *
2940 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2941 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2942 * calls applied to them, and that's perfectly OK. This is a constraint on the
2943 * callers, not on the pages.)
2944 *
2945 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2946 * directly by the caller. That's in order to help avoid mismatches when
2947 * releasing pages: get_user_pages*() pages must be released via put_page(),
2948 * while pin_user_pages*() pages must be released via unpin_user_page().
2949 *
2950 * Please see Documentation/core-api/pin_user_pages.rst for more information.
2951 */
2952
2953 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2954 {
2955 if (vm_fault & VM_FAULT_OOM)
2956 return -ENOMEM;
2957 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2958 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2959 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2960 return -EFAULT;
2961 return 0;
2962 }
2963
2964 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2965 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2966 unsigned long size, pte_fn_t fn, void *data);
2967 extern int apply_to_existing_page_range(struct mm_struct *mm,
2968 unsigned long address, unsigned long size,
2969 pte_fn_t fn, void *data);
2970
2971 extern void init_mem_debugging_and_hardening(void);
2972 #ifdef CONFIG_PAGE_POISONING
2973 extern void __kernel_poison_pages(struct page *page, int numpages);
2974 extern void __kernel_unpoison_pages(struct page *page, int numpages);
2975 extern bool _page_poisoning_enabled_early;
2976 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2977 static inline bool page_poisoning_enabled(void)
2978 {
2979 return _page_poisoning_enabled_early;
2980 }
2981 /*
2982 * For use in fast paths after init_mem_debugging() has run, or when a
2983 * false negative result is not harmful when called too early.
2984 */
2985 static inline bool page_poisoning_enabled_static(void)
2986 {
2987 return static_branch_unlikely(&_page_poisoning_enabled);
2988 }
2989 static inline void kernel_poison_pages(struct page *page, int numpages)
2990 {
2991 if (page_poisoning_enabled_static())
2992 __kernel_poison_pages(page, numpages);
2993 }
2994 static inline void kernel_unpoison_pages(struct page *page, int numpages)
2995 {
2996 if (page_poisoning_enabled_static())
2997 __kernel_unpoison_pages(page, numpages);
2998 }
2999 #else
3000 static inline bool page_poisoning_enabled(void) { return false; }
3001 static inline bool page_poisoning_enabled_static(void) { return false; }
3002 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3003 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3004 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3005 #endif
3006
3007 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3008 static inline bool want_init_on_alloc(gfp_t flags)
3009 {
3010 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3011 &init_on_alloc))
3012 return true;
3013 return flags & __GFP_ZERO;
3014 }
3015
3016 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3017 static inline bool want_init_on_free(void)
3018 {
3019 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3020 &init_on_free);
3021 }
3022
3023 extern bool _debug_pagealloc_enabled_early;
3024 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3025
3026 static inline bool debug_pagealloc_enabled(void)
3027 {
3028 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3029 _debug_pagealloc_enabled_early;
3030 }
3031
3032 /*
3033 * For use in fast paths after init_debug_pagealloc() has run, or when a
3034 * false negative result is not harmful when called too early.
3035 */
3036 static inline bool debug_pagealloc_enabled_static(void)
3037 {
3038 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3039 return false;
3040
3041 return static_branch_unlikely(&_debug_pagealloc_enabled);
3042 }
3043
3044 #ifdef CONFIG_DEBUG_PAGEALLOC
3045 /*
3046 * To support DEBUG_PAGEALLOC architecture must ensure that
3047 * __kernel_map_pages() never fails
3048 */
3049 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3050
3051 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3052 {
3053 if (debug_pagealloc_enabled_static())
3054 __kernel_map_pages(page, numpages, 1);
3055 }
3056
3057 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3058 {
3059 if (debug_pagealloc_enabled_static())
3060 __kernel_map_pages(page, numpages, 0);
3061 }
3062 #else /* CONFIG_DEBUG_PAGEALLOC */
3063 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3064 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3065 #endif /* CONFIG_DEBUG_PAGEALLOC */
3066
3067 #ifdef __HAVE_ARCH_GATE_AREA
3068 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3069 extern int in_gate_area_no_mm(unsigned long addr);
3070 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3071 #else
3072 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3073 {
3074 return NULL;
3075 }
3076 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3077 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3078 {
3079 return 0;
3080 }
3081 #endif /* __HAVE_ARCH_GATE_AREA */
3082
3083 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3084
3085 #ifdef CONFIG_SYSCTL
3086 extern int sysctl_drop_caches;
3087 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3088 loff_t *);
3089 #endif
3090
3091 void drop_slab(void);
3092 void drop_slab_node(int nid);
3093
3094 #ifndef CONFIG_MMU
3095 #define randomize_va_space 0
3096 #else
3097 extern int randomize_va_space;
3098 #endif
3099
3100 const char * arch_vma_name(struct vm_area_struct *vma);
3101 #ifdef CONFIG_MMU
3102 void print_vma_addr(char *prefix, unsigned long rip);
3103 #else
3104 static inline void print_vma_addr(char *prefix, unsigned long rip)
3105 {
3106 }
3107 #endif
3108
3109 int vmemmap_remap_free(unsigned long start, unsigned long end,
3110 unsigned long reuse);
3111 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3112 unsigned long reuse, gfp_t gfp_mask);
3113
3114 void *sparse_buffer_alloc(unsigned long size);
3115 struct page * __populate_section_memmap(unsigned long pfn,
3116 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3117 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3118 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3119 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3120 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3121 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3122 struct vmem_altmap *altmap);
3123 void *vmemmap_alloc_block(unsigned long size, int node);
3124 struct vmem_altmap;
3125 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3126 struct vmem_altmap *altmap);
3127 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3128 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3129 int node, struct vmem_altmap *altmap);
3130 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3131 struct vmem_altmap *altmap);
3132 void vmemmap_populate_print_last(void);
3133 #ifdef CONFIG_MEMORY_HOTPLUG
3134 void vmemmap_free(unsigned long start, unsigned long end,
3135 struct vmem_altmap *altmap);
3136 #endif
3137 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3138 unsigned long nr_pages);
3139
3140 enum mf_flags {
3141 MF_COUNT_INCREASED = 1 << 0,
3142 MF_ACTION_REQUIRED = 1 << 1,
3143 MF_MUST_KILL = 1 << 2,
3144 MF_SOFT_OFFLINE = 1 << 3,
3145 };
3146 extern int memory_failure(unsigned long pfn, int flags);
3147 extern void memory_failure_queue(unsigned long pfn, int flags);
3148 extern void memory_failure_queue_kick(int cpu);
3149 extern int unpoison_memory(unsigned long pfn);
3150 extern int sysctl_memory_failure_early_kill;
3151 extern int sysctl_memory_failure_recovery;
3152 extern void shake_page(struct page *p);
3153 extern atomic_long_t num_poisoned_pages __read_mostly;
3154 extern int soft_offline_page(unsigned long pfn, int flags);
3155
3156
3157 /*
3158 * Error handlers for various types of pages.
3159 */
3160 enum mf_result {
3161 MF_IGNORED, /* Error: cannot be handled */
3162 MF_FAILED, /* Error: handling failed */
3163 MF_DELAYED, /* Will be handled later */
3164 MF_RECOVERED, /* Successfully recovered */
3165 };
3166
3167 enum mf_action_page_type {
3168 MF_MSG_KERNEL,
3169 MF_MSG_KERNEL_HIGH_ORDER,
3170 MF_MSG_SLAB,
3171 MF_MSG_DIFFERENT_COMPOUND,
3172 MF_MSG_POISONED_HUGE,
3173 MF_MSG_HUGE,
3174 MF_MSG_FREE_HUGE,
3175 MF_MSG_NON_PMD_HUGE,
3176 MF_MSG_UNMAP_FAILED,
3177 MF_MSG_DIRTY_SWAPCACHE,
3178 MF_MSG_CLEAN_SWAPCACHE,
3179 MF_MSG_DIRTY_MLOCKED_LRU,
3180 MF_MSG_CLEAN_MLOCKED_LRU,
3181 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3182 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3183 MF_MSG_DIRTY_LRU,
3184 MF_MSG_CLEAN_LRU,
3185 MF_MSG_TRUNCATED_LRU,
3186 MF_MSG_BUDDY,
3187 MF_MSG_BUDDY_2ND,
3188 MF_MSG_DAX,
3189 MF_MSG_UNSPLIT_THP,
3190 MF_MSG_UNKNOWN,
3191 };
3192
3193 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3194 extern void clear_huge_page(struct page *page,
3195 unsigned long addr_hint,
3196 unsigned int pages_per_huge_page);
3197 extern void copy_user_huge_page(struct page *dst, struct page *src,
3198 unsigned long addr_hint,
3199 struct vm_area_struct *vma,
3200 unsigned int pages_per_huge_page);
3201 extern long copy_huge_page_from_user(struct page *dst_page,
3202 const void __user *usr_src,
3203 unsigned int pages_per_huge_page,
3204 bool allow_pagefault);
3205
3206 /**
3207 * vma_is_special_huge - Are transhuge page-table entries considered special?
3208 * @vma: Pointer to the struct vm_area_struct to consider
3209 *
3210 * Whether transhuge page-table entries are considered "special" following
3211 * the definition in vm_normal_page().
3212 *
3213 * Return: true if transhuge page-table entries should be considered special,
3214 * false otherwise.
3215 */
3216 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3217 {
3218 return vma_is_dax(vma) || (vma->vm_file &&
3219 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3220 }
3221
3222 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3223
3224 #ifdef CONFIG_DEBUG_PAGEALLOC
3225 extern unsigned int _debug_guardpage_minorder;
3226 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3227
3228 static inline unsigned int debug_guardpage_minorder(void)
3229 {
3230 return _debug_guardpage_minorder;
3231 }
3232
3233 static inline bool debug_guardpage_enabled(void)
3234 {
3235 return static_branch_unlikely(&_debug_guardpage_enabled);
3236 }
3237
3238 static inline bool page_is_guard(struct page *page)
3239 {
3240 if (!debug_guardpage_enabled())
3241 return false;
3242
3243 return PageGuard(page);
3244 }
3245 #else
3246 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3247 static inline bool debug_guardpage_enabled(void) { return false; }
3248 static inline bool page_is_guard(struct page *page) { return false; }
3249 #endif /* CONFIG_DEBUG_PAGEALLOC */
3250
3251 #if MAX_NUMNODES > 1
3252 void __init setup_nr_node_ids(void);
3253 #else
3254 static inline void setup_nr_node_ids(void) {}
3255 #endif
3256
3257 extern int memcmp_pages(struct page *page1, struct page *page2);
3258
3259 static inline int pages_identical(struct page *page1, struct page *page2)
3260 {
3261 return !memcmp_pages(page1, page2);
3262 }
3263
3264 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3265 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3266 pgoff_t first_index, pgoff_t nr,
3267 pgoff_t bitmap_pgoff,
3268 unsigned long *bitmap,
3269 pgoff_t *start,
3270 pgoff_t *end);
3271
3272 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3273 pgoff_t first_index, pgoff_t nr);
3274 #endif
3275
3276 extern int sysctl_nr_trim_pages;
3277
3278 #ifdef CONFIG_PRINTK
3279 void mem_dump_obj(void *object);
3280 #else
3281 static inline void mem_dump_obj(void *object) {}
3282 #endif
3283
3284 /**
3285 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3286 * @seals: the seals to check
3287 * @vma: the vma to operate on
3288 *
3289 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3290 * the vma flags. Return 0 if check pass, or <0 for errors.
3291 */
3292 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3293 {
3294 if (seals & F_SEAL_FUTURE_WRITE) {
3295 /*
3296 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3297 * "future write" seal active.
3298 */
3299 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3300 return -EPERM;
3301
3302 /*
3303 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3304 * MAP_SHARED and read-only, take care to not allow mprotect to
3305 * revert protections on such mappings. Do this only for shared
3306 * mappings. For private mappings, don't need to mask
3307 * VM_MAYWRITE as we still want them to be COW-writable.
3308 */
3309 if (vma->vm_flags & VM_SHARED)
3310 vma->vm_flags &= ~(VM_MAYWRITE);
3311 }
3312
3313 return 0;
3314 }
3315
3316 #endif /* __KERNEL__ */
3317 #endif /* _LINUX_MM_H */