]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/mm.h
mm: gup: add __get_user_pages_unlocked to customize gup_flags
[mirror_ubuntu-zesty-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23
24 struct mempolicy;
25 struct anon_vma;
26 struct anon_vma_chain;
27 struct file_ra_state;
28 struct user_struct;
29 struct writeback_control;
30
31 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
32 extern unsigned long max_mapnr;
33
34 static inline void set_max_mapnr(unsigned long limit)
35 {
36 max_mapnr = limit;
37 }
38 #else
39 static inline void set_max_mapnr(unsigned long limit) { }
40 #endif
41
42 extern unsigned long totalram_pages;
43 extern void * high_memory;
44 extern int page_cluster;
45
46 #ifdef CONFIG_SYSCTL
47 extern int sysctl_legacy_va_layout;
48 #else
49 #define sysctl_legacy_va_layout 0
50 #endif
51
52 #include <asm/page.h>
53 #include <asm/pgtable.h>
54 #include <asm/processor.h>
55
56 #ifndef __pa_symbol
57 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
58 #endif
59
60 /*
61 * To prevent common memory management code establishing
62 * a zero page mapping on a read fault.
63 * This macro should be defined within <asm/pgtable.h>.
64 * s390 does this to prevent multiplexing of hardware bits
65 * related to the physical page in case of virtualization.
66 */
67 #ifndef mm_forbids_zeropage
68 #define mm_forbids_zeropage(X) (0)
69 #endif
70
71 extern unsigned long sysctl_user_reserve_kbytes;
72 extern unsigned long sysctl_admin_reserve_kbytes;
73
74 extern int sysctl_overcommit_memory;
75 extern int sysctl_overcommit_ratio;
76 extern unsigned long sysctl_overcommit_kbytes;
77
78 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
79 size_t *, loff_t *);
80 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82
83 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
84
85 /* to align the pointer to the (next) page boundary */
86 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
87
88 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
89 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
90
91 /*
92 * Linux kernel virtual memory manager primitives.
93 * The idea being to have a "virtual" mm in the same way
94 * we have a virtual fs - giving a cleaner interface to the
95 * mm details, and allowing different kinds of memory mappings
96 * (from shared memory to executable loading to arbitrary
97 * mmap() functions).
98 */
99
100 extern struct kmem_cache *vm_area_cachep;
101
102 #ifndef CONFIG_MMU
103 extern struct rb_root nommu_region_tree;
104 extern struct rw_semaphore nommu_region_sem;
105
106 extern unsigned int kobjsize(const void *objp);
107 #endif
108
109 /*
110 * vm_flags in vm_area_struct, see mm_types.h.
111 */
112 #define VM_NONE 0x00000000
113
114 #define VM_READ 0x00000001 /* currently active flags */
115 #define VM_WRITE 0x00000002
116 #define VM_EXEC 0x00000004
117 #define VM_SHARED 0x00000008
118
119 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
120 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
121 #define VM_MAYWRITE 0x00000020
122 #define VM_MAYEXEC 0x00000040
123 #define VM_MAYSHARE 0x00000080
124
125 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
126 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
127 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
128
129 #define VM_LOCKED 0x00002000
130 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
131
132 /* Used by sys_madvise() */
133 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
134 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
135
136 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
137 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
138 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
139 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
140 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
141 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
142 #define VM_ARCH_2 0x02000000
143 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
144
145 #ifdef CONFIG_MEM_SOFT_DIRTY
146 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
147 #else
148 # define VM_SOFTDIRTY 0
149 #endif
150
151 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
152 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
153 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
154 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
155
156 #if defined(CONFIG_X86)
157 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
158 #elif defined(CONFIG_PPC)
159 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
160 #elif defined(CONFIG_PARISC)
161 # define VM_GROWSUP VM_ARCH_1
162 #elif defined(CONFIG_METAG)
163 # define VM_GROWSUP VM_ARCH_1
164 #elif defined(CONFIG_IA64)
165 # define VM_GROWSUP VM_ARCH_1
166 #elif !defined(CONFIG_MMU)
167 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
168 #endif
169
170 #if defined(CONFIG_X86)
171 /* MPX specific bounds table or bounds directory */
172 # define VM_MPX VM_ARCH_2
173 #endif
174
175 #ifndef VM_GROWSUP
176 # define VM_GROWSUP VM_NONE
177 #endif
178
179 /* Bits set in the VMA until the stack is in its final location */
180 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
181
182 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
183 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
184 #endif
185
186 #ifdef CONFIG_STACK_GROWSUP
187 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
188 #else
189 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
190 #endif
191
192 /*
193 * Special vmas that are non-mergable, non-mlock()able.
194 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
195 */
196 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
197
198 /* This mask defines which mm->def_flags a process can inherit its parent */
199 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
200
201 /*
202 * mapping from the currently active vm_flags protection bits (the
203 * low four bits) to a page protection mask..
204 */
205 extern pgprot_t protection_map[16];
206
207 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
208 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
209 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
210 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
211 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
212 #define FAULT_FLAG_TRIED 0x20 /* Second try */
213 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
214
215 /*
216 * vm_fault is filled by the the pagefault handler and passed to the vma's
217 * ->fault function. The vma's ->fault is responsible for returning a bitmask
218 * of VM_FAULT_xxx flags that give details about how the fault was handled.
219 *
220 * pgoff should be used in favour of virtual_address, if possible.
221 */
222 struct vm_fault {
223 unsigned int flags; /* FAULT_FLAG_xxx flags */
224 pgoff_t pgoff; /* Logical page offset based on vma */
225 void __user *virtual_address; /* Faulting virtual address */
226
227 struct page *page; /* ->fault handlers should return a
228 * page here, unless VM_FAULT_NOPAGE
229 * is set (which is also implied by
230 * VM_FAULT_ERROR).
231 */
232 /* for ->map_pages() only */
233 pgoff_t max_pgoff; /* map pages for offset from pgoff till
234 * max_pgoff inclusive */
235 pte_t *pte; /* pte entry associated with ->pgoff */
236 };
237
238 /*
239 * These are the virtual MM functions - opening of an area, closing and
240 * unmapping it (needed to keep files on disk up-to-date etc), pointer
241 * to the functions called when a no-page or a wp-page exception occurs.
242 */
243 struct vm_operations_struct {
244 void (*open)(struct vm_area_struct * area);
245 void (*close)(struct vm_area_struct * area);
246 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
247 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
248
249 /* notification that a previously read-only page is about to become
250 * writable, if an error is returned it will cause a SIGBUS */
251 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
252
253 /* called by access_process_vm when get_user_pages() fails, typically
254 * for use by special VMAs that can switch between memory and hardware
255 */
256 int (*access)(struct vm_area_struct *vma, unsigned long addr,
257 void *buf, int len, int write);
258
259 /* Called by the /proc/PID/maps code to ask the vma whether it
260 * has a special name. Returning non-NULL will also cause this
261 * vma to be dumped unconditionally. */
262 const char *(*name)(struct vm_area_struct *vma);
263
264 #ifdef CONFIG_NUMA
265 /*
266 * set_policy() op must add a reference to any non-NULL @new mempolicy
267 * to hold the policy upon return. Caller should pass NULL @new to
268 * remove a policy and fall back to surrounding context--i.e. do not
269 * install a MPOL_DEFAULT policy, nor the task or system default
270 * mempolicy.
271 */
272 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
273
274 /*
275 * get_policy() op must add reference [mpol_get()] to any policy at
276 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
277 * in mm/mempolicy.c will do this automatically.
278 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
279 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
280 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
281 * must return NULL--i.e., do not "fallback" to task or system default
282 * policy.
283 */
284 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
285 unsigned long addr);
286 #endif
287 /*
288 * Called by vm_normal_page() for special PTEs to find the
289 * page for @addr. This is useful if the default behavior
290 * (using pte_page()) would not find the correct page.
291 */
292 struct page *(*find_special_page)(struct vm_area_struct *vma,
293 unsigned long addr);
294 };
295
296 struct mmu_gather;
297 struct inode;
298
299 #define page_private(page) ((page)->private)
300 #define set_page_private(page, v) ((page)->private = (v))
301
302 /* It's valid only if the page is free path or free_list */
303 static inline void set_freepage_migratetype(struct page *page, int migratetype)
304 {
305 page->index = migratetype;
306 }
307
308 /* It's valid only if the page is free path or free_list */
309 static inline int get_freepage_migratetype(struct page *page)
310 {
311 return page->index;
312 }
313
314 /*
315 * FIXME: take this include out, include page-flags.h in
316 * files which need it (119 of them)
317 */
318 #include <linux/page-flags.h>
319 #include <linux/huge_mm.h>
320
321 /*
322 * Methods to modify the page usage count.
323 *
324 * What counts for a page usage:
325 * - cache mapping (page->mapping)
326 * - private data (page->private)
327 * - page mapped in a task's page tables, each mapping
328 * is counted separately
329 *
330 * Also, many kernel routines increase the page count before a critical
331 * routine so they can be sure the page doesn't go away from under them.
332 */
333
334 /*
335 * Drop a ref, return true if the refcount fell to zero (the page has no users)
336 */
337 static inline int put_page_testzero(struct page *page)
338 {
339 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
340 return atomic_dec_and_test(&page->_count);
341 }
342
343 /*
344 * Try to grab a ref unless the page has a refcount of zero, return false if
345 * that is the case.
346 * This can be called when MMU is off so it must not access
347 * any of the virtual mappings.
348 */
349 static inline int get_page_unless_zero(struct page *page)
350 {
351 return atomic_inc_not_zero(&page->_count);
352 }
353
354 /*
355 * Try to drop a ref unless the page has a refcount of one, return false if
356 * that is the case.
357 * This is to make sure that the refcount won't become zero after this drop.
358 * This can be called when MMU is off so it must not access
359 * any of the virtual mappings.
360 */
361 static inline int put_page_unless_one(struct page *page)
362 {
363 return atomic_add_unless(&page->_count, -1, 1);
364 }
365
366 extern int page_is_ram(unsigned long pfn);
367 extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
368
369 /* Support for virtually mapped pages */
370 struct page *vmalloc_to_page(const void *addr);
371 unsigned long vmalloc_to_pfn(const void *addr);
372
373 /*
374 * Determine if an address is within the vmalloc range
375 *
376 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
377 * is no special casing required.
378 */
379 static inline int is_vmalloc_addr(const void *x)
380 {
381 #ifdef CONFIG_MMU
382 unsigned long addr = (unsigned long)x;
383
384 return addr >= VMALLOC_START && addr < VMALLOC_END;
385 #else
386 return 0;
387 #endif
388 }
389 #ifdef CONFIG_MMU
390 extern int is_vmalloc_or_module_addr(const void *x);
391 #else
392 static inline int is_vmalloc_or_module_addr(const void *x)
393 {
394 return 0;
395 }
396 #endif
397
398 extern void kvfree(const void *addr);
399
400 static inline void compound_lock(struct page *page)
401 {
402 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
403 VM_BUG_ON_PAGE(PageSlab(page), page);
404 bit_spin_lock(PG_compound_lock, &page->flags);
405 #endif
406 }
407
408 static inline void compound_unlock(struct page *page)
409 {
410 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
411 VM_BUG_ON_PAGE(PageSlab(page), page);
412 bit_spin_unlock(PG_compound_lock, &page->flags);
413 #endif
414 }
415
416 static inline unsigned long compound_lock_irqsave(struct page *page)
417 {
418 unsigned long uninitialized_var(flags);
419 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
420 local_irq_save(flags);
421 compound_lock(page);
422 #endif
423 return flags;
424 }
425
426 static inline void compound_unlock_irqrestore(struct page *page,
427 unsigned long flags)
428 {
429 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
430 compound_unlock(page);
431 local_irq_restore(flags);
432 #endif
433 }
434
435 static inline struct page *compound_head_by_tail(struct page *tail)
436 {
437 struct page *head = tail->first_page;
438
439 /*
440 * page->first_page may be a dangling pointer to an old
441 * compound page, so recheck that it is still a tail
442 * page before returning.
443 */
444 smp_rmb();
445 if (likely(PageTail(tail)))
446 return head;
447 return tail;
448 }
449
450 /*
451 * Since either compound page could be dismantled asynchronously in THP
452 * or we access asynchronously arbitrary positioned struct page, there
453 * would be tail flag race. To handle this race, we should call
454 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
455 */
456 static inline struct page *compound_head(struct page *page)
457 {
458 if (unlikely(PageTail(page)))
459 return compound_head_by_tail(page);
460 return page;
461 }
462
463 /*
464 * If we access compound page synchronously such as access to
465 * allocated page, there is no need to handle tail flag race, so we can
466 * check tail flag directly without any synchronization primitive.
467 */
468 static inline struct page *compound_head_fast(struct page *page)
469 {
470 if (unlikely(PageTail(page)))
471 return page->first_page;
472 return page;
473 }
474
475 /*
476 * The atomic page->_mapcount, starts from -1: so that transitions
477 * both from it and to it can be tracked, using atomic_inc_and_test
478 * and atomic_add_negative(-1).
479 */
480 static inline void page_mapcount_reset(struct page *page)
481 {
482 atomic_set(&(page)->_mapcount, -1);
483 }
484
485 static inline int page_mapcount(struct page *page)
486 {
487 VM_BUG_ON_PAGE(PageSlab(page), page);
488 return atomic_read(&page->_mapcount) + 1;
489 }
490
491 static inline int page_count(struct page *page)
492 {
493 return atomic_read(&compound_head(page)->_count);
494 }
495
496 #ifdef CONFIG_HUGETLB_PAGE
497 extern int PageHeadHuge(struct page *page_head);
498 #else /* CONFIG_HUGETLB_PAGE */
499 static inline int PageHeadHuge(struct page *page_head)
500 {
501 return 0;
502 }
503 #endif /* CONFIG_HUGETLB_PAGE */
504
505 static inline bool __compound_tail_refcounted(struct page *page)
506 {
507 return !PageSlab(page) && !PageHeadHuge(page);
508 }
509
510 /*
511 * This takes a head page as parameter and tells if the
512 * tail page reference counting can be skipped.
513 *
514 * For this to be safe, PageSlab and PageHeadHuge must remain true on
515 * any given page where they return true here, until all tail pins
516 * have been released.
517 */
518 static inline bool compound_tail_refcounted(struct page *page)
519 {
520 VM_BUG_ON_PAGE(!PageHead(page), page);
521 return __compound_tail_refcounted(page);
522 }
523
524 static inline void get_huge_page_tail(struct page *page)
525 {
526 /*
527 * __split_huge_page_refcount() cannot run from under us.
528 */
529 VM_BUG_ON_PAGE(!PageTail(page), page);
530 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
531 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
532 if (compound_tail_refcounted(page->first_page))
533 atomic_inc(&page->_mapcount);
534 }
535
536 extern bool __get_page_tail(struct page *page);
537
538 static inline void get_page(struct page *page)
539 {
540 if (unlikely(PageTail(page)))
541 if (likely(__get_page_tail(page)))
542 return;
543 /*
544 * Getting a normal page or the head of a compound page
545 * requires to already have an elevated page->_count.
546 */
547 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
548 atomic_inc(&page->_count);
549 }
550
551 static inline struct page *virt_to_head_page(const void *x)
552 {
553 struct page *page = virt_to_page(x);
554
555 /*
556 * We don't need to worry about synchronization of tail flag
557 * when we call virt_to_head_page() since it is only called for
558 * already allocated page and this page won't be freed until
559 * this virt_to_head_page() is finished. So use _fast variant.
560 */
561 return compound_head_fast(page);
562 }
563
564 /*
565 * Setup the page count before being freed into the page allocator for
566 * the first time (boot or memory hotplug)
567 */
568 static inline void init_page_count(struct page *page)
569 {
570 atomic_set(&page->_count, 1);
571 }
572
573 /*
574 * PageBuddy() indicate that the page is free and in the buddy system
575 * (see mm/page_alloc.c).
576 *
577 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
578 * -2 so that an underflow of the page_mapcount() won't be mistaken
579 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
580 * efficiently by most CPU architectures.
581 */
582 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
583
584 static inline int PageBuddy(struct page *page)
585 {
586 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
587 }
588
589 static inline void __SetPageBuddy(struct page *page)
590 {
591 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
592 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
593 }
594
595 static inline void __ClearPageBuddy(struct page *page)
596 {
597 VM_BUG_ON_PAGE(!PageBuddy(page), page);
598 atomic_set(&page->_mapcount, -1);
599 }
600
601 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
602
603 static inline int PageBalloon(struct page *page)
604 {
605 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
606 }
607
608 static inline void __SetPageBalloon(struct page *page)
609 {
610 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
611 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
612 }
613
614 static inline void __ClearPageBalloon(struct page *page)
615 {
616 VM_BUG_ON_PAGE(!PageBalloon(page), page);
617 atomic_set(&page->_mapcount, -1);
618 }
619
620 void put_page(struct page *page);
621 void put_pages_list(struct list_head *pages);
622
623 void split_page(struct page *page, unsigned int order);
624 int split_free_page(struct page *page);
625
626 /*
627 * Compound pages have a destructor function. Provide a
628 * prototype for that function and accessor functions.
629 * These are _only_ valid on the head of a PG_compound page.
630 */
631
632 static inline void set_compound_page_dtor(struct page *page,
633 compound_page_dtor *dtor)
634 {
635 page[1].compound_dtor = dtor;
636 }
637
638 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
639 {
640 return page[1].compound_dtor;
641 }
642
643 static inline int compound_order(struct page *page)
644 {
645 if (!PageHead(page))
646 return 0;
647 return page[1].compound_order;
648 }
649
650 static inline void set_compound_order(struct page *page, unsigned long order)
651 {
652 page[1].compound_order = order;
653 }
654
655 #ifdef CONFIG_MMU
656 /*
657 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
658 * servicing faults for write access. In the normal case, do always want
659 * pte_mkwrite. But get_user_pages can cause write faults for mappings
660 * that do not have writing enabled, when used by access_process_vm.
661 */
662 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
663 {
664 if (likely(vma->vm_flags & VM_WRITE))
665 pte = pte_mkwrite(pte);
666 return pte;
667 }
668
669 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
670 struct page *page, pte_t *pte, bool write, bool anon);
671 #endif
672
673 /*
674 * Multiple processes may "see" the same page. E.g. for untouched
675 * mappings of /dev/null, all processes see the same page full of
676 * zeroes, and text pages of executables and shared libraries have
677 * only one copy in memory, at most, normally.
678 *
679 * For the non-reserved pages, page_count(page) denotes a reference count.
680 * page_count() == 0 means the page is free. page->lru is then used for
681 * freelist management in the buddy allocator.
682 * page_count() > 0 means the page has been allocated.
683 *
684 * Pages are allocated by the slab allocator in order to provide memory
685 * to kmalloc and kmem_cache_alloc. In this case, the management of the
686 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
687 * unless a particular usage is carefully commented. (the responsibility of
688 * freeing the kmalloc memory is the caller's, of course).
689 *
690 * A page may be used by anyone else who does a __get_free_page().
691 * In this case, page_count still tracks the references, and should only
692 * be used through the normal accessor functions. The top bits of page->flags
693 * and page->virtual store page management information, but all other fields
694 * are unused and could be used privately, carefully. The management of this
695 * page is the responsibility of the one who allocated it, and those who have
696 * subsequently been given references to it.
697 *
698 * The other pages (we may call them "pagecache pages") are completely
699 * managed by the Linux memory manager: I/O, buffers, swapping etc.
700 * The following discussion applies only to them.
701 *
702 * A pagecache page contains an opaque `private' member, which belongs to the
703 * page's address_space. Usually, this is the address of a circular list of
704 * the page's disk buffers. PG_private must be set to tell the VM to call
705 * into the filesystem to release these pages.
706 *
707 * A page may belong to an inode's memory mapping. In this case, page->mapping
708 * is the pointer to the inode, and page->index is the file offset of the page,
709 * in units of PAGE_CACHE_SIZE.
710 *
711 * If pagecache pages are not associated with an inode, they are said to be
712 * anonymous pages. These may become associated with the swapcache, and in that
713 * case PG_swapcache is set, and page->private is an offset into the swapcache.
714 *
715 * In either case (swapcache or inode backed), the pagecache itself holds one
716 * reference to the page. Setting PG_private should also increment the
717 * refcount. The each user mapping also has a reference to the page.
718 *
719 * The pagecache pages are stored in a per-mapping radix tree, which is
720 * rooted at mapping->page_tree, and indexed by offset.
721 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
722 * lists, we instead now tag pages as dirty/writeback in the radix tree.
723 *
724 * All pagecache pages may be subject to I/O:
725 * - inode pages may need to be read from disk,
726 * - inode pages which have been modified and are MAP_SHARED may need
727 * to be written back to the inode on disk,
728 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
729 * modified may need to be swapped out to swap space and (later) to be read
730 * back into memory.
731 */
732
733 /*
734 * The zone field is never updated after free_area_init_core()
735 * sets it, so none of the operations on it need to be atomic.
736 */
737
738 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
739 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
740 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
741 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
742 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
743
744 /*
745 * Define the bit shifts to access each section. For non-existent
746 * sections we define the shift as 0; that plus a 0 mask ensures
747 * the compiler will optimise away reference to them.
748 */
749 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
750 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
751 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
752 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
753
754 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
755 #ifdef NODE_NOT_IN_PAGE_FLAGS
756 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
757 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
758 SECTIONS_PGOFF : ZONES_PGOFF)
759 #else
760 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
761 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
762 NODES_PGOFF : ZONES_PGOFF)
763 #endif
764
765 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
766
767 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
768 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
769 #endif
770
771 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
772 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
773 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
774 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
775 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
776
777 static inline enum zone_type page_zonenum(const struct page *page)
778 {
779 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
780 }
781
782 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
783 #define SECTION_IN_PAGE_FLAGS
784 #endif
785
786 /*
787 * The identification function is mainly used by the buddy allocator for
788 * determining if two pages could be buddies. We are not really identifying
789 * the zone since we could be using the section number id if we do not have
790 * node id available in page flags.
791 * We only guarantee that it will return the same value for two combinable
792 * pages in a zone.
793 */
794 static inline int page_zone_id(struct page *page)
795 {
796 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
797 }
798
799 static inline int zone_to_nid(struct zone *zone)
800 {
801 #ifdef CONFIG_NUMA
802 return zone->node;
803 #else
804 return 0;
805 #endif
806 }
807
808 #ifdef NODE_NOT_IN_PAGE_FLAGS
809 extern int page_to_nid(const struct page *page);
810 #else
811 static inline int page_to_nid(const struct page *page)
812 {
813 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
814 }
815 #endif
816
817 #ifdef CONFIG_NUMA_BALANCING
818 static inline int cpu_pid_to_cpupid(int cpu, int pid)
819 {
820 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
821 }
822
823 static inline int cpupid_to_pid(int cpupid)
824 {
825 return cpupid & LAST__PID_MASK;
826 }
827
828 static inline int cpupid_to_cpu(int cpupid)
829 {
830 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
831 }
832
833 static inline int cpupid_to_nid(int cpupid)
834 {
835 return cpu_to_node(cpupid_to_cpu(cpupid));
836 }
837
838 static inline bool cpupid_pid_unset(int cpupid)
839 {
840 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
841 }
842
843 static inline bool cpupid_cpu_unset(int cpupid)
844 {
845 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
846 }
847
848 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
849 {
850 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
851 }
852
853 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
854 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
855 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
856 {
857 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
858 }
859
860 static inline int page_cpupid_last(struct page *page)
861 {
862 return page->_last_cpupid;
863 }
864 static inline void page_cpupid_reset_last(struct page *page)
865 {
866 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
867 }
868 #else
869 static inline int page_cpupid_last(struct page *page)
870 {
871 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
872 }
873
874 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
875
876 static inline void page_cpupid_reset_last(struct page *page)
877 {
878 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
879
880 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
881 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
882 }
883 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
884 #else /* !CONFIG_NUMA_BALANCING */
885 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
886 {
887 return page_to_nid(page); /* XXX */
888 }
889
890 static inline int page_cpupid_last(struct page *page)
891 {
892 return page_to_nid(page); /* XXX */
893 }
894
895 static inline int cpupid_to_nid(int cpupid)
896 {
897 return -1;
898 }
899
900 static inline int cpupid_to_pid(int cpupid)
901 {
902 return -1;
903 }
904
905 static inline int cpupid_to_cpu(int cpupid)
906 {
907 return -1;
908 }
909
910 static inline int cpu_pid_to_cpupid(int nid, int pid)
911 {
912 return -1;
913 }
914
915 static inline bool cpupid_pid_unset(int cpupid)
916 {
917 return 1;
918 }
919
920 static inline void page_cpupid_reset_last(struct page *page)
921 {
922 }
923
924 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
925 {
926 return false;
927 }
928 #endif /* CONFIG_NUMA_BALANCING */
929
930 static inline struct zone *page_zone(const struct page *page)
931 {
932 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
933 }
934
935 #ifdef SECTION_IN_PAGE_FLAGS
936 static inline void set_page_section(struct page *page, unsigned long section)
937 {
938 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
939 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
940 }
941
942 static inline unsigned long page_to_section(const struct page *page)
943 {
944 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
945 }
946 #endif
947
948 static inline void set_page_zone(struct page *page, enum zone_type zone)
949 {
950 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
951 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
952 }
953
954 static inline void set_page_node(struct page *page, unsigned long node)
955 {
956 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
957 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
958 }
959
960 static inline void set_page_links(struct page *page, enum zone_type zone,
961 unsigned long node, unsigned long pfn)
962 {
963 set_page_zone(page, zone);
964 set_page_node(page, node);
965 #ifdef SECTION_IN_PAGE_FLAGS
966 set_page_section(page, pfn_to_section_nr(pfn));
967 #endif
968 }
969
970 /*
971 * Some inline functions in vmstat.h depend on page_zone()
972 */
973 #include <linux/vmstat.h>
974
975 static __always_inline void *lowmem_page_address(const struct page *page)
976 {
977 return __va(PFN_PHYS(page_to_pfn(page)));
978 }
979
980 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
981 #define HASHED_PAGE_VIRTUAL
982 #endif
983
984 #if defined(WANT_PAGE_VIRTUAL)
985 static inline void *page_address(const struct page *page)
986 {
987 return page->virtual;
988 }
989 static inline void set_page_address(struct page *page, void *address)
990 {
991 page->virtual = address;
992 }
993 #define page_address_init() do { } while(0)
994 #endif
995
996 #if defined(HASHED_PAGE_VIRTUAL)
997 void *page_address(const struct page *page);
998 void set_page_address(struct page *page, void *virtual);
999 void page_address_init(void);
1000 #endif
1001
1002 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1003 #define page_address(page) lowmem_page_address(page)
1004 #define set_page_address(page, address) do { } while(0)
1005 #define page_address_init() do { } while(0)
1006 #endif
1007
1008 /*
1009 * On an anonymous page mapped into a user virtual memory area,
1010 * page->mapping points to its anon_vma, not to a struct address_space;
1011 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
1012 *
1013 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
1014 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
1015 * and then page->mapping points, not to an anon_vma, but to a private
1016 * structure which KSM associates with that merged page. See ksm.h.
1017 *
1018 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1019 *
1020 * Please note that, confusingly, "page_mapping" refers to the inode
1021 * address_space which maps the page from disk; whereas "page_mapped"
1022 * refers to user virtual address space into which the page is mapped.
1023 */
1024 #define PAGE_MAPPING_ANON 1
1025 #define PAGE_MAPPING_KSM 2
1026 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1027
1028 extern struct address_space *page_mapping(struct page *page);
1029
1030 /* Neutral page->mapping pointer to address_space or anon_vma or other */
1031 static inline void *page_rmapping(struct page *page)
1032 {
1033 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
1034 }
1035
1036 extern struct address_space *__page_file_mapping(struct page *);
1037
1038 static inline
1039 struct address_space *page_file_mapping(struct page *page)
1040 {
1041 if (unlikely(PageSwapCache(page)))
1042 return __page_file_mapping(page);
1043
1044 return page->mapping;
1045 }
1046
1047 static inline int PageAnon(struct page *page)
1048 {
1049 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1050 }
1051
1052 /*
1053 * Return the pagecache index of the passed page. Regular pagecache pages
1054 * use ->index whereas swapcache pages use ->private
1055 */
1056 static inline pgoff_t page_index(struct page *page)
1057 {
1058 if (unlikely(PageSwapCache(page)))
1059 return page_private(page);
1060 return page->index;
1061 }
1062
1063 extern pgoff_t __page_file_index(struct page *page);
1064
1065 /*
1066 * Return the file index of the page. Regular pagecache pages use ->index
1067 * whereas swapcache pages use swp_offset(->private)
1068 */
1069 static inline pgoff_t page_file_index(struct page *page)
1070 {
1071 if (unlikely(PageSwapCache(page)))
1072 return __page_file_index(page);
1073
1074 return page->index;
1075 }
1076
1077 /*
1078 * Return true if this page is mapped into pagetables.
1079 */
1080 static inline int page_mapped(struct page *page)
1081 {
1082 return atomic_read(&(page)->_mapcount) >= 0;
1083 }
1084
1085 /*
1086 * Different kinds of faults, as returned by handle_mm_fault().
1087 * Used to decide whether a process gets delivered SIGBUS or
1088 * just gets major/minor fault counters bumped up.
1089 */
1090
1091 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1092
1093 #define VM_FAULT_OOM 0x0001
1094 #define VM_FAULT_SIGBUS 0x0002
1095 #define VM_FAULT_MAJOR 0x0004
1096 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1097 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1098 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1099 #define VM_FAULT_SIGSEGV 0x0040
1100
1101 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1102 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1103 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1104 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1105
1106 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1107
1108 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1109 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1110 VM_FAULT_FALLBACK)
1111
1112 /* Encode hstate index for a hwpoisoned large page */
1113 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1114 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1115
1116 /*
1117 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1118 */
1119 extern void pagefault_out_of_memory(void);
1120
1121 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1122
1123 /*
1124 * Flags passed to show_mem() and show_free_areas() to suppress output in
1125 * various contexts.
1126 */
1127 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1128
1129 extern void show_free_areas(unsigned int flags);
1130 extern bool skip_free_areas_node(unsigned int flags, int nid);
1131
1132 int shmem_zero_setup(struct vm_area_struct *);
1133 #ifdef CONFIG_SHMEM
1134 bool shmem_mapping(struct address_space *mapping);
1135 #else
1136 static inline bool shmem_mapping(struct address_space *mapping)
1137 {
1138 return false;
1139 }
1140 #endif
1141
1142 extern int can_do_mlock(void);
1143 extern int user_shm_lock(size_t, struct user_struct *);
1144 extern void user_shm_unlock(size_t, struct user_struct *);
1145
1146 /*
1147 * Parameter block passed down to zap_pte_range in exceptional cases.
1148 */
1149 struct zap_details {
1150 struct address_space *check_mapping; /* Check page->mapping if set */
1151 pgoff_t first_index; /* Lowest page->index to unmap */
1152 pgoff_t last_index; /* Highest page->index to unmap */
1153 };
1154
1155 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1156 pte_t pte);
1157
1158 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1159 unsigned long size);
1160 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1161 unsigned long size, struct zap_details *);
1162 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1163 unsigned long start, unsigned long end);
1164
1165 /**
1166 * mm_walk - callbacks for walk_page_range
1167 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1168 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1169 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1170 * this handler is required to be able to handle
1171 * pmd_trans_huge() pmds. They may simply choose to
1172 * split_huge_page() instead of handling it explicitly.
1173 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1174 * @pte_hole: if set, called for each hole at all levels
1175 * @hugetlb_entry: if set, called for each hugetlb entry
1176 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1177 * is used.
1178 *
1179 * (see walk_page_range for more details)
1180 */
1181 struct mm_walk {
1182 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1183 unsigned long next, struct mm_walk *walk);
1184 int (*pud_entry)(pud_t *pud, unsigned long addr,
1185 unsigned long next, struct mm_walk *walk);
1186 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1187 unsigned long next, struct mm_walk *walk);
1188 int (*pte_entry)(pte_t *pte, unsigned long addr,
1189 unsigned long next, struct mm_walk *walk);
1190 int (*pte_hole)(unsigned long addr, unsigned long next,
1191 struct mm_walk *walk);
1192 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1193 unsigned long addr, unsigned long next,
1194 struct mm_walk *walk);
1195 struct mm_struct *mm;
1196 void *private;
1197 };
1198
1199 int walk_page_range(unsigned long addr, unsigned long end,
1200 struct mm_walk *walk);
1201 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1202 unsigned long end, unsigned long floor, unsigned long ceiling);
1203 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1204 struct vm_area_struct *vma);
1205 void unmap_mapping_range(struct address_space *mapping,
1206 loff_t const holebegin, loff_t const holelen, int even_cows);
1207 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1208 unsigned long *pfn);
1209 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1210 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1211 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1212 void *buf, int len, int write);
1213
1214 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1215 loff_t const holebegin, loff_t const holelen)
1216 {
1217 unmap_mapping_range(mapping, holebegin, holelen, 0);
1218 }
1219
1220 extern void truncate_pagecache(struct inode *inode, loff_t new);
1221 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1222 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1223 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1224 int truncate_inode_page(struct address_space *mapping, struct page *page);
1225 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1226 int invalidate_inode_page(struct page *page);
1227
1228 #ifdef CONFIG_MMU
1229 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1230 unsigned long address, unsigned int flags);
1231 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1232 unsigned long address, unsigned int fault_flags);
1233 #else
1234 static inline int handle_mm_fault(struct mm_struct *mm,
1235 struct vm_area_struct *vma, unsigned long address,
1236 unsigned int flags)
1237 {
1238 /* should never happen if there's no MMU */
1239 BUG();
1240 return VM_FAULT_SIGBUS;
1241 }
1242 static inline int fixup_user_fault(struct task_struct *tsk,
1243 struct mm_struct *mm, unsigned long address,
1244 unsigned int fault_flags)
1245 {
1246 /* should never happen if there's no MMU */
1247 BUG();
1248 return -EFAULT;
1249 }
1250 #endif
1251
1252 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1253 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1254 void *buf, int len, int write);
1255
1256 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1257 unsigned long start, unsigned long nr_pages,
1258 unsigned int foll_flags, struct page **pages,
1259 struct vm_area_struct **vmas, int *nonblocking);
1260 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1261 unsigned long start, unsigned long nr_pages,
1262 int write, int force, struct page **pages,
1263 struct vm_area_struct **vmas);
1264 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1265 unsigned long start, unsigned long nr_pages,
1266 int write, int force, struct page **pages,
1267 int *locked);
1268 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1269 unsigned long start, unsigned long nr_pages,
1270 int write, int force, struct page **pages,
1271 unsigned int gup_flags);
1272 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1273 unsigned long start, unsigned long nr_pages,
1274 int write, int force, struct page **pages);
1275 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1276 struct page **pages);
1277 struct kvec;
1278 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1279 struct page **pages);
1280 int get_kernel_page(unsigned long start, int write, struct page **pages);
1281 struct page *get_dump_page(unsigned long addr);
1282
1283 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1284 extern void do_invalidatepage(struct page *page, unsigned int offset,
1285 unsigned int length);
1286
1287 int __set_page_dirty_nobuffers(struct page *page);
1288 int __set_page_dirty_no_writeback(struct page *page);
1289 int redirty_page_for_writepage(struct writeback_control *wbc,
1290 struct page *page);
1291 void account_page_dirtied(struct page *page, struct address_space *mapping);
1292 int set_page_dirty(struct page *page);
1293 int set_page_dirty_lock(struct page *page);
1294 int clear_page_dirty_for_io(struct page *page);
1295 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1296
1297 /* Is the vma a continuation of the stack vma above it? */
1298 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1299 {
1300 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1301 }
1302
1303 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1304 unsigned long addr)
1305 {
1306 return (vma->vm_flags & VM_GROWSDOWN) &&
1307 (vma->vm_start == addr) &&
1308 !vma_growsdown(vma->vm_prev, addr);
1309 }
1310
1311 /* Is the vma a continuation of the stack vma below it? */
1312 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1313 {
1314 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1315 }
1316
1317 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1318 unsigned long addr)
1319 {
1320 return (vma->vm_flags & VM_GROWSUP) &&
1321 (vma->vm_end == addr) &&
1322 !vma_growsup(vma->vm_next, addr);
1323 }
1324
1325 extern struct task_struct *task_of_stack(struct task_struct *task,
1326 struct vm_area_struct *vma, bool in_group);
1327
1328 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1329 unsigned long old_addr, struct vm_area_struct *new_vma,
1330 unsigned long new_addr, unsigned long len,
1331 bool need_rmap_locks);
1332 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1333 unsigned long end, pgprot_t newprot,
1334 int dirty_accountable, int prot_numa);
1335 extern int mprotect_fixup(struct vm_area_struct *vma,
1336 struct vm_area_struct **pprev, unsigned long start,
1337 unsigned long end, unsigned long newflags);
1338
1339 /*
1340 * doesn't attempt to fault and will return short.
1341 */
1342 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1343 struct page **pages);
1344 /*
1345 * per-process(per-mm_struct) statistics.
1346 */
1347 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1348 {
1349 long val = atomic_long_read(&mm->rss_stat.count[member]);
1350
1351 #ifdef SPLIT_RSS_COUNTING
1352 /*
1353 * counter is updated in asynchronous manner and may go to minus.
1354 * But it's never be expected number for users.
1355 */
1356 if (val < 0)
1357 val = 0;
1358 #endif
1359 return (unsigned long)val;
1360 }
1361
1362 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1363 {
1364 atomic_long_add(value, &mm->rss_stat.count[member]);
1365 }
1366
1367 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1368 {
1369 atomic_long_inc(&mm->rss_stat.count[member]);
1370 }
1371
1372 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1373 {
1374 atomic_long_dec(&mm->rss_stat.count[member]);
1375 }
1376
1377 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1378 {
1379 return get_mm_counter(mm, MM_FILEPAGES) +
1380 get_mm_counter(mm, MM_ANONPAGES);
1381 }
1382
1383 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1384 {
1385 return max(mm->hiwater_rss, get_mm_rss(mm));
1386 }
1387
1388 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1389 {
1390 return max(mm->hiwater_vm, mm->total_vm);
1391 }
1392
1393 static inline void update_hiwater_rss(struct mm_struct *mm)
1394 {
1395 unsigned long _rss = get_mm_rss(mm);
1396
1397 if ((mm)->hiwater_rss < _rss)
1398 (mm)->hiwater_rss = _rss;
1399 }
1400
1401 static inline void update_hiwater_vm(struct mm_struct *mm)
1402 {
1403 if (mm->hiwater_vm < mm->total_vm)
1404 mm->hiwater_vm = mm->total_vm;
1405 }
1406
1407 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1408 struct mm_struct *mm)
1409 {
1410 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1411
1412 if (*maxrss < hiwater_rss)
1413 *maxrss = hiwater_rss;
1414 }
1415
1416 #if defined(SPLIT_RSS_COUNTING)
1417 void sync_mm_rss(struct mm_struct *mm);
1418 #else
1419 static inline void sync_mm_rss(struct mm_struct *mm)
1420 {
1421 }
1422 #endif
1423
1424 int vma_wants_writenotify(struct vm_area_struct *vma);
1425
1426 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1427 spinlock_t **ptl);
1428 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1429 spinlock_t **ptl)
1430 {
1431 pte_t *ptep;
1432 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1433 return ptep;
1434 }
1435
1436 #ifdef __PAGETABLE_PUD_FOLDED
1437 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1438 unsigned long address)
1439 {
1440 return 0;
1441 }
1442 #else
1443 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1444 #endif
1445
1446 #ifdef __PAGETABLE_PMD_FOLDED
1447 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1448 unsigned long address)
1449 {
1450 return 0;
1451 }
1452
1453 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1454 {
1455 return 0;
1456 }
1457
1458 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1459 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1460
1461 #else
1462 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1463
1464 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1465 {
1466 return atomic_long_read(&mm->nr_pmds);
1467 }
1468
1469 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1470 {
1471 atomic_long_inc(&mm->nr_pmds);
1472 }
1473
1474 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1475 {
1476 atomic_long_dec(&mm->nr_pmds);
1477 }
1478 #endif
1479
1480 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1481 pmd_t *pmd, unsigned long address);
1482 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1483
1484 /*
1485 * The following ifdef needed to get the 4level-fixup.h header to work.
1486 * Remove it when 4level-fixup.h has been removed.
1487 */
1488 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1489 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1490 {
1491 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1492 NULL: pud_offset(pgd, address);
1493 }
1494
1495 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1496 {
1497 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1498 NULL: pmd_offset(pud, address);
1499 }
1500 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1501
1502 #if USE_SPLIT_PTE_PTLOCKS
1503 #if ALLOC_SPLIT_PTLOCKS
1504 void __init ptlock_cache_init(void);
1505 extern bool ptlock_alloc(struct page *page);
1506 extern void ptlock_free(struct page *page);
1507
1508 static inline spinlock_t *ptlock_ptr(struct page *page)
1509 {
1510 return page->ptl;
1511 }
1512 #else /* ALLOC_SPLIT_PTLOCKS */
1513 static inline void ptlock_cache_init(void)
1514 {
1515 }
1516
1517 static inline bool ptlock_alloc(struct page *page)
1518 {
1519 return true;
1520 }
1521
1522 static inline void ptlock_free(struct page *page)
1523 {
1524 }
1525
1526 static inline spinlock_t *ptlock_ptr(struct page *page)
1527 {
1528 return &page->ptl;
1529 }
1530 #endif /* ALLOC_SPLIT_PTLOCKS */
1531
1532 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1533 {
1534 return ptlock_ptr(pmd_page(*pmd));
1535 }
1536
1537 static inline bool ptlock_init(struct page *page)
1538 {
1539 /*
1540 * prep_new_page() initialize page->private (and therefore page->ptl)
1541 * with 0. Make sure nobody took it in use in between.
1542 *
1543 * It can happen if arch try to use slab for page table allocation:
1544 * slab code uses page->slab_cache and page->first_page (for tail
1545 * pages), which share storage with page->ptl.
1546 */
1547 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1548 if (!ptlock_alloc(page))
1549 return false;
1550 spin_lock_init(ptlock_ptr(page));
1551 return true;
1552 }
1553
1554 /* Reset page->mapping so free_pages_check won't complain. */
1555 static inline void pte_lock_deinit(struct page *page)
1556 {
1557 page->mapping = NULL;
1558 ptlock_free(page);
1559 }
1560
1561 #else /* !USE_SPLIT_PTE_PTLOCKS */
1562 /*
1563 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1564 */
1565 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1566 {
1567 return &mm->page_table_lock;
1568 }
1569 static inline void ptlock_cache_init(void) {}
1570 static inline bool ptlock_init(struct page *page) { return true; }
1571 static inline void pte_lock_deinit(struct page *page) {}
1572 #endif /* USE_SPLIT_PTE_PTLOCKS */
1573
1574 static inline void pgtable_init(void)
1575 {
1576 ptlock_cache_init();
1577 pgtable_cache_init();
1578 }
1579
1580 static inline bool pgtable_page_ctor(struct page *page)
1581 {
1582 inc_zone_page_state(page, NR_PAGETABLE);
1583 return ptlock_init(page);
1584 }
1585
1586 static inline void pgtable_page_dtor(struct page *page)
1587 {
1588 pte_lock_deinit(page);
1589 dec_zone_page_state(page, NR_PAGETABLE);
1590 }
1591
1592 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1593 ({ \
1594 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1595 pte_t *__pte = pte_offset_map(pmd, address); \
1596 *(ptlp) = __ptl; \
1597 spin_lock(__ptl); \
1598 __pte; \
1599 })
1600
1601 #define pte_unmap_unlock(pte, ptl) do { \
1602 spin_unlock(ptl); \
1603 pte_unmap(pte); \
1604 } while (0)
1605
1606 #define pte_alloc_map(mm, vma, pmd, address) \
1607 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1608 pmd, address))? \
1609 NULL: pte_offset_map(pmd, address))
1610
1611 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1612 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1613 pmd, address))? \
1614 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1615
1616 #define pte_alloc_kernel(pmd, address) \
1617 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1618 NULL: pte_offset_kernel(pmd, address))
1619
1620 #if USE_SPLIT_PMD_PTLOCKS
1621
1622 static struct page *pmd_to_page(pmd_t *pmd)
1623 {
1624 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1625 return virt_to_page((void *)((unsigned long) pmd & mask));
1626 }
1627
1628 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1629 {
1630 return ptlock_ptr(pmd_to_page(pmd));
1631 }
1632
1633 static inline bool pgtable_pmd_page_ctor(struct page *page)
1634 {
1635 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1636 page->pmd_huge_pte = NULL;
1637 #endif
1638 return ptlock_init(page);
1639 }
1640
1641 static inline void pgtable_pmd_page_dtor(struct page *page)
1642 {
1643 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1644 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1645 #endif
1646 ptlock_free(page);
1647 }
1648
1649 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1650
1651 #else
1652
1653 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1654 {
1655 return &mm->page_table_lock;
1656 }
1657
1658 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1659 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1660
1661 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1662
1663 #endif
1664
1665 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1666 {
1667 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1668 spin_lock(ptl);
1669 return ptl;
1670 }
1671
1672 extern void free_area_init(unsigned long * zones_size);
1673 extern void free_area_init_node(int nid, unsigned long * zones_size,
1674 unsigned long zone_start_pfn, unsigned long *zholes_size);
1675 extern void free_initmem(void);
1676
1677 /*
1678 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1679 * into the buddy system. The freed pages will be poisoned with pattern
1680 * "poison" if it's within range [0, UCHAR_MAX].
1681 * Return pages freed into the buddy system.
1682 */
1683 extern unsigned long free_reserved_area(void *start, void *end,
1684 int poison, char *s);
1685
1686 #ifdef CONFIG_HIGHMEM
1687 /*
1688 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1689 * and totalram_pages.
1690 */
1691 extern void free_highmem_page(struct page *page);
1692 #endif
1693
1694 extern void adjust_managed_page_count(struct page *page, long count);
1695 extern void mem_init_print_info(const char *str);
1696
1697 /* Free the reserved page into the buddy system, so it gets managed. */
1698 static inline void __free_reserved_page(struct page *page)
1699 {
1700 ClearPageReserved(page);
1701 init_page_count(page);
1702 __free_page(page);
1703 }
1704
1705 static inline void free_reserved_page(struct page *page)
1706 {
1707 __free_reserved_page(page);
1708 adjust_managed_page_count(page, 1);
1709 }
1710
1711 static inline void mark_page_reserved(struct page *page)
1712 {
1713 SetPageReserved(page);
1714 adjust_managed_page_count(page, -1);
1715 }
1716
1717 /*
1718 * Default method to free all the __init memory into the buddy system.
1719 * The freed pages will be poisoned with pattern "poison" if it's within
1720 * range [0, UCHAR_MAX].
1721 * Return pages freed into the buddy system.
1722 */
1723 static inline unsigned long free_initmem_default(int poison)
1724 {
1725 extern char __init_begin[], __init_end[];
1726
1727 return free_reserved_area(&__init_begin, &__init_end,
1728 poison, "unused kernel");
1729 }
1730
1731 static inline unsigned long get_num_physpages(void)
1732 {
1733 int nid;
1734 unsigned long phys_pages = 0;
1735
1736 for_each_online_node(nid)
1737 phys_pages += node_present_pages(nid);
1738
1739 return phys_pages;
1740 }
1741
1742 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1743 /*
1744 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1745 * zones, allocate the backing mem_map and account for memory holes in a more
1746 * architecture independent manner. This is a substitute for creating the
1747 * zone_sizes[] and zholes_size[] arrays and passing them to
1748 * free_area_init_node()
1749 *
1750 * An architecture is expected to register range of page frames backed by
1751 * physical memory with memblock_add[_node]() before calling
1752 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1753 * usage, an architecture is expected to do something like
1754 *
1755 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1756 * max_highmem_pfn};
1757 * for_each_valid_physical_page_range()
1758 * memblock_add_node(base, size, nid)
1759 * free_area_init_nodes(max_zone_pfns);
1760 *
1761 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1762 * registered physical page range. Similarly
1763 * sparse_memory_present_with_active_regions() calls memory_present() for
1764 * each range when SPARSEMEM is enabled.
1765 *
1766 * See mm/page_alloc.c for more information on each function exposed by
1767 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1768 */
1769 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1770 unsigned long node_map_pfn_alignment(void);
1771 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1772 unsigned long end_pfn);
1773 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1774 unsigned long end_pfn);
1775 extern void get_pfn_range_for_nid(unsigned int nid,
1776 unsigned long *start_pfn, unsigned long *end_pfn);
1777 extern unsigned long find_min_pfn_with_active_regions(void);
1778 extern void free_bootmem_with_active_regions(int nid,
1779 unsigned long max_low_pfn);
1780 extern void sparse_memory_present_with_active_regions(int nid);
1781
1782 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1783
1784 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1785 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1786 static inline int __early_pfn_to_nid(unsigned long pfn)
1787 {
1788 return 0;
1789 }
1790 #else
1791 /* please see mm/page_alloc.c */
1792 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1793 /* there is a per-arch backend function. */
1794 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1795 #endif
1796
1797 extern void set_dma_reserve(unsigned long new_dma_reserve);
1798 extern void memmap_init_zone(unsigned long, int, unsigned long,
1799 unsigned long, enum memmap_context);
1800 extern void setup_per_zone_wmarks(void);
1801 extern int __meminit init_per_zone_wmark_min(void);
1802 extern void mem_init(void);
1803 extern void __init mmap_init(void);
1804 extern void show_mem(unsigned int flags);
1805 extern void si_meminfo(struct sysinfo * val);
1806 extern void si_meminfo_node(struct sysinfo *val, int nid);
1807
1808 extern __printf(3, 4)
1809 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1810
1811 extern void setup_per_cpu_pageset(void);
1812
1813 extern void zone_pcp_update(struct zone *zone);
1814 extern void zone_pcp_reset(struct zone *zone);
1815
1816 /* page_alloc.c */
1817 extern int min_free_kbytes;
1818
1819 /* nommu.c */
1820 extern atomic_long_t mmap_pages_allocated;
1821 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1822
1823 /* interval_tree.c */
1824 void vma_interval_tree_insert(struct vm_area_struct *node,
1825 struct rb_root *root);
1826 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1827 struct vm_area_struct *prev,
1828 struct rb_root *root);
1829 void vma_interval_tree_remove(struct vm_area_struct *node,
1830 struct rb_root *root);
1831 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1832 unsigned long start, unsigned long last);
1833 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1834 unsigned long start, unsigned long last);
1835
1836 #define vma_interval_tree_foreach(vma, root, start, last) \
1837 for (vma = vma_interval_tree_iter_first(root, start, last); \
1838 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1839
1840 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1841 struct rb_root *root);
1842 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1843 struct rb_root *root);
1844 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1845 struct rb_root *root, unsigned long start, unsigned long last);
1846 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1847 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1848 #ifdef CONFIG_DEBUG_VM_RB
1849 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1850 #endif
1851
1852 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1853 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1854 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1855
1856 /* mmap.c */
1857 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1858 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1859 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1860 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1861 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1862 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1863 struct mempolicy *);
1864 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1865 extern int split_vma(struct mm_struct *,
1866 struct vm_area_struct *, unsigned long addr, int new_below);
1867 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1868 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1869 struct rb_node **, struct rb_node *);
1870 extern void unlink_file_vma(struct vm_area_struct *);
1871 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1872 unsigned long addr, unsigned long len, pgoff_t pgoff,
1873 bool *need_rmap_locks);
1874 extern void exit_mmap(struct mm_struct *);
1875
1876 static inline int check_data_rlimit(unsigned long rlim,
1877 unsigned long new,
1878 unsigned long start,
1879 unsigned long end_data,
1880 unsigned long start_data)
1881 {
1882 if (rlim < RLIM_INFINITY) {
1883 if (((new - start) + (end_data - start_data)) > rlim)
1884 return -ENOSPC;
1885 }
1886
1887 return 0;
1888 }
1889
1890 extern int mm_take_all_locks(struct mm_struct *mm);
1891 extern void mm_drop_all_locks(struct mm_struct *mm);
1892
1893 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1894 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1895
1896 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1897 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1898 unsigned long addr, unsigned long len,
1899 unsigned long flags,
1900 const struct vm_special_mapping *spec);
1901 /* This is an obsolete alternative to _install_special_mapping. */
1902 extern int install_special_mapping(struct mm_struct *mm,
1903 unsigned long addr, unsigned long len,
1904 unsigned long flags, struct page **pages);
1905
1906 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1907
1908 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1909 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1910 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1911 unsigned long len, unsigned long prot, unsigned long flags,
1912 unsigned long pgoff, unsigned long *populate);
1913 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1914
1915 #ifdef CONFIG_MMU
1916 extern int __mm_populate(unsigned long addr, unsigned long len,
1917 int ignore_errors);
1918 static inline void mm_populate(unsigned long addr, unsigned long len)
1919 {
1920 /* Ignore errors */
1921 (void) __mm_populate(addr, len, 1);
1922 }
1923 #else
1924 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1925 #endif
1926
1927 /* These take the mm semaphore themselves */
1928 extern unsigned long vm_brk(unsigned long, unsigned long);
1929 extern int vm_munmap(unsigned long, size_t);
1930 extern unsigned long vm_mmap(struct file *, unsigned long,
1931 unsigned long, unsigned long,
1932 unsigned long, unsigned long);
1933
1934 struct vm_unmapped_area_info {
1935 #define VM_UNMAPPED_AREA_TOPDOWN 1
1936 unsigned long flags;
1937 unsigned long length;
1938 unsigned long low_limit;
1939 unsigned long high_limit;
1940 unsigned long align_mask;
1941 unsigned long align_offset;
1942 };
1943
1944 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1945 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1946
1947 /*
1948 * Search for an unmapped address range.
1949 *
1950 * We are looking for a range that:
1951 * - does not intersect with any VMA;
1952 * - is contained within the [low_limit, high_limit) interval;
1953 * - is at least the desired size.
1954 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1955 */
1956 static inline unsigned long
1957 vm_unmapped_area(struct vm_unmapped_area_info *info)
1958 {
1959 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1960 return unmapped_area(info);
1961 else
1962 return unmapped_area_topdown(info);
1963 }
1964
1965 /* truncate.c */
1966 extern void truncate_inode_pages(struct address_space *, loff_t);
1967 extern void truncate_inode_pages_range(struct address_space *,
1968 loff_t lstart, loff_t lend);
1969 extern void truncate_inode_pages_final(struct address_space *);
1970
1971 /* generic vm_area_ops exported for stackable file systems */
1972 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1973 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1974 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1975
1976 /* mm/page-writeback.c */
1977 int write_one_page(struct page *page, int wait);
1978 void task_dirty_inc(struct task_struct *tsk);
1979
1980 /* readahead.c */
1981 #define VM_MAX_READAHEAD 128 /* kbytes */
1982 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1983
1984 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1985 pgoff_t offset, unsigned long nr_to_read);
1986
1987 void page_cache_sync_readahead(struct address_space *mapping,
1988 struct file_ra_state *ra,
1989 struct file *filp,
1990 pgoff_t offset,
1991 unsigned long size);
1992
1993 void page_cache_async_readahead(struct address_space *mapping,
1994 struct file_ra_state *ra,
1995 struct file *filp,
1996 struct page *pg,
1997 pgoff_t offset,
1998 unsigned long size);
1999
2000 unsigned long max_sane_readahead(unsigned long nr);
2001
2002 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2003 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2004
2005 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2006 extern int expand_downwards(struct vm_area_struct *vma,
2007 unsigned long address);
2008 #if VM_GROWSUP
2009 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2010 #else
2011 #define expand_upwards(vma, address) (0)
2012 #endif
2013
2014 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2015 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2016 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2017 struct vm_area_struct **pprev);
2018
2019 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2020 NULL if none. Assume start_addr < end_addr. */
2021 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2022 {
2023 struct vm_area_struct * vma = find_vma(mm,start_addr);
2024
2025 if (vma && end_addr <= vma->vm_start)
2026 vma = NULL;
2027 return vma;
2028 }
2029
2030 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2031 {
2032 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2033 }
2034
2035 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2036 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2037 unsigned long vm_start, unsigned long vm_end)
2038 {
2039 struct vm_area_struct *vma = find_vma(mm, vm_start);
2040
2041 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2042 vma = NULL;
2043
2044 return vma;
2045 }
2046
2047 #ifdef CONFIG_MMU
2048 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2049 void vma_set_page_prot(struct vm_area_struct *vma);
2050 #else
2051 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2052 {
2053 return __pgprot(0);
2054 }
2055 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2056 {
2057 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2058 }
2059 #endif
2060
2061 #ifdef CONFIG_NUMA_BALANCING
2062 unsigned long change_prot_numa(struct vm_area_struct *vma,
2063 unsigned long start, unsigned long end);
2064 #endif
2065
2066 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2067 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2068 unsigned long pfn, unsigned long size, pgprot_t);
2069 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2070 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2071 unsigned long pfn);
2072 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2073 unsigned long pfn);
2074 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2075
2076
2077 struct page *follow_page_mask(struct vm_area_struct *vma,
2078 unsigned long address, unsigned int foll_flags,
2079 unsigned int *page_mask);
2080
2081 static inline struct page *follow_page(struct vm_area_struct *vma,
2082 unsigned long address, unsigned int foll_flags)
2083 {
2084 unsigned int unused_page_mask;
2085 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2086 }
2087
2088 #define FOLL_WRITE 0x01 /* check pte is writable */
2089 #define FOLL_TOUCH 0x02 /* mark page accessed */
2090 #define FOLL_GET 0x04 /* do get_page on page */
2091 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2092 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2093 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2094 * and return without waiting upon it */
2095 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
2096 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2097 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2098 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2099 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2100 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2101
2102 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2103 void *data);
2104 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2105 unsigned long size, pte_fn_t fn, void *data);
2106
2107 #ifdef CONFIG_PROC_FS
2108 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2109 #else
2110 static inline void vm_stat_account(struct mm_struct *mm,
2111 unsigned long flags, struct file *file, long pages)
2112 {
2113 mm->total_vm += pages;
2114 }
2115 #endif /* CONFIG_PROC_FS */
2116
2117 #ifdef CONFIG_DEBUG_PAGEALLOC
2118 extern bool _debug_pagealloc_enabled;
2119 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2120
2121 static inline bool debug_pagealloc_enabled(void)
2122 {
2123 return _debug_pagealloc_enabled;
2124 }
2125
2126 static inline void
2127 kernel_map_pages(struct page *page, int numpages, int enable)
2128 {
2129 if (!debug_pagealloc_enabled())
2130 return;
2131
2132 __kernel_map_pages(page, numpages, enable);
2133 }
2134 #ifdef CONFIG_HIBERNATION
2135 extern bool kernel_page_present(struct page *page);
2136 #endif /* CONFIG_HIBERNATION */
2137 #else
2138 static inline void
2139 kernel_map_pages(struct page *page, int numpages, int enable) {}
2140 #ifdef CONFIG_HIBERNATION
2141 static inline bool kernel_page_present(struct page *page) { return true; }
2142 #endif /* CONFIG_HIBERNATION */
2143 #endif
2144
2145 #ifdef __HAVE_ARCH_GATE_AREA
2146 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2147 extern int in_gate_area_no_mm(unsigned long addr);
2148 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2149 #else
2150 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2151 {
2152 return NULL;
2153 }
2154 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2155 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2156 {
2157 return 0;
2158 }
2159 #endif /* __HAVE_ARCH_GATE_AREA */
2160
2161 #ifdef CONFIG_SYSCTL
2162 extern int sysctl_drop_caches;
2163 int drop_caches_sysctl_handler(struct ctl_table *, int,
2164 void __user *, size_t *, loff_t *);
2165 #endif
2166
2167 unsigned long shrink_node_slabs(gfp_t gfp_mask, int nid,
2168 unsigned long nr_scanned,
2169 unsigned long nr_eligible);
2170
2171 #ifndef CONFIG_MMU
2172 #define randomize_va_space 0
2173 #else
2174 extern int randomize_va_space;
2175 #endif
2176
2177 const char * arch_vma_name(struct vm_area_struct *vma);
2178 void print_vma_addr(char *prefix, unsigned long rip);
2179
2180 void sparse_mem_maps_populate_node(struct page **map_map,
2181 unsigned long pnum_begin,
2182 unsigned long pnum_end,
2183 unsigned long map_count,
2184 int nodeid);
2185
2186 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2187 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2188 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2189 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2190 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2191 void *vmemmap_alloc_block(unsigned long size, int node);
2192 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2193 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2194 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2195 int node);
2196 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2197 void vmemmap_populate_print_last(void);
2198 #ifdef CONFIG_MEMORY_HOTPLUG
2199 void vmemmap_free(unsigned long start, unsigned long end);
2200 #endif
2201 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2202 unsigned long size);
2203
2204 enum mf_flags {
2205 MF_COUNT_INCREASED = 1 << 0,
2206 MF_ACTION_REQUIRED = 1 << 1,
2207 MF_MUST_KILL = 1 << 2,
2208 MF_SOFT_OFFLINE = 1 << 3,
2209 };
2210 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2211 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2212 extern int unpoison_memory(unsigned long pfn);
2213 extern int sysctl_memory_failure_early_kill;
2214 extern int sysctl_memory_failure_recovery;
2215 extern void shake_page(struct page *p, int access);
2216 extern atomic_long_t num_poisoned_pages;
2217 extern int soft_offline_page(struct page *page, int flags);
2218
2219 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2220 extern void clear_huge_page(struct page *page,
2221 unsigned long addr,
2222 unsigned int pages_per_huge_page);
2223 extern void copy_user_huge_page(struct page *dst, struct page *src,
2224 unsigned long addr, struct vm_area_struct *vma,
2225 unsigned int pages_per_huge_page);
2226 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2227
2228 extern struct page_ext_operations debug_guardpage_ops;
2229 extern struct page_ext_operations page_poisoning_ops;
2230
2231 #ifdef CONFIG_DEBUG_PAGEALLOC
2232 extern unsigned int _debug_guardpage_minorder;
2233 extern bool _debug_guardpage_enabled;
2234
2235 static inline unsigned int debug_guardpage_minorder(void)
2236 {
2237 return _debug_guardpage_minorder;
2238 }
2239
2240 static inline bool debug_guardpage_enabled(void)
2241 {
2242 return _debug_guardpage_enabled;
2243 }
2244
2245 static inline bool page_is_guard(struct page *page)
2246 {
2247 struct page_ext *page_ext;
2248
2249 if (!debug_guardpage_enabled())
2250 return false;
2251
2252 page_ext = lookup_page_ext(page);
2253 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2254 }
2255 #else
2256 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2257 static inline bool debug_guardpage_enabled(void) { return false; }
2258 static inline bool page_is_guard(struct page *page) { return false; }
2259 #endif /* CONFIG_DEBUG_PAGEALLOC */
2260
2261 #if MAX_NUMNODES > 1
2262 void __init setup_nr_node_ids(void);
2263 #else
2264 static inline void setup_nr_node_ids(void) {}
2265 #endif
2266
2267 #endif /* __KERNEL__ */
2268 #endif /* _LINUX_MM_H */